|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * X86 specific Hyper-V initialization code. | 
|  | * | 
|  | * Copyright (C) 2016, Microsoft, Inc. | 
|  | * | 
|  | * Author : K. Y. Srinivasan <kys@microsoft.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/efi.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/io.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/sev.h> | 
|  | #include <asm/ibt.h> | 
|  | #include <asm/hypervisor.h> | 
|  | #include <asm/hyperv-tlfs.h> | 
|  | #include <asm/mshyperv.h> | 
|  | #include <asm/idtentry.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/version.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hyperv.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/cpuhotplug.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <clocksource/hyperv_timer.h> | 
|  | #include <linux/highmem.h> | 
|  |  | 
|  | int hyperv_init_cpuhp; | 
|  | u64 hv_current_partition_id = ~0ull; | 
|  | EXPORT_SYMBOL_GPL(hv_current_partition_id); | 
|  |  | 
|  | void *hv_hypercall_pg; | 
|  | EXPORT_SYMBOL_GPL(hv_hypercall_pg); | 
|  |  | 
|  | union hv_ghcb * __percpu *hv_ghcb_pg; | 
|  |  | 
|  | /* Storage to save the hypercall page temporarily for hibernation */ | 
|  | static void *hv_hypercall_pg_saved; | 
|  |  | 
|  | struct hv_vp_assist_page **hv_vp_assist_page; | 
|  | EXPORT_SYMBOL_GPL(hv_vp_assist_page); | 
|  |  | 
|  | static int hyperv_init_ghcb(void) | 
|  | { | 
|  | u64 ghcb_gpa; | 
|  | void *ghcb_va; | 
|  | void **ghcb_base; | 
|  |  | 
|  | if (!hv_isolation_type_snp()) | 
|  | return 0; | 
|  |  | 
|  | if (!hv_ghcb_pg) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * GHCB page is allocated by paravisor. The address | 
|  | * returned by MSR_AMD64_SEV_ES_GHCB is above shared | 
|  | * memory boundary and map it here. | 
|  | */ | 
|  | rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa); | 
|  |  | 
|  | /* Mask out vTOM bit. ioremap_cache() maps decrypted */ | 
|  | ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary; | 
|  | ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE); | 
|  | if (!ghcb_va) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg); | 
|  | *ghcb_base = ghcb_va; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hv_cpu_init(unsigned int cpu) | 
|  | { | 
|  | union hv_vp_assist_msr_contents msr = { 0 }; | 
|  | struct hv_vp_assist_page **hvp = &hv_vp_assist_page[cpu]; | 
|  | int ret; | 
|  |  | 
|  | ret = hv_common_cpu_init(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!hv_vp_assist_page) | 
|  | return 0; | 
|  |  | 
|  | if (hv_root_partition) { | 
|  | /* | 
|  | * For root partition we get the hypervisor provided VP assist | 
|  | * page, instead of allocating a new page. | 
|  | */ | 
|  | rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); | 
|  | *hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT, | 
|  | PAGE_SIZE, MEMREMAP_WB); | 
|  | } else { | 
|  | /* | 
|  | * The VP assist page is an "overlay" page (see Hyper-V TLFS's | 
|  | * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed | 
|  | * out to make sure we always write the EOI MSR in | 
|  | * hv_apic_eoi_write() *after* the EOI optimization is disabled | 
|  | * in hv_cpu_die(), otherwise a CPU may not be stopped in the | 
|  | * case of CPU offlining and the VM will hang. | 
|  | */ | 
|  | if (!*hvp) | 
|  | *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO); | 
|  | if (*hvp) | 
|  | msr.pfn = vmalloc_to_pfn(*hvp); | 
|  |  | 
|  | } | 
|  | if (!WARN_ON(!(*hvp))) { | 
|  | msr.enable = 1; | 
|  | wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); | 
|  | } | 
|  |  | 
|  | return hyperv_init_ghcb(); | 
|  | } | 
|  |  | 
|  | static void (*hv_reenlightenment_cb)(void); | 
|  |  | 
|  | static void hv_reenlightenment_notify(struct work_struct *dummy) | 
|  | { | 
|  | struct hv_tsc_emulation_status emu_status; | 
|  |  | 
|  | rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); | 
|  |  | 
|  | /* Don't issue the callback if TSC accesses are not emulated */ | 
|  | if (hv_reenlightenment_cb && emu_status.inprogress) | 
|  | hv_reenlightenment_cb(); | 
|  | } | 
|  | static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); | 
|  |  | 
|  | void hyperv_stop_tsc_emulation(void) | 
|  | { | 
|  | u64 freq; | 
|  | struct hv_tsc_emulation_status emu_status; | 
|  |  | 
|  | rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); | 
|  | emu_status.inprogress = 0; | 
|  | wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); | 
|  |  | 
|  | rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); | 
|  | tsc_khz = div64_u64(freq, 1000); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); | 
|  |  | 
|  | static inline bool hv_reenlightenment_available(void) | 
|  | { | 
|  | /* | 
|  | * Check for required features and privileges to make TSC frequency | 
|  | * change notifications work. | 
|  | */ | 
|  | return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS && | 
|  | ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && | 
|  | ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT; | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment) | 
|  | { | 
|  | ack_APIC_irq(); | 
|  | inc_irq_stat(irq_hv_reenlightenment_count); | 
|  | schedule_delayed_work(&hv_reenlightenment_work, HZ/10); | 
|  | } | 
|  |  | 
|  | void set_hv_tscchange_cb(void (*cb)(void)) | 
|  | { | 
|  | struct hv_reenlightenment_control re_ctrl = { | 
|  | .vector = HYPERV_REENLIGHTENMENT_VECTOR, | 
|  | .enabled = 1, | 
|  | }; | 
|  | struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; | 
|  |  | 
|  | if (!hv_reenlightenment_available()) { | 
|  | pr_warn("Hyper-V: reenlightenment support is unavailable\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!hv_vp_index) | 
|  | return; | 
|  |  | 
|  | hv_reenlightenment_cb = cb; | 
|  |  | 
|  | /* Make sure callback is registered before we write to MSRs */ | 
|  | wmb(); | 
|  |  | 
|  | re_ctrl.target_vp = hv_vp_index[get_cpu()]; | 
|  |  | 
|  | wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); | 
|  | wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); | 
|  |  | 
|  | void clear_hv_tscchange_cb(void) | 
|  | { | 
|  | struct hv_reenlightenment_control re_ctrl; | 
|  |  | 
|  | if (!hv_reenlightenment_available()) | 
|  | return; | 
|  |  | 
|  | rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); | 
|  | re_ctrl.enabled = 0; | 
|  | wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); | 
|  |  | 
|  | hv_reenlightenment_cb = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); | 
|  |  | 
|  | static int hv_cpu_die(unsigned int cpu) | 
|  | { | 
|  | struct hv_reenlightenment_control re_ctrl; | 
|  | unsigned int new_cpu; | 
|  | void **ghcb_va; | 
|  |  | 
|  | if (hv_ghcb_pg) { | 
|  | ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg); | 
|  | if (*ghcb_va) | 
|  | iounmap(*ghcb_va); | 
|  | *ghcb_va = NULL; | 
|  | } | 
|  |  | 
|  | hv_common_cpu_die(cpu); | 
|  |  | 
|  | if (hv_vp_assist_page && hv_vp_assist_page[cpu]) { | 
|  | union hv_vp_assist_msr_contents msr = { 0 }; | 
|  | if (hv_root_partition) { | 
|  | /* | 
|  | * For root partition the VP assist page is mapped to | 
|  | * hypervisor provided page, and thus we unmap the | 
|  | * page here and nullify it, so that in future we have | 
|  | * correct page address mapped in hv_cpu_init. | 
|  | */ | 
|  | memunmap(hv_vp_assist_page[cpu]); | 
|  | hv_vp_assist_page[cpu] = NULL; | 
|  | rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); | 
|  | msr.enable = 0; | 
|  | } | 
|  | wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); | 
|  | } | 
|  |  | 
|  | if (hv_reenlightenment_cb == NULL) | 
|  | return 0; | 
|  |  | 
|  | rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); | 
|  | if (re_ctrl.target_vp == hv_vp_index[cpu]) { | 
|  | /* | 
|  | * Reassign reenlightenment notifications to some other online | 
|  | * CPU or just disable the feature if there are no online CPUs | 
|  | * left (happens on hibernation). | 
|  | */ | 
|  | new_cpu = cpumask_any_but(cpu_online_mask, cpu); | 
|  |  | 
|  | if (new_cpu < nr_cpu_ids) | 
|  | re_ctrl.target_vp = hv_vp_index[new_cpu]; | 
|  | else | 
|  | re_ctrl.enabled = 0; | 
|  |  | 
|  | wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init hv_pci_init(void) | 
|  | { | 
|  | int gen2vm = efi_enabled(EFI_BOOT); | 
|  |  | 
|  | /* | 
|  | * For Generation-2 VM, we exit from pci_arch_init() by returning 0. | 
|  | * The purpose is to suppress the harmless warning: | 
|  | * "PCI: Fatal: No config space access function found" | 
|  | */ | 
|  | if (gen2vm) | 
|  | return 0; | 
|  |  | 
|  | /* For Generation-1 VM, we'll proceed in pci_arch_init().  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int hv_suspend(void) | 
|  | { | 
|  | union hv_x64_msr_hypercall_contents hypercall_msr; | 
|  | int ret; | 
|  |  | 
|  | if (hv_root_partition) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Reset the hypercall page as it is going to be invalidated | 
|  | * across hibernation. Setting hv_hypercall_pg to NULL ensures | 
|  | * that any subsequent hypercall operation fails safely instead of | 
|  | * crashing due to an access of an invalid page. The hypercall page | 
|  | * pointer is restored on resume. | 
|  | */ | 
|  | hv_hypercall_pg_saved = hv_hypercall_pg; | 
|  | hv_hypercall_pg = NULL; | 
|  |  | 
|  | /* Disable the hypercall page in the hypervisor */ | 
|  | rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  | hypercall_msr.enable = 0; | 
|  | wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  |  | 
|  | ret = hv_cpu_die(0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void hv_resume(void) | 
|  | { | 
|  | union hv_x64_msr_hypercall_contents hypercall_msr; | 
|  | int ret; | 
|  |  | 
|  | ret = hv_cpu_init(0); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | /* Re-enable the hypercall page */ | 
|  | rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  | hypercall_msr.enable = 1; | 
|  | hypercall_msr.guest_physical_address = | 
|  | vmalloc_to_pfn(hv_hypercall_pg_saved); | 
|  | wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  |  | 
|  | hv_hypercall_pg = hv_hypercall_pg_saved; | 
|  | hv_hypercall_pg_saved = NULL; | 
|  |  | 
|  | /* | 
|  | * Reenlightenment notifications are disabled by hv_cpu_die(0), | 
|  | * reenable them here if hv_reenlightenment_cb was previously set. | 
|  | */ | 
|  | if (hv_reenlightenment_cb) | 
|  | set_hv_tscchange_cb(hv_reenlightenment_cb); | 
|  | } | 
|  |  | 
|  | /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */ | 
|  | static struct syscore_ops hv_syscore_ops = { | 
|  | .suspend	= hv_suspend, | 
|  | .resume		= hv_resume, | 
|  | }; | 
|  |  | 
|  | static void (* __initdata old_setup_percpu_clockev)(void); | 
|  |  | 
|  | static void __init hv_stimer_setup_percpu_clockev(void) | 
|  | { | 
|  | /* | 
|  | * Ignore any errors in setting up stimer clockevents | 
|  | * as we can run with the LAPIC timer as a fallback. | 
|  | */ | 
|  | (void)hv_stimer_alloc(false); | 
|  |  | 
|  | /* | 
|  | * Still register the LAPIC timer, because the direct-mode STIMER is | 
|  | * not supported by old versions of Hyper-V. This also allows users | 
|  | * to switch to LAPIC timer via /sys, if they want to. | 
|  | */ | 
|  | if (old_setup_percpu_clockev) | 
|  | old_setup_percpu_clockev(); | 
|  | } | 
|  |  | 
|  | static void __init hv_get_partition_id(void) | 
|  | { | 
|  | struct hv_get_partition_id *output_page; | 
|  | u64 status; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | output_page = *this_cpu_ptr(hyperv_pcpu_output_arg); | 
|  | status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page); | 
|  | if (!hv_result_success(status)) { | 
|  | /* No point in proceeding if this failed */ | 
|  | pr_err("Failed to get partition ID: %lld\n", status); | 
|  | BUG(); | 
|  | } | 
|  | hv_current_partition_id = output_page->partition_id; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is to be invoked early in the boot sequence after the | 
|  | * hypervisor has been detected. | 
|  | * | 
|  | * 1. Setup the hypercall page. | 
|  | * 2. Register Hyper-V specific clocksource. | 
|  | * 3. Setup Hyper-V specific APIC entry points. | 
|  | */ | 
|  | void __init hyperv_init(void) | 
|  | { | 
|  | u64 guest_id; | 
|  | union hv_x64_msr_hypercall_contents hypercall_msr; | 
|  | int cpuhp; | 
|  |  | 
|  | if (x86_hyper_type != X86_HYPER_MS_HYPERV) | 
|  | return; | 
|  |  | 
|  | if (hv_common_init()) | 
|  | return; | 
|  |  | 
|  | hv_vp_assist_page = kcalloc(num_possible_cpus(), | 
|  | sizeof(*hv_vp_assist_page), GFP_KERNEL); | 
|  | if (!hv_vp_assist_page) { | 
|  | ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; | 
|  | goto common_free; | 
|  | } | 
|  |  | 
|  | if (hv_isolation_type_snp()) { | 
|  | /* Negotiate GHCB Version. */ | 
|  | if (!hv_ghcb_negotiate_protocol()) | 
|  | hv_ghcb_terminate(SEV_TERM_SET_GEN, | 
|  | GHCB_SEV_ES_PROT_UNSUPPORTED); | 
|  |  | 
|  | hv_ghcb_pg = alloc_percpu(union hv_ghcb *); | 
|  | if (!hv_ghcb_pg) | 
|  | goto free_vp_assist_page; | 
|  | } | 
|  |  | 
|  | cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online", | 
|  | hv_cpu_init, hv_cpu_die); | 
|  | if (cpuhp < 0) | 
|  | goto free_ghcb_page; | 
|  |  | 
|  | /* | 
|  | * Setup the hypercall page and enable hypercalls. | 
|  | * 1. Register the guest ID | 
|  | * 2. Enable the hypercall and register the hypercall page | 
|  | */ | 
|  | guest_id = hv_generate_guest_id(LINUX_VERSION_CODE); | 
|  | wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); | 
|  |  | 
|  | /* Hyper-V requires to write guest os id via ghcb in SNP IVM. */ | 
|  | hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id); | 
|  |  | 
|  | hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, | 
|  | VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, | 
|  | VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, | 
|  | __builtin_return_address(0)); | 
|  | if (hv_hypercall_pg == NULL) | 
|  | goto clean_guest_os_id; | 
|  |  | 
|  | rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  | hypercall_msr.enable = 1; | 
|  |  | 
|  | if (hv_root_partition) { | 
|  | struct page *pg; | 
|  | void *src; | 
|  |  | 
|  | /* | 
|  | * For the root partition, the hypervisor will set up its | 
|  | * hypercall page. The hypervisor guarantees it will not show | 
|  | * up in the root's address space. The root can't change the | 
|  | * location of the hypercall page. | 
|  | * | 
|  | * Order is important here. We must enable the hypercall page | 
|  | * so it is populated with code, then copy the code to an | 
|  | * executable page. | 
|  | */ | 
|  | wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  |  | 
|  | pg = vmalloc_to_page(hv_hypercall_pg); | 
|  | src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE, | 
|  | MEMREMAP_WB); | 
|  | BUG_ON(!src); | 
|  | memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE); | 
|  | memunmap(src); | 
|  |  | 
|  | hv_remap_tsc_clocksource(); | 
|  | } else { | 
|  | hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); | 
|  | wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some versions of Hyper-V that provide IBT in guest VMs have a bug | 
|  | * in that there's no ENDBR64 instruction at the entry to the | 
|  | * hypercall page. Because hypercalls are invoked via an indirect call | 
|  | * to the hypercall page, all hypercall attempts fail when IBT is | 
|  | * enabled, and Linux panics. For such buggy versions, disable IBT. | 
|  | * | 
|  | * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall | 
|  | * page, so if future Linux kernel versions enable IBT for 32-bit | 
|  | * builds, additional hypercall page hackery will be required here | 
|  | * to provide an ENDBR32. | 
|  | */ | 
|  | #ifdef CONFIG_X86_KERNEL_IBT | 
|  | if (cpu_feature_enabled(X86_FEATURE_IBT) && | 
|  | *(u32 *)hv_hypercall_pg != gen_endbr()) { | 
|  | setup_clear_cpu_cap(X86_FEATURE_IBT); | 
|  | pr_warn("Hyper-V: Disabling IBT because of Hyper-V bug\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * hyperv_init() is called before LAPIC is initialized: see | 
|  | * apic_intr_mode_init() -> x86_platform.apic_post_init() and | 
|  | * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER | 
|  | * depends on LAPIC, so hv_stimer_alloc() should be called from | 
|  | * x86_init.timers.setup_percpu_clockev. | 
|  | */ | 
|  | old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev; | 
|  | x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev; | 
|  |  | 
|  | hv_apic_init(); | 
|  |  | 
|  | x86_init.pci.arch_init = hv_pci_init; | 
|  |  | 
|  | register_syscore_ops(&hv_syscore_ops); | 
|  |  | 
|  | hyperv_init_cpuhp = cpuhp; | 
|  |  | 
|  | if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID) | 
|  | hv_get_partition_id(); | 
|  |  | 
|  | BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull); | 
|  |  | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | /* | 
|  | * If we're running as root, we want to create our own PCI MSI domain. | 
|  | * We can't set this in hv_pci_init because that would be too late. | 
|  | */ | 
|  | if (hv_root_partition) | 
|  | x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain; | 
|  | #endif | 
|  |  | 
|  | /* Query the VMs extended capability once, so that it can be cached. */ | 
|  | hv_query_ext_cap(0); | 
|  |  | 
|  | return; | 
|  |  | 
|  | clean_guest_os_id: | 
|  | wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); | 
|  | hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0); | 
|  | cpuhp_remove_state(cpuhp); | 
|  | free_ghcb_page: | 
|  | free_percpu(hv_ghcb_pg); | 
|  | free_vp_assist_page: | 
|  | kfree(hv_vp_assist_page); | 
|  | hv_vp_assist_page = NULL; | 
|  | common_free: | 
|  | hv_common_free(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called before kexec/kdump, it does the required cleanup. | 
|  | */ | 
|  | void hyperv_cleanup(void) | 
|  | { | 
|  | union hv_x64_msr_hypercall_contents hypercall_msr; | 
|  | union hv_reference_tsc_msr tsc_msr; | 
|  |  | 
|  | /* Reset our OS id */ | 
|  | wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); | 
|  | hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0); | 
|  |  | 
|  | /* | 
|  | * Reset hypercall page reference before reset the page, | 
|  | * let hypercall operations fail safely rather than | 
|  | * panic the kernel for using invalid hypercall page | 
|  | */ | 
|  | hv_hypercall_pg = NULL; | 
|  |  | 
|  | /* Reset the hypercall page */ | 
|  | hypercall_msr.as_uint64 = hv_get_register(HV_X64_MSR_HYPERCALL); | 
|  | hypercall_msr.enable = 0; | 
|  | hv_set_register(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  |  | 
|  | /* Reset the TSC page */ | 
|  | tsc_msr.as_uint64 = hv_get_register(HV_X64_MSR_REFERENCE_TSC); | 
|  | tsc_msr.enable = 0; | 
|  | hv_set_register(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); | 
|  | } | 
|  |  | 
|  | void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die) | 
|  | { | 
|  | static bool panic_reported; | 
|  | u64 guest_id; | 
|  |  | 
|  | if (in_die && !panic_on_oops) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We prefer to report panic on 'die' chain as we have proper | 
|  | * registers to report, but if we miss it (e.g. on BUG()) we need | 
|  | * to report it on 'panic'. | 
|  | */ | 
|  | if (panic_reported) | 
|  | return; | 
|  | panic_reported = true; | 
|  |  | 
|  | rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); | 
|  |  | 
|  | wrmsrl(HV_X64_MSR_CRASH_P0, err); | 
|  | wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); | 
|  | wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); | 
|  | wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); | 
|  | wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); | 
|  |  | 
|  | /* | 
|  | * Let Hyper-V know there is crash data available | 
|  | */ | 
|  | wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hyperv_report_panic); | 
|  |  | 
|  | bool hv_is_hyperv_initialized(void) | 
|  | { | 
|  | union hv_x64_msr_hypercall_contents hypercall_msr; | 
|  |  | 
|  | /* | 
|  | * Ensure that we're really on Hyper-V, and not a KVM or Xen | 
|  | * emulation of Hyper-V | 
|  | */ | 
|  | if (x86_hyper_type != X86_HYPER_MS_HYPERV) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Verify that earlier initialization succeeded by checking | 
|  | * that the hypercall page is setup | 
|  | */ | 
|  | hypercall_msr.as_uint64 = 0; | 
|  | rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); | 
|  |  | 
|  | return hypercall_msr.enable; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized); |