| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. | 
 |  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include "dm-core.h" | 
 | #include "dm-rq.h" | 
 | #include "dm-uevent.h" | 
 | #include "dm-ima.h" | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/blkpg.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/hdreg.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/pr.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/part_stat.h> | 
 | #include <linux/blk-crypto.h> | 
 | #include <linux/blk-crypto-profile.h> | 
 |  | 
 | #define DM_MSG_PREFIX "core" | 
 |  | 
 | /* | 
 |  * Cookies are numeric values sent with CHANGE and REMOVE | 
 |  * uevents while resuming, removing or renaming the device. | 
 |  */ | 
 | #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" | 
 | #define DM_COOKIE_LENGTH 24 | 
 |  | 
 | /* | 
 |  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying | 
 |  * dm_io into one list, and reuse bio->bi_private as the list head. Before | 
 |  * ending this fs bio, we will recover its ->bi_private. | 
 |  */ | 
 | #define REQ_DM_POLL_LIST	REQ_DRV | 
 |  | 
 | static const char *_name = DM_NAME; | 
 |  | 
 | static unsigned int major; | 
 | static unsigned int _major; | 
 |  | 
 | static DEFINE_IDR(_minor_idr); | 
 |  | 
 | static DEFINE_SPINLOCK(_minor_lock); | 
 |  | 
 | static void do_deferred_remove(struct work_struct *w); | 
 |  | 
 | static DECLARE_WORK(deferred_remove_work, do_deferred_remove); | 
 |  | 
 | static struct workqueue_struct *deferred_remove_workqueue; | 
 |  | 
 | atomic_t dm_global_event_nr = ATOMIC_INIT(0); | 
 | DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); | 
 |  | 
 | void dm_issue_global_event(void) | 
 | { | 
 | 	atomic_inc(&dm_global_event_nr); | 
 | 	wake_up(&dm_global_eventq); | 
 | } | 
 |  | 
 | DEFINE_STATIC_KEY_FALSE(stats_enabled); | 
 | DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); | 
 | DEFINE_STATIC_KEY_FALSE(zoned_enabled); | 
 |  | 
 | /* | 
 |  * One of these is allocated (on-stack) per original bio. | 
 |  */ | 
 | struct clone_info { | 
 | 	struct dm_table *map; | 
 | 	struct bio *bio; | 
 | 	struct dm_io *io; | 
 | 	sector_t sector; | 
 | 	unsigned int sector_count; | 
 | 	bool is_abnormal_io:1; | 
 | 	bool submit_as_polled:1; | 
 | }; | 
 |  | 
 | static inline struct dm_target_io *clone_to_tio(struct bio *clone) | 
 | { | 
 | 	return container_of(clone, struct dm_target_io, clone); | 
 | } | 
 |  | 
 | void *dm_per_bio_data(struct bio *bio, size_t data_size) | 
 | { | 
 | 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) | 
 | 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; | 
 | 	return (char *)bio - DM_IO_BIO_OFFSET - data_size; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_per_bio_data); | 
 |  | 
 | struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) | 
 | { | 
 | 	struct dm_io *io = (struct dm_io *)((char *)data + data_size); | 
 |  | 
 | 	if (io->magic == DM_IO_MAGIC) | 
 | 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); | 
 | 	BUG_ON(io->magic != DM_TIO_MAGIC); | 
 | 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); | 
 |  | 
 | unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) | 
 | { | 
 | 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); | 
 |  | 
 | #define MINOR_ALLOCED ((void *)-1) | 
 |  | 
 | #define DM_NUMA_NODE NUMA_NO_NODE | 
 | static int dm_numa_node = DM_NUMA_NODE; | 
 |  | 
 | #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE) | 
 | static int swap_bios = DEFAULT_SWAP_BIOS; | 
 | static int get_swap_bios(void) | 
 | { | 
 | 	int latch = READ_ONCE(swap_bios); | 
 |  | 
 | 	if (unlikely(latch <= 0)) | 
 | 		latch = DEFAULT_SWAP_BIOS; | 
 | 	return latch; | 
 | } | 
 |  | 
 | struct table_device { | 
 | 	struct list_head list; | 
 | 	refcount_t count; | 
 | 	struct dm_dev dm_dev; | 
 | }; | 
 |  | 
 | /* | 
 |  * Bio-based DM's mempools' reserved IOs set by the user. | 
 |  */ | 
 | #define RESERVED_BIO_BASED_IOS		16 | 
 | static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; | 
 |  | 
 | static int __dm_get_module_param_int(int *module_param, int min, int max) | 
 | { | 
 | 	int param = READ_ONCE(*module_param); | 
 | 	int modified_param = 0; | 
 | 	bool modified = true; | 
 |  | 
 | 	if (param < min) | 
 | 		modified_param = min; | 
 | 	else if (param > max) | 
 | 		modified_param = max; | 
 | 	else | 
 | 		modified = false; | 
 |  | 
 | 	if (modified) { | 
 | 		(void)cmpxchg(module_param, param, modified_param); | 
 | 		param = modified_param; | 
 | 	} | 
 |  | 
 | 	return param; | 
 | } | 
 |  | 
 | unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) | 
 | { | 
 | 	unsigned int param = READ_ONCE(*module_param); | 
 | 	unsigned int modified_param = 0; | 
 |  | 
 | 	if (!param) | 
 | 		modified_param = def; | 
 | 	else if (param > max) | 
 | 		modified_param = max; | 
 |  | 
 | 	if (modified_param) { | 
 | 		(void)cmpxchg(module_param, param, modified_param); | 
 | 		param = modified_param; | 
 | 	} | 
 |  | 
 | 	return param; | 
 | } | 
 |  | 
 | unsigned int dm_get_reserved_bio_based_ios(void) | 
 | { | 
 | 	return __dm_get_module_param(&reserved_bio_based_ios, | 
 | 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); | 
 |  | 
 | static unsigned int dm_get_numa_node(void) | 
 | { | 
 | 	return __dm_get_module_param_int(&dm_numa_node, | 
 | 					 DM_NUMA_NODE, num_online_nodes() - 1); | 
 | } | 
 |  | 
 | static int __init local_init(void) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = dm_uevent_init(); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); | 
 | 	if (!deferred_remove_workqueue) { | 
 | 		r = -ENOMEM; | 
 | 		goto out_uevent_exit; | 
 | 	} | 
 |  | 
 | 	_major = major; | 
 | 	r = register_blkdev(_major, _name); | 
 | 	if (r < 0) | 
 | 		goto out_free_workqueue; | 
 |  | 
 | 	if (!_major) | 
 | 		_major = r; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_workqueue: | 
 | 	destroy_workqueue(deferred_remove_workqueue); | 
 | out_uevent_exit: | 
 | 	dm_uevent_exit(); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void local_exit(void) | 
 | { | 
 | 	destroy_workqueue(deferred_remove_workqueue); | 
 |  | 
 | 	unregister_blkdev(_major, _name); | 
 | 	dm_uevent_exit(); | 
 |  | 
 | 	_major = 0; | 
 |  | 
 | 	DMINFO("cleaned up"); | 
 | } | 
 |  | 
 | static int (*_inits[])(void) __initdata = { | 
 | 	local_init, | 
 | 	dm_target_init, | 
 | 	dm_linear_init, | 
 | 	dm_stripe_init, | 
 | 	dm_io_init, | 
 | 	dm_kcopyd_init, | 
 | 	dm_interface_init, | 
 | 	dm_statistics_init, | 
 | }; | 
 |  | 
 | static void (*_exits[])(void) = { | 
 | 	local_exit, | 
 | 	dm_target_exit, | 
 | 	dm_linear_exit, | 
 | 	dm_stripe_exit, | 
 | 	dm_io_exit, | 
 | 	dm_kcopyd_exit, | 
 | 	dm_interface_exit, | 
 | 	dm_statistics_exit, | 
 | }; | 
 |  | 
 | static int __init dm_init(void) | 
 | { | 
 | 	const int count = ARRAY_SIZE(_inits); | 
 | 	int r, i; | 
 |  | 
 | #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) | 
 | 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." | 
 | 	       " Duplicate IMA measurements will not be recorded in the IMA log."); | 
 | #endif | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		r = _inits[i](); | 
 | 		if (r) | 
 | 			goto bad; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | bad: | 
 | 	while (i--) | 
 | 		_exits[i](); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __exit dm_exit(void) | 
 | { | 
 | 	int i = ARRAY_SIZE(_exits); | 
 |  | 
 | 	while (i--) | 
 | 		_exits[i](); | 
 |  | 
 | 	/* | 
 | 	 * Should be empty by this point. | 
 | 	 */ | 
 | 	idr_destroy(&_minor_idr); | 
 | } | 
 |  | 
 | /* | 
 |  * Block device functions | 
 |  */ | 
 | int dm_deleting_md(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_DELETING, &md->flags); | 
 | } | 
 |  | 
 | static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) | 
 | { | 
 | 	struct mapped_device *md; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	md = disk->private_data; | 
 | 	if (!md) | 
 | 		goto out; | 
 |  | 
 | 	if (test_bit(DMF_FREEING, &md->flags) || | 
 | 	    dm_deleting_md(md)) { | 
 | 		md = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dm_get(md); | 
 | 	atomic_inc(&md->open_count); | 
 | out: | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return md ? 0 : -ENXIO; | 
 | } | 
 |  | 
 | static void dm_blk_close(struct gendisk *disk) | 
 | { | 
 | 	struct mapped_device *md; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	md = disk->private_data; | 
 | 	if (WARN_ON(!md)) | 
 | 		goto out; | 
 |  | 
 | 	if (atomic_dec_and_test(&md->open_count) && | 
 | 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) | 
 | 		queue_work(deferred_remove_workqueue, &deferred_remove_work); | 
 |  | 
 | 	dm_put(md); | 
 | out: | 
 | 	spin_unlock(&_minor_lock); | 
 | } | 
 |  | 
 | int dm_open_count(struct mapped_device *md) | 
 | { | 
 | 	return atomic_read(&md->open_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Guarantees nothing is using the device before it's deleted. | 
 |  */ | 
 | int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	if (dm_open_count(md)) { | 
 | 		r = -EBUSY; | 
 | 		if (mark_deferred) | 
 | 			set_bit(DMF_DEFERRED_REMOVE, &md->flags); | 
 | 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) | 
 | 		r = -EEXIST; | 
 | 	else | 
 | 		set_bit(DMF_DELETING, &md->flags); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int dm_cancel_deferred_remove(struct mapped_device *md) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	if (test_bit(DMF_DELETING, &md->flags)) | 
 | 		r = -EBUSY; | 
 | 	else | 
 | 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void do_deferred_remove(struct work_struct *w) | 
 | { | 
 | 	dm_deferred_remove(); | 
 | } | 
 |  | 
 | static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) | 
 | { | 
 | 	struct mapped_device *md = bdev->bd_disk->private_data; | 
 |  | 
 | 	return dm_get_geometry(md, geo); | 
 | } | 
 |  | 
 | static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, | 
 | 			    struct block_device **bdev) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	struct dm_table *map; | 
 | 	int r; | 
 |  | 
 | retry: | 
 | 	r = -ENOTTY; | 
 | 	map = dm_get_live_table(md, srcu_idx); | 
 | 	if (!map || !dm_table_get_size(map)) | 
 | 		return r; | 
 |  | 
 | 	/* We only support devices that have a single target */ | 
 | 	if (map->num_targets != 1) | 
 | 		return r; | 
 |  | 
 | 	ti = dm_table_get_target(map, 0); | 
 | 	if (!ti->type->prepare_ioctl) | 
 | 		return r; | 
 |  | 
 | 	if (dm_suspended_md(md)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	r = ti->type->prepare_ioctl(ti, bdev); | 
 | 	if (r == -ENOTCONN && !fatal_signal_pending(current)) { | 
 | 		dm_put_live_table(md, *srcu_idx); | 
 | 		fsleep(10000); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) | 
 | { | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | } | 
 |  | 
 | static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, | 
 | 			unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct mapped_device *md = bdev->bd_disk->private_data; | 
 | 	int r, srcu_idx; | 
 |  | 
 | 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (r > 0) { | 
 | 		/* | 
 | 		 * Target determined this ioctl is being issued against a | 
 | 		 * subset of the parent bdev; require extra privileges. | 
 | 		 */ | 
 | 		if (!capable(CAP_SYS_RAWIO)) { | 
 | 			DMDEBUG_LIMIT( | 
 | 	"%s: sending ioctl %x to DM device without required privilege.", | 
 | 				current->comm, cmd); | 
 | 			r = -ENOIOCTLCMD; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!bdev->bd_disk->fops->ioctl) | 
 | 		r = -ENOTTY; | 
 | 	else | 
 | 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); | 
 | out: | 
 | 	dm_unprepare_ioctl(md, srcu_idx); | 
 | 	return r; | 
 | } | 
 |  | 
 | u64 dm_start_time_ns_from_clone(struct bio *bio) | 
 | { | 
 | 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); | 
 |  | 
 | static inline bool bio_is_flush_with_data(struct bio *bio) | 
 | { | 
 | 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); | 
 | } | 
 |  | 
 | static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) | 
 | { | 
 | 	/* | 
 | 	 * If REQ_PREFLUSH set, don't account payload, it will be | 
 | 	 * submitted (and accounted) after this flush completes. | 
 | 	 */ | 
 | 	if (bio_is_flush_with_data(bio)) | 
 | 		return 0; | 
 | 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) | 
 | 		return io->sectors; | 
 | 	return bio_sectors(bio); | 
 | } | 
 |  | 
 | static void dm_io_acct(struct dm_io *io, bool end) | 
 | { | 
 | 	struct bio *bio = io->orig_bio; | 
 |  | 
 | 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) { | 
 | 		if (!end) | 
 | 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio), | 
 | 					   io->start_time); | 
 | 		else | 
 | 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio), | 
 | 					 dm_io_sectors(io, bio), | 
 | 					 io->start_time); | 
 | 	} | 
 |  | 
 | 	if (static_branch_unlikely(&stats_enabled) && | 
 | 	    unlikely(dm_stats_used(&io->md->stats))) { | 
 | 		sector_t sector; | 
 |  | 
 | 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) | 
 | 			sector = bio_end_sector(bio) - io->sector_offset; | 
 | 		else | 
 | 			sector = bio->bi_iter.bi_sector; | 
 |  | 
 | 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio), | 
 | 				    sector, dm_io_sectors(io, bio), | 
 | 				    end, io->start_time, &io->stats_aux); | 
 | 	} | 
 | } | 
 |  | 
 | static void __dm_start_io_acct(struct dm_io *io) | 
 | { | 
 | 	dm_io_acct(io, false); | 
 | } | 
 |  | 
 | static void dm_start_io_acct(struct dm_io *io, struct bio *clone) | 
 | { | 
 | 	/* | 
 | 	 * Ensure IO accounting is only ever started once. | 
 | 	 */ | 
 | 	if (dm_io_flagged(io, DM_IO_ACCOUNTED)) | 
 | 		return; | 
 |  | 
 | 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ | 
 | 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { | 
 | 		dm_io_set_flag(io, DM_IO_ACCOUNTED); | 
 | 	} else { | 
 | 		unsigned long flags; | 
 | 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ | 
 | 		spin_lock_irqsave(&io->lock, flags); | 
 | 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { | 
 | 			spin_unlock_irqrestore(&io->lock, flags); | 
 | 			return; | 
 | 		} | 
 | 		dm_io_set_flag(io, DM_IO_ACCOUNTED); | 
 | 		spin_unlock_irqrestore(&io->lock, flags); | 
 | 	} | 
 |  | 
 | 	__dm_start_io_acct(io); | 
 | } | 
 |  | 
 | static void dm_end_io_acct(struct dm_io *io) | 
 | { | 
 | 	dm_io_acct(io, true); | 
 | } | 
 |  | 
 | static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) | 
 | { | 
 | 	struct dm_io *io; | 
 | 	struct dm_target_io *tio; | 
 | 	struct bio *clone; | 
 |  | 
 | 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); | 
 | 	tio = clone_to_tio(clone); | 
 | 	tio->flags = 0; | 
 | 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); | 
 | 	tio->io = NULL; | 
 |  | 
 | 	io = container_of(tio, struct dm_io, tio); | 
 | 	io->magic = DM_IO_MAGIC; | 
 | 	io->status = BLK_STS_OK; | 
 |  | 
 | 	/* one ref is for submission, the other is for completion */ | 
 | 	atomic_set(&io->io_count, 2); | 
 | 	this_cpu_inc(*md->pending_io); | 
 | 	io->orig_bio = bio; | 
 | 	io->md = md; | 
 | 	spin_lock_init(&io->lock); | 
 | 	io->start_time = jiffies; | 
 | 	io->flags = 0; | 
 | 	if (blk_queue_io_stat(md->queue)) | 
 | 		dm_io_set_flag(io, DM_IO_BLK_STAT); | 
 |  | 
 | 	if (static_branch_unlikely(&stats_enabled) && | 
 | 	    unlikely(dm_stats_used(&md->stats))) | 
 | 		dm_stats_record_start(&md->stats, &io->stats_aux); | 
 |  | 
 | 	return io; | 
 | } | 
 |  | 
 | static void free_io(struct dm_io *io) | 
 | { | 
 | 	bio_put(&io->tio.clone); | 
 | } | 
 |  | 
 | static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, | 
 | 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) | 
 | { | 
 | 	struct mapped_device *md = ci->io->md; | 
 | 	struct dm_target_io *tio; | 
 | 	struct bio *clone; | 
 |  | 
 | 	if (!ci->io->tio.io) { | 
 | 		/* the dm_target_io embedded in ci->io is available */ | 
 | 		tio = &ci->io->tio; | 
 | 		/* alloc_io() already initialized embedded clone */ | 
 | 		clone = &tio->clone; | 
 | 	} else { | 
 | 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, | 
 | 					&md->mempools->bs); | 
 | 		if (!clone) | 
 | 			return NULL; | 
 |  | 
 | 		/* REQ_DM_POLL_LIST shouldn't be inherited */ | 
 | 		clone->bi_opf &= ~REQ_DM_POLL_LIST; | 
 |  | 
 | 		tio = clone_to_tio(clone); | 
 | 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ | 
 | 	} | 
 |  | 
 | 	tio->magic = DM_TIO_MAGIC; | 
 | 	tio->io = ci->io; | 
 | 	tio->ti = ti; | 
 | 	tio->target_bio_nr = target_bio_nr; | 
 | 	tio->len_ptr = len; | 
 | 	tio->old_sector = 0; | 
 |  | 
 | 	/* Set default bdev, but target must bio_set_dev() before issuing IO */ | 
 | 	clone->bi_bdev = md->disk->part0; | 
 | 	if (unlikely(ti->needs_bio_set_dev)) | 
 | 		bio_set_dev(clone, md->disk->part0); | 
 |  | 
 | 	if (len) { | 
 | 		clone->bi_iter.bi_size = to_bytes(*len); | 
 | 		if (bio_integrity(clone)) | 
 | 			bio_integrity_trim(clone); | 
 | 	} | 
 |  | 
 | 	return clone; | 
 | } | 
 |  | 
 | static void free_tio(struct bio *clone) | 
 | { | 
 | 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) | 
 | 		return; | 
 | 	bio_put(clone); | 
 | } | 
 |  | 
 | /* | 
 |  * Add the bio to the list of deferred io. | 
 |  */ | 
 | static void queue_io(struct mapped_device *md, struct bio *bio) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&md->deferred_lock, flags); | 
 | 	bio_list_add(&md->deferred, bio); | 
 | 	spin_unlock_irqrestore(&md->deferred_lock, flags); | 
 | 	queue_work(md->wq, &md->work); | 
 | } | 
 |  | 
 | /* | 
 |  * Everyone (including functions in this file), should use this | 
 |  * function to access the md->map field, and make sure they call | 
 |  * dm_put_live_table() when finished. | 
 |  */ | 
 | struct dm_table *dm_get_live_table(struct mapped_device *md, | 
 | 				   int *srcu_idx) __acquires(md->io_barrier) | 
 | { | 
 | 	*srcu_idx = srcu_read_lock(&md->io_barrier); | 
 |  | 
 | 	return srcu_dereference(md->map, &md->io_barrier); | 
 | } | 
 |  | 
 | void dm_put_live_table(struct mapped_device *md, | 
 | 		       int srcu_idx) __releases(md->io_barrier) | 
 | { | 
 | 	srcu_read_unlock(&md->io_barrier, srcu_idx); | 
 | } | 
 |  | 
 | void dm_sync_table(struct mapped_device *md) | 
 | { | 
 | 	synchronize_srcu(&md->io_barrier); | 
 | 	synchronize_rcu_expedited(); | 
 | } | 
 |  | 
 | /* | 
 |  * A fast alternative to dm_get_live_table/dm_put_live_table. | 
 |  * The caller must not block between these two functions. | 
 |  */ | 
 | static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) | 
 | { | 
 | 	rcu_read_lock(); | 
 | 	return rcu_dereference(md->map); | 
 | } | 
 |  | 
 | static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) | 
 | { | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static char *_dm_claim_ptr = "I belong to device-mapper"; | 
 |  | 
 | /* | 
 |  * Open a table device so we can use it as a map destination. | 
 |  */ | 
 | static struct table_device *open_table_device(struct mapped_device *md, | 
 | 		dev_t dev, blk_mode_t mode) | 
 | { | 
 | 	struct table_device *td; | 
 | 	struct block_device *bdev; | 
 | 	u64 part_off; | 
 | 	int r; | 
 |  | 
 | 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); | 
 | 	if (!td) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	refcount_set(&td->count, 1); | 
 |  | 
 | 	bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL); | 
 | 	if (IS_ERR(bdev)) { | 
 | 		r = PTR_ERR(bdev); | 
 | 		goto out_free_td; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can be called before the dm disk is added.  In that case we can't | 
 | 	 * register the holder relation here.  It will be done once add_disk was | 
 | 	 * called. | 
 | 	 */ | 
 | 	if (md->disk->slave_dir) { | 
 | 		r = bd_link_disk_holder(bdev, md->disk); | 
 | 		if (r) | 
 | 			goto out_blkdev_put; | 
 | 	} | 
 |  | 
 | 	td->dm_dev.mode = mode; | 
 | 	td->dm_dev.bdev = bdev; | 
 | 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); | 
 | 	format_dev_t(td->dm_dev.name, dev); | 
 | 	list_add(&td->list, &md->table_devices); | 
 | 	return td; | 
 |  | 
 | out_blkdev_put: | 
 | 	blkdev_put(bdev, _dm_claim_ptr); | 
 | out_free_td: | 
 | 	kfree(td); | 
 | 	return ERR_PTR(r); | 
 | } | 
 |  | 
 | /* | 
 |  * Close a table device that we've been using. | 
 |  */ | 
 | static void close_table_device(struct table_device *td, struct mapped_device *md) | 
 | { | 
 | 	if (md->disk->slave_dir) | 
 | 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); | 
 | 	blkdev_put(td->dm_dev.bdev, _dm_claim_ptr); | 
 | 	put_dax(td->dm_dev.dax_dev); | 
 | 	list_del(&td->list); | 
 | 	kfree(td); | 
 | } | 
 |  | 
 | static struct table_device *find_table_device(struct list_head *l, dev_t dev, | 
 | 					      blk_mode_t mode) | 
 | { | 
 | 	struct table_device *td; | 
 |  | 
 | 	list_for_each_entry(td, l, list) | 
 | 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) | 
 | 			return td; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, | 
 | 			struct dm_dev **result) | 
 | { | 
 | 	struct table_device *td; | 
 |  | 
 | 	mutex_lock(&md->table_devices_lock); | 
 | 	td = find_table_device(&md->table_devices, dev, mode); | 
 | 	if (!td) { | 
 | 		td = open_table_device(md, dev, mode); | 
 | 		if (IS_ERR(td)) { | 
 | 			mutex_unlock(&md->table_devices_lock); | 
 | 			return PTR_ERR(td); | 
 | 		} | 
 | 	} else { | 
 | 		refcount_inc(&td->count); | 
 | 	} | 
 | 	mutex_unlock(&md->table_devices_lock); | 
 |  | 
 | 	*result = &td->dm_dev; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) | 
 | { | 
 | 	struct table_device *td = container_of(d, struct table_device, dm_dev); | 
 |  | 
 | 	mutex_lock(&md->table_devices_lock); | 
 | 	if (refcount_dec_and_test(&td->count)) | 
 | 		close_table_device(td, md); | 
 | 	mutex_unlock(&md->table_devices_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Get the geometry associated with a dm device | 
 |  */ | 
 | int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) | 
 | { | 
 | 	*geo = md->geometry; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set the geometry of a device. | 
 |  */ | 
 | int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) | 
 | { | 
 | 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; | 
 |  | 
 | 	if (geo->start > sz) { | 
 | 		DMERR("Start sector is beyond the geometry limits."); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	md->geometry = *geo; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __noflush_suspending(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); | 
 | } | 
 |  | 
 | static void dm_requeue_add_io(struct dm_io *io, bool first_stage) | 
 | { | 
 | 	struct mapped_device *md = io->md; | 
 |  | 
 | 	if (first_stage) { | 
 | 		struct dm_io *next = md->requeue_list; | 
 |  | 
 | 		md->requeue_list = io; | 
 | 		io->next = next; | 
 | 	} else { | 
 | 		bio_list_add_head(&md->deferred, io->orig_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void dm_kick_requeue(struct mapped_device *md, bool first_stage) | 
 | { | 
 | 	if (first_stage) | 
 | 		queue_work(md->wq, &md->requeue_work); | 
 | 	else | 
 | 		queue_work(md->wq, &md->work); | 
 | } | 
 |  | 
 | /* | 
 |  * Return true if the dm_io's original bio is requeued. | 
 |  * io->status is updated with error if requeue disallowed. | 
 |  */ | 
 | static bool dm_handle_requeue(struct dm_io *io, bool first_stage) | 
 | { | 
 | 	struct bio *bio = io->orig_bio; | 
 | 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); | 
 | 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && | 
 | 				     (bio->bi_opf & REQ_POLLED)); | 
 | 	struct mapped_device *md = io->md; | 
 | 	bool requeued = false; | 
 |  | 
 | 	if (handle_requeue || handle_polled_eagain) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		if (bio->bi_opf & REQ_POLLED) { | 
 | 			/* | 
 | 			 * Upper layer won't help us poll split bio | 
 | 			 * (io->orig_bio may only reflect a subset of the | 
 | 			 * pre-split original) so clear REQ_POLLED. | 
 | 			 */ | 
 | 			bio_clear_polled(bio); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Target requested pushing back the I/O or | 
 | 		 * polled IO hit BLK_STS_AGAIN. | 
 | 		 */ | 
 | 		spin_lock_irqsave(&md->deferred_lock, flags); | 
 | 		if ((__noflush_suspending(md) && | 
 | 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || | 
 | 		    handle_polled_eagain || first_stage) { | 
 | 			dm_requeue_add_io(io, first_stage); | 
 | 			requeued = true; | 
 | 		} else { | 
 | 			/* | 
 | 			 * noflush suspend was interrupted or this is | 
 | 			 * a write to a zoned target. | 
 | 			 */ | 
 | 			io->status = BLK_STS_IOERR; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&md->deferred_lock, flags); | 
 | 	} | 
 |  | 
 | 	if (requeued) | 
 | 		dm_kick_requeue(md, first_stage); | 
 |  | 
 | 	return requeued; | 
 | } | 
 |  | 
 | static void __dm_io_complete(struct dm_io *io, bool first_stage) | 
 | { | 
 | 	struct bio *bio = io->orig_bio; | 
 | 	struct mapped_device *md = io->md; | 
 | 	blk_status_t io_error; | 
 | 	bool requeued; | 
 |  | 
 | 	requeued = dm_handle_requeue(io, first_stage); | 
 | 	if (requeued && first_stage) | 
 | 		return; | 
 |  | 
 | 	io_error = io->status; | 
 | 	if (dm_io_flagged(io, DM_IO_ACCOUNTED)) | 
 | 		dm_end_io_acct(io); | 
 | 	else if (!io_error) { | 
 | 		/* | 
 | 		 * Must handle target that DM_MAPIO_SUBMITTED only to | 
 | 		 * then bio_endio() rather than dm_submit_bio_remap() | 
 | 		 */ | 
 | 		__dm_start_io_acct(io); | 
 | 		dm_end_io_acct(io); | 
 | 	} | 
 | 	free_io(io); | 
 | 	smp_wmb(); | 
 | 	this_cpu_dec(*md->pending_io); | 
 |  | 
 | 	/* nudge anyone waiting on suspend queue */ | 
 | 	if (unlikely(wq_has_sleeper(&md->wait))) | 
 | 		wake_up(&md->wait); | 
 |  | 
 | 	/* Return early if the original bio was requeued */ | 
 | 	if (requeued) | 
 | 		return; | 
 |  | 
 | 	if (bio_is_flush_with_data(bio)) { | 
 | 		/* | 
 | 		 * Preflush done for flush with data, reissue | 
 | 		 * without REQ_PREFLUSH. | 
 | 		 */ | 
 | 		bio->bi_opf &= ~REQ_PREFLUSH; | 
 | 		queue_io(md, bio); | 
 | 	} else { | 
 | 		/* done with normal IO or empty flush */ | 
 | 		if (io_error) | 
 | 			bio->bi_status = io_error; | 
 | 		bio_endio(bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void dm_wq_requeue_work(struct work_struct *work) | 
 | { | 
 | 	struct mapped_device *md = container_of(work, struct mapped_device, | 
 | 						requeue_work); | 
 | 	unsigned long flags; | 
 | 	struct dm_io *io; | 
 |  | 
 | 	/* reuse deferred lock to simplify dm_handle_requeue */ | 
 | 	spin_lock_irqsave(&md->deferred_lock, flags); | 
 | 	io = md->requeue_list; | 
 | 	md->requeue_list = NULL; | 
 | 	spin_unlock_irqrestore(&md->deferred_lock, flags); | 
 |  | 
 | 	while (io) { | 
 | 		struct dm_io *next = io->next; | 
 |  | 
 | 		dm_io_rewind(io, &md->disk->bio_split); | 
 |  | 
 | 		io->next = NULL; | 
 | 		__dm_io_complete(io, false); | 
 | 		io = next; | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Two staged requeue: | 
 |  * | 
 |  * 1) io->orig_bio points to the real original bio, and the part mapped to | 
 |  *    this io must be requeued, instead of other parts of the original bio. | 
 |  * | 
 |  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. | 
 |  */ | 
 | static void dm_io_complete(struct dm_io *io) | 
 | { | 
 | 	bool first_requeue; | 
 |  | 
 | 	/* | 
 | 	 * Only dm_io that has been split needs two stage requeue, otherwise | 
 | 	 * we may run into long bio clone chain during suspend and OOM could | 
 | 	 * be triggered. | 
 | 	 * | 
 | 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they | 
 | 	 * also aren't handled via the first stage requeue. | 
 | 	 */ | 
 | 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) | 
 | 		first_requeue = true; | 
 | 	else | 
 | 		first_requeue = false; | 
 |  | 
 | 	__dm_io_complete(io, first_requeue); | 
 | } | 
 |  | 
 | /* | 
 |  * Decrements the number of outstanding ios that a bio has been | 
 |  * cloned into, completing the original io if necc. | 
 |  */ | 
 | static inline void __dm_io_dec_pending(struct dm_io *io) | 
 | { | 
 | 	if (atomic_dec_and_test(&io->io_count)) | 
 | 		dm_io_complete(io); | 
 | } | 
 |  | 
 | static void dm_io_set_error(struct dm_io *io, blk_status_t error) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Push-back supersedes any I/O errors */ | 
 | 	spin_lock_irqsave(&io->lock, flags); | 
 | 	if (!(io->status == BLK_STS_DM_REQUEUE && | 
 | 	      __noflush_suspending(io->md))) { | 
 | 		io->status = error; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&io->lock, flags); | 
 | } | 
 |  | 
 | static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) | 
 | { | 
 | 	if (unlikely(error)) | 
 | 		dm_io_set_error(io, error); | 
 |  | 
 | 	__dm_io_dec_pending(io); | 
 | } | 
 |  | 
 | /* | 
 |  * The queue_limits are only valid as long as you have a reference | 
 |  * count on 'md'. But _not_ imposing verification to avoid atomic_read(), | 
 |  */ | 
 | static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) | 
 | { | 
 | 	return &md->queue->limits; | 
 | } | 
 |  | 
 | void disable_discard(struct mapped_device *md) | 
 | { | 
 | 	struct queue_limits *limits = dm_get_queue_limits(md); | 
 |  | 
 | 	/* device doesn't really support DISCARD, disable it */ | 
 | 	limits->max_discard_sectors = 0; | 
 | } | 
 |  | 
 | void disable_write_zeroes(struct mapped_device *md) | 
 | { | 
 | 	struct queue_limits *limits = dm_get_queue_limits(md); | 
 |  | 
 | 	/* device doesn't really support WRITE ZEROES, disable it */ | 
 | 	limits->max_write_zeroes_sectors = 0; | 
 | } | 
 |  | 
 | static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) | 
 | { | 
 | 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); | 
 | } | 
 |  | 
 | static void clone_endio(struct bio *bio) | 
 | { | 
 | 	blk_status_t error = bio->bi_status; | 
 | 	struct dm_target_io *tio = clone_to_tio(bio); | 
 | 	struct dm_target *ti = tio->ti; | 
 | 	dm_endio_fn endio = ti->type->end_io; | 
 | 	struct dm_io *io = tio->io; | 
 | 	struct mapped_device *md = io->md; | 
 |  | 
 | 	if (unlikely(error == BLK_STS_TARGET)) { | 
 | 		if (bio_op(bio) == REQ_OP_DISCARD && | 
 | 		    !bdev_max_discard_sectors(bio->bi_bdev)) | 
 | 			disable_discard(md); | 
 | 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && | 
 | 			 !bdev_write_zeroes_sectors(bio->bi_bdev)) | 
 | 			disable_write_zeroes(md); | 
 | 	} | 
 |  | 
 | 	if (static_branch_unlikely(&zoned_enabled) && | 
 | 	    unlikely(bdev_is_zoned(bio->bi_bdev))) | 
 | 		dm_zone_endio(io, bio); | 
 |  | 
 | 	if (endio) { | 
 | 		int r = endio(ti, bio, &error); | 
 |  | 
 | 		switch (r) { | 
 | 		case DM_ENDIO_REQUEUE: | 
 | 			if (static_branch_unlikely(&zoned_enabled)) { | 
 | 				/* | 
 | 				 * Requeuing writes to a sequential zone of a zoned | 
 | 				 * target will break the sequential write pattern: | 
 | 				 * fail such IO. | 
 | 				 */ | 
 | 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) | 
 | 					error = BLK_STS_IOERR; | 
 | 				else | 
 | 					error = BLK_STS_DM_REQUEUE; | 
 | 			} else | 
 | 				error = BLK_STS_DM_REQUEUE; | 
 | 			fallthrough; | 
 | 		case DM_ENDIO_DONE: | 
 | 			break; | 
 | 		case DM_ENDIO_INCOMPLETE: | 
 | 			/* The target will handle the io */ | 
 | 			return; | 
 | 		default: | 
 | 			DMCRIT("unimplemented target endio return value: %d", r); | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (static_branch_unlikely(&swap_bios_enabled) && | 
 | 	    unlikely(swap_bios_limit(ti, bio))) | 
 | 		up(&md->swap_bios_semaphore); | 
 |  | 
 | 	free_tio(bio); | 
 | 	dm_io_dec_pending(io, error); | 
 | } | 
 |  | 
 | /* | 
 |  * Return maximum size of I/O possible at the supplied sector up to the current | 
 |  * target boundary. | 
 |  */ | 
 | static inline sector_t max_io_len_target_boundary(struct dm_target *ti, | 
 | 						  sector_t target_offset) | 
 | { | 
 | 	return ti->len - target_offset; | 
 | } | 
 |  | 
 | static sector_t __max_io_len(struct dm_target *ti, sector_t sector, | 
 | 			     unsigned int max_granularity, | 
 | 			     unsigned int max_sectors) | 
 | { | 
 | 	sector_t target_offset = dm_target_offset(ti, sector); | 
 | 	sector_t len = max_io_len_target_boundary(ti, target_offset); | 
 |  | 
 | 	/* | 
 | 	 * Does the target need to split IO even further? | 
 | 	 * - varied (per target) IO splitting is a tenet of DM; this | 
 | 	 *   explains why stacked chunk_sectors based splitting via | 
 | 	 *   bio_split_to_limits() isn't possible here. | 
 | 	 */ | 
 | 	if (!max_granularity) | 
 | 		return len; | 
 | 	return min_t(sector_t, len, | 
 | 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue), | 
 | 		    blk_chunk_sectors_left(target_offset, max_granularity))); | 
 | } | 
 |  | 
 | static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) | 
 | { | 
 | 	return __max_io_len(ti, sector, ti->max_io_len, 0); | 
 | } | 
 |  | 
 | int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) | 
 | { | 
 | 	if (len > UINT_MAX) { | 
 | 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", | 
 | 		      (unsigned long long)len, UINT_MAX); | 
 | 		ti->error = "Maximum size of target IO is too large"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ti->max_io_len = (uint32_t) len; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); | 
 |  | 
 | static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, | 
 | 						sector_t sector, int *srcu_idx) | 
 | 	__acquires(md->io_barrier) | 
 | { | 
 | 	struct dm_table *map; | 
 | 	struct dm_target *ti; | 
 |  | 
 | 	map = dm_get_live_table(md, srcu_idx); | 
 | 	if (!map) | 
 | 		return NULL; | 
 |  | 
 | 	ti = dm_table_find_target(map, sector); | 
 | 	if (!ti) | 
 | 		return NULL; | 
 |  | 
 | 	return ti; | 
 | } | 
 |  | 
 | static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, | 
 | 		long nr_pages, enum dax_access_mode mode, void **kaddr, | 
 | 		pfn_t *pfn) | 
 | { | 
 | 	struct mapped_device *md = dax_get_private(dax_dev); | 
 | 	sector_t sector = pgoff * PAGE_SECTORS; | 
 | 	struct dm_target *ti; | 
 | 	long len, ret = -EIO; | 
 | 	int srcu_idx; | 
 |  | 
 | 	ti = dm_dax_get_live_target(md, sector, &srcu_idx); | 
 |  | 
 | 	if (!ti) | 
 | 		goto out; | 
 | 	if (!ti->type->direct_access) | 
 | 		goto out; | 
 | 	len = max_io_len(ti, sector) / PAGE_SECTORS; | 
 | 	if (len < 1) | 
 | 		goto out; | 
 | 	nr_pages = min(len, nr_pages); | 
 | 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); | 
 |  | 
 |  out: | 
 | 	dm_put_live_table(md, srcu_idx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, | 
 | 				  size_t nr_pages) | 
 | { | 
 | 	struct mapped_device *md = dax_get_private(dax_dev); | 
 | 	sector_t sector = pgoff * PAGE_SECTORS; | 
 | 	struct dm_target *ti; | 
 | 	int ret = -EIO; | 
 | 	int srcu_idx; | 
 |  | 
 | 	ti = dm_dax_get_live_target(md, sector, &srcu_idx); | 
 |  | 
 | 	if (!ti) | 
 | 		goto out; | 
 | 	if (WARN_ON(!ti->type->dax_zero_page_range)) { | 
 | 		/* | 
 | 		 * ->zero_page_range() is mandatory dax operation. If we are | 
 | 		 *  here, something is wrong. | 
 | 		 */ | 
 | 		goto out; | 
 | 	} | 
 | 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); | 
 |  out: | 
 | 	dm_put_live_table(md, srcu_idx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, | 
 | 		void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	struct mapped_device *md = dax_get_private(dax_dev); | 
 | 	sector_t sector = pgoff * PAGE_SECTORS; | 
 | 	struct dm_target *ti; | 
 | 	int srcu_idx; | 
 | 	long ret = 0; | 
 |  | 
 | 	ti = dm_dax_get_live_target(md, sector, &srcu_idx); | 
 | 	if (!ti || !ti->type->dax_recovery_write) | 
 | 		goto out; | 
 |  | 
 | 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); | 
 | out: | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * A target may call dm_accept_partial_bio only from the map routine.  It is | 
 |  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management | 
 |  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by | 
 |  * __send_duplicate_bios(). | 
 |  * | 
 |  * dm_accept_partial_bio informs the dm that the target only wants to process | 
 |  * additional n_sectors sectors of the bio and the rest of the data should be | 
 |  * sent in a next bio. | 
 |  * | 
 |  * A diagram that explains the arithmetics: | 
 |  * +--------------------+---------------+-------+ | 
 |  * |         1          |       2       |   3   | | 
 |  * +--------------------+---------------+-------+ | 
 |  * | 
 |  * <-------------- *tio->len_ptr ---------------> | 
 |  *                      <----- bio_sectors -----> | 
 |  *                      <-- n_sectors --> | 
 |  * | 
 |  * Region 1 was already iterated over with bio_advance or similar function. | 
 |  *	(it may be empty if the target doesn't use bio_advance) | 
 |  * Region 2 is the remaining bio size that the target wants to process. | 
 |  *	(it may be empty if region 1 is non-empty, although there is no reason | 
 |  *	 to make it empty) | 
 |  * The target requires that region 3 is to be sent in the next bio. | 
 |  * | 
 |  * If the target wants to receive multiple copies of the bio (via num_*bios, etc), | 
 |  * the partially processed part (the sum of regions 1+2) must be the same for all | 
 |  * copies of the bio. | 
 |  */ | 
 | void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) | 
 | { | 
 | 	struct dm_target_io *tio = clone_to_tio(bio); | 
 | 	struct dm_io *io = tio->io; | 
 | 	unsigned int bio_sectors = bio_sectors(bio); | 
 |  | 
 | 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); | 
 | 	BUG_ON(op_is_zone_mgmt(bio_op(bio))); | 
 | 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); | 
 | 	BUG_ON(bio_sectors > *tio->len_ptr); | 
 | 	BUG_ON(n_sectors > bio_sectors); | 
 |  | 
 | 	*tio->len_ptr -= bio_sectors - n_sectors; | 
 | 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * __split_and_process_bio() may have already saved mapped part | 
 | 	 * for accounting but it is being reduced so update accordingly. | 
 | 	 */ | 
 | 	dm_io_set_flag(io, DM_IO_WAS_SPLIT); | 
 | 	io->sectors = n_sectors; | 
 | 	io->sector_offset = bio_sectors(io->orig_bio); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_accept_partial_bio); | 
 |  | 
 | /* | 
 |  * @clone: clone bio that DM core passed to target's .map function | 
 |  * @tgt_clone: clone of @clone bio that target needs submitted | 
 |  * | 
 |  * Targets should use this interface to submit bios they take | 
 |  * ownership of when returning DM_MAPIO_SUBMITTED. | 
 |  * | 
 |  * Target should also enable ti->accounts_remapped_io | 
 |  */ | 
 | void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) | 
 | { | 
 | 	struct dm_target_io *tio = clone_to_tio(clone); | 
 | 	struct dm_io *io = tio->io; | 
 |  | 
 | 	/* establish bio that will get submitted */ | 
 | 	if (!tgt_clone) | 
 | 		tgt_clone = clone; | 
 |  | 
 | 	/* | 
 | 	 * Account io->origin_bio to DM dev on behalf of target | 
 | 	 * that took ownership of IO with DM_MAPIO_SUBMITTED. | 
 | 	 */ | 
 | 	dm_start_io_acct(io, clone); | 
 |  | 
 | 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), | 
 | 			      tio->old_sector); | 
 | 	submit_bio_noacct(tgt_clone); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_submit_bio_remap); | 
 |  | 
 | static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) | 
 | { | 
 | 	mutex_lock(&md->swap_bios_lock); | 
 | 	while (latch < md->swap_bios) { | 
 | 		cond_resched(); | 
 | 		down(&md->swap_bios_semaphore); | 
 | 		md->swap_bios--; | 
 | 	} | 
 | 	while (latch > md->swap_bios) { | 
 | 		cond_resched(); | 
 | 		up(&md->swap_bios_semaphore); | 
 | 		md->swap_bios++; | 
 | 	} | 
 | 	mutex_unlock(&md->swap_bios_lock); | 
 | } | 
 |  | 
 | static void __map_bio(struct bio *clone) | 
 | { | 
 | 	struct dm_target_io *tio = clone_to_tio(clone); | 
 | 	struct dm_target *ti = tio->ti; | 
 | 	struct dm_io *io = tio->io; | 
 | 	struct mapped_device *md = io->md; | 
 | 	int r; | 
 |  | 
 | 	clone->bi_end_io = clone_endio; | 
 |  | 
 | 	/* | 
 | 	 * Map the clone. | 
 | 	 */ | 
 | 	tio->old_sector = clone->bi_iter.bi_sector; | 
 |  | 
 | 	if (static_branch_unlikely(&swap_bios_enabled) && | 
 | 	    unlikely(swap_bios_limit(ti, clone))) { | 
 | 		int latch = get_swap_bios(); | 
 |  | 
 | 		if (unlikely(latch != md->swap_bios)) | 
 | 			__set_swap_bios_limit(md, latch); | 
 | 		down(&md->swap_bios_semaphore); | 
 | 	} | 
 |  | 
 | 	if (static_branch_unlikely(&zoned_enabled)) { | 
 | 		/* | 
 | 		 * Check if the IO needs a special mapping due to zone append | 
 | 		 * emulation on zoned target. In this case, dm_zone_map_bio() | 
 | 		 * calls the target map operation. | 
 | 		 */ | 
 | 		if (unlikely(dm_emulate_zone_append(md))) | 
 | 			r = dm_zone_map_bio(tio); | 
 | 		else | 
 | 			r = ti->type->map(ti, clone); | 
 | 	} else | 
 | 		r = ti->type->map(ti, clone); | 
 |  | 
 | 	switch (r) { | 
 | 	case DM_MAPIO_SUBMITTED: | 
 | 		/* target has assumed ownership of this io */ | 
 | 		if (!ti->accounts_remapped_io) | 
 | 			dm_start_io_acct(io, clone); | 
 | 		break; | 
 | 	case DM_MAPIO_REMAPPED: | 
 | 		dm_submit_bio_remap(clone, NULL); | 
 | 		break; | 
 | 	case DM_MAPIO_KILL: | 
 | 	case DM_MAPIO_REQUEUE: | 
 | 		if (static_branch_unlikely(&swap_bios_enabled) && | 
 | 		    unlikely(swap_bios_limit(ti, clone))) | 
 | 			up(&md->swap_bios_semaphore); | 
 | 		free_tio(clone); | 
 | 		if (r == DM_MAPIO_KILL) | 
 | 			dm_io_dec_pending(io, BLK_STS_IOERR); | 
 | 		else | 
 | 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); | 
 | 		break; | 
 | 	default: | 
 | 		DMCRIT("unimplemented target map return value: %d", r); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void setup_split_accounting(struct clone_info *ci, unsigned int len) | 
 | { | 
 | 	struct dm_io *io = ci->io; | 
 |  | 
 | 	if (ci->sector_count > len) { | 
 | 		/* | 
 | 		 * Split needed, save the mapped part for accounting. | 
 | 		 * NOTE: dm_accept_partial_bio() will update accordingly. | 
 | 		 */ | 
 | 		dm_io_set_flag(io, DM_IO_WAS_SPLIT); | 
 | 		io->sectors = len; | 
 | 		io->sector_offset = bio_sectors(ci->bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, | 
 | 				struct dm_target *ti, unsigned int num_bios, | 
 | 				unsigned *len) | 
 | { | 
 | 	struct bio *bio; | 
 | 	int try; | 
 |  | 
 | 	for (try = 0; try < 2; try++) { | 
 | 		int bio_nr; | 
 |  | 
 | 		if (try) | 
 | 			mutex_lock(&ci->io->md->table_devices_lock); | 
 | 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { | 
 | 			bio = alloc_tio(ci, ti, bio_nr, len, | 
 | 					try ? GFP_NOIO : GFP_NOWAIT); | 
 | 			if (!bio) | 
 | 				break; | 
 |  | 
 | 			bio_list_add(blist, bio); | 
 | 		} | 
 | 		if (try) | 
 | 			mutex_unlock(&ci->io->md->table_devices_lock); | 
 | 		if (bio_nr == num_bios) | 
 | 			return; | 
 |  | 
 | 		while ((bio = bio_list_pop(blist))) | 
 | 			free_tio(bio); | 
 | 	} | 
 | } | 
 |  | 
 | static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, | 
 | 				 unsigned int num_bios, unsigned int *len) | 
 | { | 
 | 	struct bio_list blist = BIO_EMPTY_LIST; | 
 | 	struct bio *clone; | 
 | 	unsigned int ret = 0; | 
 |  | 
 | 	switch (num_bios) { | 
 | 	case 0: | 
 | 		break; | 
 | 	case 1: | 
 | 		if (len) | 
 | 			setup_split_accounting(ci, *len); | 
 | 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); | 
 | 		__map_bio(clone); | 
 | 		ret = 1; | 
 | 		break; | 
 | 	default: | 
 | 		if (len) | 
 | 			setup_split_accounting(ci, *len); | 
 | 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ | 
 | 		alloc_multiple_bios(&blist, ci, ti, num_bios, len); | 
 | 		while ((clone = bio_list_pop(&blist))) { | 
 | 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); | 
 | 			__map_bio(clone); | 
 | 			ret += 1; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __send_empty_flush(struct clone_info *ci) | 
 | { | 
 | 	struct dm_table *t = ci->map; | 
 | 	struct bio flush_bio; | 
 |  | 
 | 	/* | 
 | 	 * Use an on-stack bio for this, it's safe since we don't | 
 | 	 * need to reference it after submit. It's just used as | 
 | 	 * the basis for the clone(s). | 
 | 	 */ | 
 | 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, | 
 | 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); | 
 |  | 
 | 	ci->bio = &flush_bio; | 
 | 	ci->sector_count = 0; | 
 | 	ci->io->tio.clone.bi_iter.bi_size = 0; | 
 |  | 
 | 	for (unsigned int i = 0; i < t->num_targets; i++) { | 
 | 		unsigned int bios; | 
 | 		struct dm_target *ti = dm_table_get_target(t, i); | 
 |  | 
 | 		atomic_add(ti->num_flush_bios, &ci->io->io_count); | 
 | 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); | 
 | 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * alloc_io() takes one extra reference for submission, so the | 
 | 	 * reference won't reach 0 without the following subtraction | 
 | 	 */ | 
 | 	atomic_sub(1, &ci->io->io_count); | 
 |  | 
 | 	bio_uninit(ci->bio); | 
 | } | 
 |  | 
 | static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, | 
 | 					unsigned int num_bios, | 
 | 					unsigned int max_granularity, | 
 | 					unsigned int max_sectors) | 
 | { | 
 | 	unsigned int len, bios; | 
 |  | 
 | 	len = min_t(sector_t, ci->sector_count, | 
 | 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors)); | 
 |  | 
 | 	atomic_add(num_bios, &ci->io->io_count); | 
 | 	bios = __send_duplicate_bios(ci, ti, num_bios, &len); | 
 | 	/* | 
 | 	 * alloc_io() takes one extra reference for submission, so the | 
 | 	 * reference won't reach 0 without the following (+1) subtraction | 
 | 	 */ | 
 | 	atomic_sub(num_bios - bios + 1, &ci->io->io_count); | 
 |  | 
 | 	ci->sector += len; | 
 | 	ci->sector_count -= len; | 
 | } | 
 |  | 
 | static bool is_abnormal_io(struct bio *bio) | 
 | { | 
 | 	enum req_op op = bio_op(bio); | 
 |  | 
 | 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { | 
 | 		switch (op) { | 
 | 		case REQ_OP_DISCARD: | 
 | 		case REQ_OP_SECURE_ERASE: | 
 | 		case REQ_OP_WRITE_ZEROES: | 
 | 			return true; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static blk_status_t __process_abnormal_io(struct clone_info *ci, | 
 | 					  struct dm_target *ti) | 
 | { | 
 | 	unsigned int num_bios = 0; | 
 | 	unsigned int max_granularity = 0; | 
 | 	unsigned int max_sectors = 0; | 
 | 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md); | 
 |  | 
 | 	switch (bio_op(ci->bio)) { | 
 | 	case REQ_OP_DISCARD: | 
 | 		num_bios = ti->num_discard_bios; | 
 | 		max_sectors = limits->max_discard_sectors; | 
 | 		if (ti->max_discard_granularity) | 
 | 			max_granularity = max_sectors; | 
 | 		break; | 
 | 	case REQ_OP_SECURE_ERASE: | 
 | 		num_bios = ti->num_secure_erase_bios; | 
 | 		max_sectors = limits->max_secure_erase_sectors; | 
 | 		if (ti->max_secure_erase_granularity) | 
 | 			max_granularity = max_sectors; | 
 | 		break; | 
 | 	case REQ_OP_WRITE_ZEROES: | 
 | 		num_bios = ti->num_write_zeroes_bios; | 
 | 		max_sectors = limits->max_write_zeroes_sectors; | 
 | 		if (ti->max_write_zeroes_granularity) | 
 | 			max_granularity = max_sectors; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Even though the device advertised support for this type of | 
 | 	 * request, that does not mean every target supports it, and | 
 | 	 * reconfiguration might also have changed that since the | 
 | 	 * check was performed. | 
 | 	 */ | 
 | 	if (unlikely(!num_bios)) | 
 | 		return BLK_STS_NOTSUPP; | 
 |  | 
 | 	__send_changing_extent_only(ci, ti, num_bios, | 
 | 				    max_granularity, max_sectors); | 
 | 	return BLK_STS_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Reuse ->bi_private as dm_io list head for storing all dm_io instances | 
 |  * associated with this bio, and this bio's bi_private needs to be | 
 |  * stored in dm_io->data before the reuse. | 
 |  * | 
 |  * bio->bi_private is owned by fs or upper layer, so block layer won't | 
 |  * touch it after splitting. Meantime it won't be changed by anyone after | 
 |  * bio is submitted. So this reuse is safe. | 
 |  */ | 
 | static inline struct dm_io **dm_poll_list_head(struct bio *bio) | 
 | { | 
 | 	return (struct dm_io **)&bio->bi_private; | 
 | } | 
 |  | 
 | static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) | 
 | { | 
 | 	struct dm_io **head = dm_poll_list_head(bio); | 
 |  | 
 | 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { | 
 | 		bio->bi_opf |= REQ_DM_POLL_LIST; | 
 | 		/* | 
 | 		 * Save .bi_private into dm_io, so that we can reuse | 
 | 		 * .bi_private as dm_io list head for storing dm_io list | 
 | 		 */ | 
 | 		io->data = bio->bi_private; | 
 |  | 
 | 		/* tell block layer to poll for completion */ | 
 | 		bio->bi_cookie = ~BLK_QC_T_NONE; | 
 |  | 
 | 		io->next = NULL; | 
 | 	} else { | 
 | 		/* | 
 | 		 * bio recursed due to split, reuse original poll list, | 
 | 		 * and save bio->bi_private too. | 
 | 		 */ | 
 | 		io->data = (*head)->data; | 
 | 		io->next = *head; | 
 | 	} | 
 |  | 
 | 	*head = io; | 
 | } | 
 |  | 
 | /* | 
 |  * Select the correct strategy for processing a non-flush bio. | 
 |  */ | 
 | static blk_status_t __split_and_process_bio(struct clone_info *ci) | 
 | { | 
 | 	struct bio *clone; | 
 | 	struct dm_target *ti; | 
 | 	unsigned int len; | 
 |  | 
 | 	ti = dm_table_find_target(ci->map, ci->sector); | 
 | 	if (unlikely(!ti)) | 
 | 		return BLK_STS_IOERR; | 
 |  | 
 | 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && | 
 | 	    unlikely(!dm_target_supports_nowait(ti->type))) | 
 | 		return BLK_STS_NOTSUPP; | 
 |  | 
 | 	if (unlikely(ci->is_abnormal_io)) | 
 | 		return __process_abnormal_io(ci, ti); | 
 |  | 
 | 	/* | 
 | 	 * Only support bio polling for normal IO, and the target io is | 
 | 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io) | 
 | 	 */ | 
 | 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); | 
 |  | 
 | 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); | 
 | 	setup_split_accounting(ci, len); | 
 | 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); | 
 | 	__map_bio(clone); | 
 |  | 
 | 	ci->sector += len; | 
 | 	ci->sector_count -= len; | 
 |  | 
 | 	return BLK_STS_OK; | 
 | } | 
 |  | 
 | static void init_clone_info(struct clone_info *ci, struct mapped_device *md, | 
 | 			    struct dm_table *map, struct bio *bio, bool is_abnormal) | 
 | { | 
 | 	ci->map = map; | 
 | 	ci->io = alloc_io(md, bio); | 
 | 	ci->bio = bio; | 
 | 	ci->is_abnormal_io = is_abnormal; | 
 | 	ci->submit_as_polled = false; | 
 | 	ci->sector = bio->bi_iter.bi_sector; | 
 | 	ci->sector_count = bio_sectors(bio); | 
 |  | 
 | 	/* Shouldn't happen but sector_count was being set to 0 so... */ | 
 | 	if (static_branch_unlikely(&zoned_enabled) && | 
 | 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) | 
 | 		ci->sector_count = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Entry point to split a bio into clones and submit them to the targets. | 
 |  */ | 
 | static void dm_split_and_process_bio(struct mapped_device *md, | 
 | 				     struct dm_table *map, struct bio *bio) | 
 | { | 
 | 	struct clone_info ci; | 
 | 	struct dm_io *io; | 
 | 	blk_status_t error = BLK_STS_OK; | 
 | 	bool is_abnormal; | 
 |  | 
 | 	is_abnormal = is_abnormal_io(bio); | 
 | 	if (unlikely(is_abnormal)) { | 
 | 		/* | 
 | 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) | 
 | 		 * otherwise associated queue_limits won't be imposed. | 
 | 		 */ | 
 | 		bio = bio_split_to_limits(bio); | 
 | 		if (!bio) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	init_clone_info(&ci, md, map, bio, is_abnormal); | 
 | 	io = ci.io; | 
 |  | 
 | 	if (bio->bi_opf & REQ_PREFLUSH) { | 
 | 		__send_empty_flush(&ci); | 
 | 		/* dm_io_complete submits any data associated with flush */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	error = __split_and_process_bio(&ci); | 
 | 	if (error || !ci.sector_count) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * Remainder must be passed to submit_bio_noacct() so it gets handled | 
 | 	 * *after* bios already submitted have been completely processed. | 
 | 	 */ | 
 | 	bio_trim(bio, io->sectors, ci.sector_count); | 
 | 	trace_block_split(bio, bio->bi_iter.bi_sector); | 
 | 	bio_inc_remaining(bio); | 
 | 	submit_bio_noacct(bio); | 
 | out: | 
 | 	/* | 
 | 	 * Drop the extra reference count for non-POLLED bio, and hold one | 
 | 	 * reference for POLLED bio, which will be released in dm_poll_bio | 
 | 	 * | 
 | 	 * Add every dm_io instance into the dm_io list head which is stored | 
 | 	 * in bio->bi_private, so that dm_poll_bio can poll them all. | 
 | 	 */ | 
 | 	if (error || !ci.submit_as_polled) { | 
 | 		/* | 
 | 		 * In case of submission failure, the extra reference for | 
 | 		 * submitting io isn't consumed yet | 
 | 		 */ | 
 | 		if (error) | 
 | 			atomic_dec(&io->io_count); | 
 | 		dm_io_dec_pending(io, error); | 
 | 	} else | 
 | 		dm_queue_poll_io(bio, io); | 
 | } | 
 |  | 
 | static void dm_submit_bio(struct bio *bio) | 
 | { | 
 | 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; | 
 | 	int srcu_idx; | 
 | 	struct dm_table *map; | 
 |  | 
 | 	map = dm_get_live_table(md, &srcu_idx); | 
 |  | 
 | 	/* If suspended, or map not yet available, queue this IO for later */ | 
 | 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || | 
 | 	    unlikely(!map)) { | 
 | 		if (bio->bi_opf & REQ_NOWAIT) | 
 | 			bio_wouldblock_error(bio); | 
 | 		else if (bio->bi_opf & REQ_RAHEAD) | 
 | 			bio_io_error(bio); | 
 | 		else | 
 | 			queue_io(md, bio); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dm_split_and_process_bio(md, map, bio); | 
 | out: | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | } | 
 |  | 
 | static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, | 
 | 			  unsigned int flags) | 
 | { | 
 | 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); | 
 |  | 
 | 	/* don't poll if the mapped io is done */ | 
 | 	if (atomic_read(&io->io_count) > 1) | 
 | 		bio_poll(&io->tio.clone, iob, flags); | 
 |  | 
 | 	/* bio_poll holds the last reference */ | 
 | 	return atomic_read(&io->io_count) == 1; | 
 | } | 
 |  | 
 | static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, | 
 | 		       unsigned int flags) | 
 | { | 
 | 	struct dm_io **head = dm_poll_list_head(bio); | 
 | 	struct dm_io *list = *head; | 
 | 	struct dm_io *tmp = NULL; | 
 | 	struct dm_io *curr, *next; | 
 |  | 
 | 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ | 
 | 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) | 
 | 		return 0; | 
 |  | 
 | 	WARN_ON_ONCE(!list); | 
 |  | 
 | 	/* | 
 | 	 * Restore .bi_private before possibly completing dm_io. | 
 | 	 * | 
 | 	 * bio_poll() is only possible once @bio has been completely | 
 | 	 * submitted via submit_bio_noacct()'s depth-first submission. | 
 | 	 * So there is no dm_queue_poll_io() race associated with | 
 | 	 * clearing REQ_DM_POLL_LIST here. | 
 | 	 */ | 
 | 	bio->bi_opf &= ~REQ_DM_POLL_LIST; | 
 | 	bio->bi_private = list->data; | 
 |  | 
 | 	for (curr = list, next = curr->next; curr; curr = next, next = | 
 | 			curr ? curr->next : NULL) { | 
 | 		if (dm_poll_dm_io(curr, iob, flags)) { | 
 | 			/* | 
 | 			 * clone_endio() has already occurred, so no | 
 | 			 * error handling is needed here. | 
 | 			 */ | 
 | 			__dm_io_dec_pending(curr); | 
 | 		} else { | 
 | 			curr->next = tmp; | 
 | 			tmp = curr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Not done? */ | 
 | 	if (tmp) { | 
 | 		bio->bi_opf |= REQ_DM_POLL_LIST; | 
 | 		/* Reset bio->bi_private to dm_io list head */ | 
 | 		*head = tmp; | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  *--------------------------------------------------------------- | 
 |  * An IDR is used to keep track of allocated minor numbers. | 
 |  *--------------------------------------------------------------- | 
 |  */ | 
 | static void free_minor(int minor) | 
 | { | 
 | 	spin_lock(&_minor_lock); | 
 | 	idr_remove(&_minor_idr, minor); | 
 | 	spin_unlock(&_minor_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * See if the device with a specific minor # is free. | 
 |  */ | 
 | static int specific_minor(int minor) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (minor >= (1 << MINORBITS)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	idr_preload(GFP_KERNEL); | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 | 	idr_preload_end(); | 
 | 	if (r < 0) | 
 | 		return r == -ENOSPC ? -EBUSY : r; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int next_free_minor(int *minor) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	idr_preload(GFP_KERNEL); | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); | 
 |  | 
 | 	spin_unlock(&_minor_lock); | 
 | 	idr_preload_end(); | 
 | 	if (r < 0) | 
 | 		return r; | 
 | 	*minor = r; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct block_device_operations dm_blk_dops; | 
 | static const struct block_device_operations dm_rq_blk_dops; | 
 | static const struct dax_operations dm_dax_ops; | 
 |  | 
 | static void dm_wq_work(struct work_struct *work); | 
 |  | 
 | #ifdef CONFIG_BLK_INLINE_ENCRYPTION | 
 | static void dm_queue_destroy_crypto_profile(struct request_queue *q) | 
 | { | 
 | 	dm_destroy_crypto_profile(q->crypto_profile); | 
 | } | 
 |  | 
 | #else /* CONFIG_BLK_INLINE_ENCRYPTION */ | 
 |  | 
 | static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) | 
 | { | 
 | } | 
 | #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ | 
 |  | 
 | static void cleanup_mapped_device(struct mapped_device *md) | 
 | { | 
 | 	if (md->wq) | 
 | 		destroy_workqueue(md->wq); | 
 | 	dm_free_md_mempools(md->mempools); | 
 |  | 
 | 	if (md->dax_dev) { | 
 | 		dax_remove_host(md->disk); | 
 | 		kill_dax(md->dax_dev); | 
 | 		put_dax(md->dax_dev); | 
 | 		md->dax_dev = NULL; | 
 | 	} | 
 |  | 
 | 	dm_cleanup_zoned_dev(md); | 
 | 	if (md->disk) { | 
 | 		spin_lock(&_minor_lock); | 
 | 		md->disk->private_data = NULL; | 
 | 		spin_unlock(&_minor_lock); | 
 | 		if (dm_get_md_type(md) != DM_TYPE_NONE) { | 
 | 			struct table_device *td; | 
 |  | 
 | 			dm_sysfs_exit(md); | 
 | 			list_for_each_entry(td, &md->table_devices, list) { | 
 | 				bd_unlink_disk_holder(td->dm_dev.bdev, | 
 | 						      md->disk); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Hold lock to make sure del_gendisk() won't concurrent | 
 | 			 * with open/close_table_device(). | 
 | 			 */ | 
 | 			mutex_lock(&md->table_devices_lock); | 
 | 			del_gendisk(md->disk); | 
 | 			mutex_unlock(&md->table_devices_lock); | 
 | 		} | 
 | 		dm_queue_destroy_crypto_profile(md->queue); | 
 | 		put_disk(md->disk); | 
 | 	} | 
 |  | 
 | 	if (md->pending_io) { | 
 | 		free_percpu(md->pending_io); | 
 | 		md->pending_io = NULL; | 
 | 	} | 
 |  | 
 | 	cleanup_srcu_struct(&md->io_barrier); | 
 |  | 
 | 	mutex_destroy(&md->suspend_lock); | 
 | 	mutex_destroy(&md->type_lock); | 
 | 	mutex_destroy(&md->table_devices_lock); | 
 | 	mutex_destroy(&md->swap_bios_lock); | 
 |  | 
 | 	dm_mq_cleanup_mapped_device(md); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialise a blank device with a given minor. | 
 |  */ | 
 | static struct mapped_device *alloc_dev(int minor) | 
 | { | 
 | 	int r, numa_node_id = dm_get_numa_node(); | 
 | 	struct mapped_device *md; | 
 | 	void *old_md; | 
 |  | 
 | 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); | 
 | 	if (!md) { | 
 | 		DMERR("unable to allocate device, out of memory."); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (!try_module_get(THIS_MODULE)) | 
 | 		goto bad_module_get; | 
 |  | 
 | 	/* get a minor number for the dev */ | 
 | 	if (minor == DM_ANY_MINOR) | 
 | 		r = next_free_minor(&minor); | 
 | 	else | 
 | 		r = specific_minor(minor); | 
 | 	if (r < 0) | 
 | 		goto bad_minor; | 
 |  | 
 | 	r = init_srcu_struct(&md->io_barrier); | 
 | 	if (r < 0) | 
 | 		goto bad_io_barrier; | 
 |  | 
 | 	md->numa_node_id = numa_node_id; | 
 | 	md->init_tio_pdu = false; | 
 | 	md->type = DM_TYPE_NONE; | 
 | 	mutex_init(&md->suspend_lock); | 
 | 	mutex_init(&md->type_lock); | 
 | 	mutex_init(&md->table_devices_lock); | 
 | 	spin_lock_init(&md->deferred_lock); | 
 | 	atomic_set(&md->holders, 1); | 
 | 	atomic_set(&md->open_count, 0); | 
 | 	atomic_set(&md->event_nr, 0); | 
 | 	atomic_set(&md->uevent_seq, 0); | 
 | 	INIT_LIST_HEAD(&md->uevent_list); | 
 | 	INIT_LIST_HEAD(&md->table_devices); | 
 | 	spin_lock_init(&md->uevent_lock); | 
 |  | 
 | 	/* | 
 | 	 * default to bio-based until DM table is loaded and md->type | 
 | 	 * established. If request-based table is loaded: blk-mq will | 
 | 	 * override accordingly. | 
 | 	 */ | 
 | 	md->disk = blk_alloc_disk(md->numa_node_id); | 
 | 	if (!md->disk) | 
 | 		goto bad; | 
 | 	md->queue = md->disk->queue; | 
 |  | 
 | 	init_waitqueue_head(&md->wait); | 
 | 	INIT_WORK(&md->work, dm_wq_work); | 
 | 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work); | 
 | 	init_waitqueue_head(&md->eventq); | 
 | 	init_completion(&md->kobj_holder.completion); | 
 |  | 
 | 	md->requeue_list = NULL; | 
 | 	md->swap_bios = get_swap_bios(); | 
 | 	sema_init(&md->swap_bios_semaphore, md->swap_bios); | 
 | 	mutex_init(&md->swap_bios_lock); | 
 |  | 
 | 	md->disk->major = _major; | 
 | 	md->disk->first_minor = minor; | 
 | 	md->disk->minors = 1; | 
 | 	md->disk->flags |= GENHD_FL_NO_PART; | 
 | 	md->disk->fops = &dm_blk_dops; | 
 | 	md->disk->private_data = md; | 
 | 	sprintf(md->disk->disk_name, "dm-%d", minor); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_FS_DAX)) { | 
 | 		md->dax_dev = alloc_dax(md, &dm_dax_ops); | 
 | 		if (IS_ERR(md->dax_dev)) { | 
 | 			md->dax_dev = NULL; | 
 | 			goto bad; | 
 | 		} | 
 | 		set_dax_nocache(md->dax_dev); | 
 | 		set_dax_nomc(md->dax_dev); | 
 | 		if (dax_add_host(md->dax_dev, md->disk)) | 
 | 			goto bad; | 
 | 	} | 
 |  | 
 | 	format_dev_t(md->name, MKDEV(_major, minor)); | 
 |  | 
 | 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); | 
 | 	if (!md->wq) | 
 | 		goto bad; | 
 |  | 
 | 	md->pending_io = alloc_percpu(unsigned long); | 
 | 	if (!md->pending_io) | 
 | 		goto bad; | 
 |  | 
 | 	r = dm_stats_init(&md->stats); | 
 | 	if (r < 0) | 
 | 		goto bad; | 
 |  | 
 | 	/* Populate the mapping, nobody knows we exist yet */ | 
 | 	spin_lock(&_minor_lock); | 
 | 	old_md = idr_replace(&_minor_idr, md, minor); | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	BUG_ON(old_md != MINOR_ALLOCED); | 
 |  | 
 | 	return md; | 
 |  | 
 | bad: | 
 | 	cleanup_mapped_device(md); | 
 | bad_io_barrier: | 
 | 	free_minor(minor); | 
 | bad_minor: | 
 | 	module_put(THIS_MODULE); | 
 | bad_module_get: | 
 | 	kvfree(md); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void unlock_fs(struct mapped_device *md); | 
 |  | 
 | static void free_dev(struct mapped_device *md) | 
 | { | 
 | 	int minor = MINOR(disk_devt(md->disk)); | 
 |  | 
 | 	unlock_fs(md); | 
 |  | 
 | 	cleanup_mapped_device(md); | 
 |  | 
 | 	WARN_ON_ONCE(!list_empty(&md->table_devices)); | 
 | 	dm_stats_cleanup(&md->stats); | 
 | 	free_minor(minor); | 
 |  | 
 | 	module_put(THIS_MODULE); | 
 | 	kvfree(md); | 
 | } | 
 |  | 
 | /* | 
 |  * Bind a table to the device. | 
 |  */ | 
 | static void event_callback(void *context) | 
 | { | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(uevents); | 
 | 	struct mapped_device *md = context; | 
 |  | 
 | 	spin_lock_irqsave(&md->uevent_lock, flags); | 
 | 	list_splice_init(&md->uevent_list, &uevents); | 
 | 	spin_unlock_irqrestore(&md->uevent_lock, flags); | 
 |  | 
 | 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); | 
 |  | 
 | 	atomic_inc(&md->event_nr); | 
 | 	wake_up(&md->eventq); | 
 | 	dm_issue_global_event(); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns old map, which caller must destroy. | 
 |  */ | 
 | static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, | 
 | 			       struct queue_limits *limits) | 
 | { | 
 | 	struct dm_table *old_map; | 
 | 	sector_t size; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&md->suspend_lock); | 
 |  | 
 | 	size = dm_table_get_size(t); | 
 |  | 
 | 	/* | 
 | 	 * Wipe any geometry if the size of the table changed. | 
 | 	 */ | 
 | 	if (size != dm_get_size(md)) | 
 | 		memset(&md->geometry, 0, sizeof(md->geometry)); | 
 |  | 
 | 	set_capacity(md->disk, size); | 
 |  | 
 | 	dm_table_event_callback(t, event_callback, md); | 
 |  | 
 | 	if (dm_table_request_based(t)) { | 
 | 		/* | 
 | 		 * Leverage the fact that request-based DM targets are | 
 | 		 * immutable singletons - used to optimize dm_mq_queue_rq. | 
 | 		 */ | 
 | 		md->immutable_target = dm_table_get_immutable_target(t); | 
 |  | 
 | 		/* | 
 | 		 * There is no need to reload with request-based dm because the | 
 | 		 * size of front_pad doesn't change. | 
 | 		 * | 
 | 		 * Note for future: If you are to reload bioset, prep-ed | 
 | 		 * requests in the queue may refer to bio from the old bioset, | 
 | 		 * so you must walk through the queue to unprep. | 
 | 		 */ | 
 | 		if (!md->mempools) { | 
 | 			md->mempools = t->mempools; | 
 | 			t->mempools = NULL; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * The md may already have mempools that need changing. | 
 | 		 * If so, reload bioset because front_pad may have changed | 
 | 		 * because a different table was loaded. | 
 | 		 */ | 
 | 		dm_free_md_mempools(md->mempools); | 
 | 		md->mempools = t->mempools; | 
 | 		t->mempools = NULL; | 
 | 	} | 
 |  | 
 | 	ret = dm_table_set_restrictions(t, md->queue, limits); | 
 | 	if (ret) { | 
 | 		old_map = ERR_PTR(ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 | 	rcu_assign_pointer(md->map, (void *)t); | 
 | 	md->immutable_target_type = dm_table_get_immutable_target_type(t); | 
 |  | 
 | 	if (old_map) | 
 | 		dm_sync_table(md); | 
 | out: | 
 | 	return old_map; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns unbound table for the caller to free. | 
 |  */ | 
 | static struct dm_table *__unbind(struct mapped_device *md) | 
 | { | 
 | 	struct dm_table *map = rcu_dereference_protected(md->map, 1); | 
 |  | 
 | 	if (!map) | 
 | 		return NULL; | 
 |  | 
 | 	dm_table_event_callback(map, NULL, NULL); | 
 | 	RCU_INIT_POINTER(md->map, NULL); | 
 | 	dm_sync_table(md); | 
 |  | 
 | 	return map; | 
 | } | 
 |  | 
 | /* | 
 |  * Constructor for a new device. | 
 |  */ | 
 | int dm_create(int minor, struct mapped_device **result) | 
 | { | 
 | 	struct mapped_device *md; | 
 |  | 
 | 	md = alloc_dev(minor); | 
 | 	if (!md) | 
 | 		return -ENXIO; | 
 |  | 
 | 	dm_ima_reset_data(md); | 
 |  | 
 | 	*result = md; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Functions to manage md->type. | 
 |  * All are required to hold md->type_lock. | 
 |  */ | 
 | void dm_lock_md_type(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->type_lock); | 
 | } | 
 |  | 
 | void dm_unlock_md_type(struct mapped_device *md) | 
 | { | 
 | 	mutex_unlock(&md->type_lock); | 
 | } | 
 |  | 
 | void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) | 
 | { | 
 | 	BUG_ON(!mutex_is_locked(&md->type_lock)); | 
 | 	md->type = type; | 
 | } | 
 |  | 
 | enum dm_queue_mode dm_get_md_type(struct mapped_device *md) | 
 | { | 
 | 	return md->type; | 
 | } | 
 |  | 
 | struct target_type *dm_get_immutable_target_type(struct mapped_device *md) | 
 | { | 
 | 	return md->immutable_target_type; | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the DM device's queue based on md's type | 
 |  */ | 
 | int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) | 
 | { | 
 | 	enum dm_queue_mode type = dm_table_get_type(t); | 
 | 	struct queue_limits limits; | 
 | 	struct table_device *td; | 
 | 	int r; | 
 |  | 
 | 	switch (type) { | 
 | 	case DM_TYPE_REQUEST_BASED: | 
 | 		md->disk->fops = &dm_rq_blk_dops; | 
 | 		r = dm_mq_init_request_queue(md, t); | 
 | 		if (r) { | 
 | 			DMERR("Cannot initialize queue for request-based dm mapped device"); | 
 | 			return r; | 
 | 		} | 
 | 		break; | 
 | 	case DM_TYPE_BIO_BASED: | 
 | 	case DM_TYPE_DAX_BIO_BASED: | 
 | 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue); | 
 | 		break; | 
 | 	case DM_TYPE_NONE: | 
 | 		WARN_ON_ONCE(true); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	r = dm_calculate_queue_limits(t, &limits); | 
 | 	if (r) { | 
 | 		DMERR("Cannot calculate initial queue limits"); | 
 | 		return r; | 
 | 	} | 
 | 	r = dm_table_set_restrictions(t, md->queue, &limits); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* | 
 | 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent | 
 | 	 * with open_table_device() and close_table_device(). | 
 | 	 */ | 
 | 	mutex_lock(&md->table_devices_lock); | 
 | 	r = add_disk(md->disk); | 
 | 	mutex_unlock(&md->table_devices_lock); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* | 
 | 	 * Register the holder relationship for devices added before the disk | 
 | 	 * was live. | 
 | 	 */ | 
 | 	list_for_each_entry(td, &md->table_devices, list) { | 
 | 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); | 
 | 		if (r) | 
 | 			goto out_undo_holders; | 
 | 	} | 
 |  | 
 | 	r = dm_sysfs_init(md); | 
 | 	if (r) | 
 | 		goto out_undo_holders; | 
 |  | 
 | 	md->type = type; | 
 | 	return 0; | 
 |  | 
 | out_undo_holders: | 
 | 	list_for_each_entry_continue_reverse(td, &md->table_devices, list) | 
 | 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); | 
 | 	mutex_lock(&md->table_devices_lock); | 
 | 	del_gendisk(md->disk); | 
 | 	mutex_unlock(&md->table_devices_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | struct mapped_device *dm_get_md(dev_t dev) | 
 | { | 
 | 	struct mapped_device *md; | 
 | 	unsigned int minor = MINOR(dev); | 
 |  | 
 | 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 |  | 
 | 	md = idr_find(&_minor_idr, minor); | 
 | 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || | 
 | 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { | 
 | 		md = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	dm_get(md); | 
 | out: | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return md; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_md); | 
 |  | 
 | void *dm_get_mdptr(struct mapped_device *md) | 
 | { | 
 | 	return md->interface_ptr; | 
 | } | 
 |  | 
 | void dm_set_mdptr(struct mapped_device *md, void *ptr) | 
 | { | 
 | 	md->interface_ptr = ptr; | 
 | } | 
 |  | 
 | void dm_get(struct mapped_device *md) | 
 | { | 
 | 	atomic_inc(&md->holders); | 
 | 	BUG_ON(test_bit(DMF_FREEING, &md->flags)); | 
 | } | 
 |  | 
 | int dm_hold(struct mapped_device *md) | 
 | { | 
 | 	spin_lock(&_minor_lock); | 
 | 	if (test_bit(DMF_FREEING, &md->flags)) { | 
 | 		spin_unlock(&_minor_lock); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	dm_get(md); | 
 | 	spin_unlock(&_minor_lock); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_hold); | 
 |  | 
 | const char *dm_device_name(struct mapped_device *md) | 
 | { | 
 | 	return md->name; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_device_name); | 
 |  | 
 | static void __dm_destroy(struct mapped_device *md, bool wait) | 
 | { | 
 | 	struct dm_table *map; | 
 | 	int srcu_idx; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 | 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); | 
 | 	set_bit(DMF_FREEING, &md->flags); | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	blk_mark_disk_dead(md->disk); | 
 |  | 
 | 	/* | 
 | 	 * Take suspend_lock so that presuspend and postsuspend methods | 
 | 	 * do not race with internal suspend. | 
 | 	 */ | 
 | 	mutex_lock(&md->suspend_lock); | 
 | 	map = dm_get_live_table(md, &srcu_idx); | 
 | 	if (!dm_suspended_md(md)) { | 
 | 		dm_table_presuspend_targets(map); | 
 | 		set_bit(DMF_SUSPENDED, &md->flags); | 
 | 		set_bit(DMF_POST_SUSPENDING, &md->flags); | 
 | 		dm_table_postsuspend_targets(map); | 
 | 	} | 
 | 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | 	mutex_unlock(&md->suspend_lock); | 
 |  | 
 | 	/* | 
 | 	 * Rare, but there may be I/O requests still going to complete, | 
 | 	 * for example.  Wait for all references to disappear. | 
 | 	 * No one should increment the reference count of the mapped_device, | 
 | 	 * after the mapped_device state becomes DMF_FREEING. | 
 | 	 */ | 
 | 	if (wait) | 
 | 		while (atomic_read(&md->holders)) | 
 | 			fsleep(1000); | 
 | 	else if (atomic_read(&md->holders)) | 
 | 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", | 
 | 		       dm_device_name(md), atomic_read(&md->holders)); | 
 |  | 
 | 	dm_table_destroy(__unbind(md)); | 
 | 	free_dev(md); | 
 | } | 
 |  | 
 | void dm_destroy(struct mapped_device *md) | 
 | { | 
 | 	__dm_destroy(md, true); | 
 | } | 
 |  | 
 | void dm_destroy_immediate(struct mapped_device *md) | 
 | { | 
 | 	__dm_destroy(md, false); | 
 | } | 
 |  | 
 | void dm_put(struct mapped_device *md) | 
 | { | 
 | 	atomic_dec(&md->holders); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_put); | 
 |  | 
 | static bool dm_in_flight_bios(struct mapped_device *md) | 
 | { | 
 | 	int cpu; | 
 | 	unsigned long sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		sum += *per_cpu_ptr(md->pending_io, cpu); | 
 |  | 
 | 	return sum != 0; | 
 | } | 
 |  | 
 | static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) | 
 | { | 
 | 	int r = 0; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	while (true) { | 
 | 		prepare_to_wait(&md->wait, &wait, task_state); | 
 |  | 
 | 		if (!dm_in_flight_bios(md)) | 
 | 			break; | 
 |  | 
 | 		if (signal_pending_state(task_state, current)) { | 
 | 			r = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		io_schedule(); | 
 | 	} | 
 | 	finish_wait(&md->wait, &wait); | 
 |  | 
 | 	smp_rmb(); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	if (!queue_is_mq(md->queue)) | 
 | 		return dm_wait_for_bios_completion(md, task_state); | 
 |  | 
 | 	while (true) { | 
 | 		if (!blk_mq_queue_inflight(md->queue)) | 
 | 			break; | 
 |  | 
 | 		if (signal_pending_state(task_state, current)) { | 
 | 			r = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		fsleep(5000); | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Process the deferred bios | 
 |  */ | 
 | static void dm_wq_work(struct work_struct *work) | 
 | { | 
 | 	struct mapped_device *md = container_of(work, struct mapped_device, work); | 
 | 	struct bio *bio; | 
 |  | 
 | 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { | 
 | 		spin_lock_irq(&md->deferred_lock); | 
 | 		bio = bio_list_pop(&md->deferred); | 
 | 		spin_unlock_irq(&md->deferred_lock); | 
 |  | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		submit_bio_noacct(bio); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | static void dm_queue_flush(struct mapped_device *md) | 
 | { | 
 | 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); | 
 | 	smp_mb__after_atomic(); | 
 | 	queue_work(md->wq, &md->work); | 
 | } | 
 |  | 
 | /* | 
 |  * Swap in a new table, returning the old one for the caller to destroy. | 
 |  */ | 
 | struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) | 
 | { | 
 | 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); | 
 | 	struct queue_limits limits; | 
 | 	int r; | 
 |  | 
 | 	mutex_lock(&md->suspend_lock); | 
 |  | 
 | 	/* device must be suspended */ | 
 | 	if (!dm_suspended_md(md)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If the new table has no data devices, retain the existing limits. | 
 | 	 * This helps multipath with queue_if_no_path if all paths disappear, | 
 | 	 * then new I/O is queued based on these limits, and then some paths | 
 | 	 * reappear. | 
 | 	 */ | 
 | 	if (dm_table_has_no_data_devices(table)) { | 
 | 		live_map = dm_get_live_table_fast(md); | 
 | 		if (live_map) | 
 | 			limits = md->queue->limits; | 
 | 		dm_put_live_table_fast(md); | 
 | 	} | 
 |  | 
 | 	if (!live_map) { | 
 | 		r = dm_calculate_queue_limits(table, &limits); | 
 | 		if (r) { | 
 | 			map = ERR_PTR(r); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	map = __bind(md, table, &limits); | 
 | 	dm_issue_global_event(); | 
 |  | 
 | out: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | 	return map; | 
 | } | 
 |  | 
 | /* | 
 |  * Functions to lock and unlock any filesystem running on the | 
 |  * device. | 
 |  */ | 
 | static int lock_fs(struct mapped_device *md) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	WARN_ON(test_bit(DMF_FROZEN, &md->flags)); | 
 |  | 
 | 	r = freeze_bdev(md->disk->part0); | 
 | 	if (!r) | 
 | 		set_bit(DMF_FROZEN, &md->flags); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void unlock_fs(struct mapped_device *md) | 
 | { | 
 | 	if (!test_bit(DMF_FROZEN, &md->flags)) | 
 | 		return; | 
 | 	thaw_bdev(md->disk->part0); | 
 | 	clear_bit(DMF_FROZEN, &md->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG | 
 |  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE | 
 |  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY | 
 |  * | 
 |  * If __dm_suspend returns 0, the device is completely quiescent | 
 |  * now. There is no request-processing activity. All new requests | 
 |  * are being added to md->deferred list. | 
 |  */ | 
 | static int __dm_suspend(struct mapped_device *md, struct dm_table *map, | 
 | 			unsigned int suspend_flags, unsigned int task_state, | 
 | 			int dmf_suspended_flag) | 
 | { | 
 | 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; | 
 | 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; | 
 | 	int r; | 
 |  | 
 | 	lockdep_assert_held(&md->suspend_lock); | 
 |  | 
 | 	/* | 
 | 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. | 
 | 	 * This flag is cleared before dm_suspend returns. | 
 | 	 */ | 
 | 	if (noflush) | 
 | 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); | 
 | 	else | 
 | 		DMDEBUG("%s: suspending with flush", dm_device_name(md)); | 
 |  | 
 | 	/* | 
 | 	 * This gets reverted if there's an error later and the targets | 
 | 	 * provide the .presuspend_undo hook. | 
 | 	 */ | 
 | 	dm_table_presuspend_targets(map); | 
 |  | 
 | 	/* | 
 | 	 * Flush I/O to the device. | 
 | 	 * Any I/O submitted after lock_fs() may not be flushed. | 
 | 	 * noflush takes precedence over do_lockfs. | 
 | 	 * (lock_fs() flushes I/Os and waits for them to complete.) | 
 | 	 */ | 
 | 	if (!noflush && do_lockfs) { | 
 | 		r = lock_fs(md); | 
 | 		if (r) { | 
 | 			dm_table_presuspend_undo_targets(map); | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Here we must make sure that no processes are submitting requests | 
 | 	 * to target drivers i.e. no one may be executing | 
 | 	 * dm_split_and_process_bio from dm_submit_bio. | 
 | 	 * | 
 | 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, | 
 | 	 * we take the write lock. To prevent any process from reentering | 
 | 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread | 
 | 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call | 
 | 	 * flush_workqueue(md->wq). | 
 | 	 */ | 
 | 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); | 
 | 	if (map) | 
 | 		synchronize_srcu(&md->io_barrier); | 
 |  | 
 | 	/* | 
 | 	 * Stop md->queue before flushing md->wq in case request-based | 
 | 	 * dm defers requests to md->wq from md->queue. | 
 | 	 */ | 
 | 	if (dm_request_based(md)) | 
 | 		dm_stop_queue(md->queue); | 
 |  | 
 | 	flush_workqueue(md->wq); | 
 |  | 
 | 	/* | 
 | 	 * At this point no more requests are entering target request routines. | 
 | 	 * We call dm_wait_for_completion to wait for all existing requests | 
 | 	 * to finish. | 
 | 	 */ | 
 | 	r = dm_wait_for_completion(md, task_state); | 
 | 	if (!r) | 
 | 		set_bit(dmf_suspended_flag, &md->flags); | 
 |  | 
 | 	if (noflush) | 
 | 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); | 
 | 	if (map) | 
 | 		synchronize_srcu(&md->io_barrier); | 
 |  | 
 | 	/* were we interrupted ? */ | 
 | 	if (r < 0) { | 
 | 		dm_queue_flush(md); | 
 |  | 
 | 		if (dm_request_based(md)) | 
 | 			dm_start_queue(md->queue); | 
 |  | 
 | 		unlock_fs(md); | 
 | 		dm_table_presuspend_undo_targets(map); | 
 | 		/* pushback list is already flushed, so skip flush */ | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * We need to be able to change a mapping table under a mounted | 
 |  * filesystem.  For example we might want to move some data in | 
 |  * the background.  Before the table can be swapped with | 
 |  * dm_bind_table, dm_suspend must be called to flush any in | 
 |  * flight bios and ensure that any further io gets deferred. | 
 |  */ | 
 | /* | 
 |  * Suspend mechanism in request-based dm. | 
 |  * | 
 |  * 1. Flush all I/Os by lock_fs() if needed. | 
 |  * 2. Stop dispatching any I/O by stopping the request_queue. | 
 |  * 3. Wait for all in-flight I/Os to be completed or requeued. | 
 |  * | 
 |  * To abort suspend, start the request_queue. | 
 |  */ | 
 | int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) | 
 | { | 
 | 	struct dm_table *map = NULL; | 
 | 	int r = 0; | 
 |  | 
 | retry: | 
 | 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	if (dm_suspended_md(md)) { | 
 | 		r = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (dm_suspended_internally_md(md)) { | 
 | 		/* already internally suspended, wait for internal resume */ | 
 | 		mutex_unlock(&md->suspend_lock); | 
 | 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); | 
 | 		if (r) | 
 | 			return r; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 | 	if (!map) { | 
 | 		/* avoid deadlock with fs/namespace.c:do_mount() */ | 
 | 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; | 
 | 	} | 
 |  | 
 | 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); | 
 | 	if (r) | 
 | 		goto out_unlock; | 
 |  | 
 | 	set_bit(DMF_POST_SUSPENDING, &md->flags); | 
 | 	dm_table_postsuspend_targets(map); | 
 | 	clear_bit(DMF_POST_SUSPENDING, &md->flags); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int __dm_resume(struct mapped_device *md, struct dm_table *map) | 
 | { | 
 | 	if (map) { | 
 | 		int r = dm_table_resume_targets(map); | 
 |  | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	dm_queue_flush(md); | 
 |  | 
 | 	/* | 
 | 	 * Flushing deferred I/Os must be done after targets are resumed | 
 | 	 * so that mapping of targets can work correctly. | 
 | 	 * Request-based dm is queueing the deferred I/Os in its request_queue. | 
 | 	 */ | 
 | 	if (dm_request_based(md)) | 
 | 		dm_start_queue(md->queue); | 
 |  | 
 | 	unlock_fs(md); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_resume(struct mapped_device *md) | 
 | { | 
 | 	int r; | 
 | 	struct dm_table *map = NULL; | 
 |  | 
 | retry: | 
 | 	r = -EINVAL; | 
 | 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	if (!dm_suspended_md(md)) | 
 | 		goto out; | 
 |  | 
 | 	if (dm_suspended_internally_md(md)) { | 
 | 		/* already internally suspended, wait for internal resume */ | 
 | 		mutex_unlock(&md->suspend_lock); | 
 | 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); | 
 | 		if (r) | 
 | 			return r; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 | 	if (!map || !dm_table_get_size(map)) | 
 | 		goto out; | 
 |  | 
 | 	r = __dm_resume(md, map); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	clear_bit(DMF_SUSPENDED, &md->flags); | 
 | out: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Internal suspend/resume works like userspace-driven suspend. It waits | 
 |  * until all bios finish and prevents issuing new bios to the target drivers. | 
 |  * It may be used only from the kernel. | 
 |  */ | 
 |  | 
 | static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) | 
 | { | 
 | 	struct dm_table *map = NULL; | 
 |  | 
 | 	lockdep_assert_held(&md->suspend_lock); | 
 |  | 
 | 	if (md->internal_suspend_count++) | 
 | 		return; /* nested internal suspend */ | 
 |  | 
 | 	if (dm_suspended_md(md)) { | 
 | 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); | 
 | 		return; /* nest suspend */ | 
 | 	} | 
 |  | 
 | 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); | 
 |  | 
 | 	/* | 
 | 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is | 
 | 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend | 
 | 	 * would require changing .presuspend to return an error -- avoid this | 
 | 	 * until there is a need for more elaborate variants of internal suspend. | 
 | 	 */ | 
 | 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, | 
 | 			    DMF_SUSPENDED_INTERNALLY); | 
 |  | 
 | 	set_bit(DMF_POST_SUSPENDING, &md->flags); | 
 | 	dm_table_postsuspend_targets(map); | 
 | 	clear_bit(DMF_POST_SUSPENDING, &md->flags); | 
 | } | 
 |  | 
 | static void __dm_internal_resume(struct mapped_device *md) | 
 | { | 
 | 	BUG_ON(!md->internal_suspend_count); | 
 |  | 
 | 	if (--md->internal_suspend_count) | 
 | 		return; /* resume from nested internal suspend */ | 
 |  | 
 | 	if (dm_suspended_md(md)) | 
 | 		goto done; /* resume from nested suspend */ | 
 |  | 
 | 	/* | 
 | 	 * NOTE: existing callers don't need to call dm_table_resume_targets | 
 | 	 * (which may fail -- so best to avoid it for now by passing NULL map) | 
 | 	 */ | 
 | 	(void) __dm_resume(md, NULL); | 
 |  | 
 | done: | 
 | 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); | 
 | 	smp_mb__after_atomic(); | 
 | 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); | 
 | } | 
 |  | 
 | void dm_internal_suspend_noflush(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->suspend_lock); | 
 | 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); | 
 |  | 
 | void dm_internal_resume(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->suspend_lock); | 
 | 	__dm_internal_resume(md); | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_internal_resume); | 
 |  | 
 | /* | 
 |  * Fast variants of internal suspend/resume hold md->suspend_lock, | 
 |  * which prevents interaction with userspace-driven suspend. | 
 |  */ | 
 |  | 
 | void dm_internal_suspend_fast(struct mapped_device *md) | 
 | { | 
 | 	mutex_lock(&md->suspend_lock); | 
 | 	if (dm_suspended_md(md) || dm_suspended_internally_md(md)) | 
 | 		return; | 
 |  | 
 | 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); | 
 | 	synchronize_srcu(&md->io_barrier); | 
 | 	flush_workqueue(md->wq); | 
 | 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); | 
 |  | 
 | void dm_internal_resume_fast(struct mapped_device *md) | 
 | { | 
 | 	if (dm_suspended_md(md) || dm_suspended_internally_md(md)) | 
 | 		goto done; | 
 |  | 
 | 	dm_queue_flush(md); | 
 |  | 
 | done: | 
 | 	mutex_unlock(&md->suspend_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_internal_resume_fast); | 
 |  | 
 | /* | 
 |  *--------------------------------------------------------------- | 
 |  * Event notification. | 
 |  *--------------------------------------------------------------- | 
 |  */ | 
 | int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, | 
 | 		      unsigned int cookie, bool need_resize_uevent) | 
 | { | 
 | 	int r; | 
 | 	unsigned int noio_flag; | 
 | 	char udev_cookie[DM_COOKIE_LENGTH]; | 
 | 	char *envp[3] = { NULL, NULL, NULL }; | 
 | 	char **envpp = envp; | 
 | 	if (cookie) { | 
 | 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", | 
 | 			 DM_COOKIE_ENV_VAR_NAME, cookie); | 
 | 		*envpp++ = udev_cookie; | 
 | 	} | 
 | 	if (need_resize_uevent) { | 
 | 		*envpp++ = "RESIZE=1"; | 
 | 	} | 
 |  | 
 | 	noio_flag = memalloc_noio_save(); | 
 |  | 
 | 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); | 
 |  | 
 | 	memalloc_noio_restore(noio_flag); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | uint32_t dm_next_uevent_seq(struct mapped_device *md) | 
 | { | 
 | 	return atomic_add_return(1, &md->uevent_seq); | 
 | } | 
 |  | 
 | uint32_t dm_get_event_nr(struct mapped_device *md) | 
 | { | 
 | 	return atomic_read(&md->event_nr); | 
 | } | 
 |  | 
 | int dm_wait_event(struct mapped_device *md, int event_nr) | 
 | { | 
 | 	return wait_event_interruptible(md->eventq, | 
 | 			(event_nr != atomic_read(&md->event_nr))); | 
 | } | 
 |  | 
 | void dm_uevent_add(struct mapped_device *md, struct list_head *elist) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&md->uevent_lock, flags); | 
 | 	list_add(elist, &md->uevent_list); | 
 | 	spin_unlock_irqrestore(&md->uevent_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * The gendisk is only valid as long as you have a reference | 
 |  * count on 'md'. | 
 |  */ | 
 | struct gendisk *dm_disk(struct mapped_device *md) | 
 | { | 
 | 	return md->disk; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_disk); | 
 |  | 
 | struct kobject *dm_kobject(struct mapped_device *md) | 
 | { | 
 | 	return &md->kobj_holder.kobj; | 
 | } | 
 |  | 
 | struct mapped_device *dm_get_from_kobject(struct kobject *kobj) | 
 | { | 
 | 	struct mapped_device *md; | 
 |  | 
 | 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj); | 
 |  | 
 | 	spin_lock(&_minor_lock); | 
 | 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { | 
 | 		md = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	dm_get(md); | 
 | out: | 
 | 	spin_unlock(&_minor_lock); | 
 |  | 
 | 	return md; | 
 | } | 
 |  | 
 | int dm_suspended_md(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_SUSPENDED, &md->flags); | 
 | } | 
 |  | 
 | static int dm_post_suspending_md(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_POST_SUSPENDING, &md->flags); | 
 | } | 
 |  | 
 | int dm_suspended_internally_md(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); | 
 | } | 
 |  | 
 | int dm_test_deferred_remove_flag(struct mapped_device *md) | 
 | { | 
 | 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags); | 
 | } | 
 |  | 
 | int dm_suspended(struct dm_target *ti) | 
 | { | 
 | 	return dm_suspended_md(ti->table->md); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_suspended); | 
 |  | 
 | int dm_post_suspending(struct dm_target *ti) | 
 | { | 
 | 	return dm_post_suspending_md(ti->table->md); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_post_suspending); | 
 |  | 
 | int dm_noflush_suspending(struct dm_target *ti) | 
 | { | 
 | 	return __noflush_suspending(ti->table->md); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_noflush_suspending); | 
 |  | 
 | void dm_free_md_mempools(struct dm_md_mempools *pools) | 
 | { | 
 | 	if (!pools) | 
 | 		return; | 
 |  | 
 | 	bioset_exit(&pools->bs); | 
 | 	bioset_exit(&pools->io_bs); | 
 |  | 
 | 	kfree(pools); | 
 | } | 
 |  | 
 | struct dm_pr { | 
 | 	u64	old_key; | 
 | 	u64	new_key; | 
 | 	u32	flags; | 
 | 	bool	abort; | 
 | 	bool	fail_early; | 
 | 	int	ret; | 
 | 	enum pr_type type; | 
 | 	struct pr_keys *read_keys; | 
 | 	struct pr_held_reservation *rsv; | 
 | }; | 
 |  | 
 | static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, | 
 | 		      struct dm_pr *pr) | 
 | { | 
 | 	struct mapped_device *md = bdev->bd_disk->private_data; | 
 | 	struct dm_table *table; | 
 | 	struct dm_target *ti; | 
 | 	int ret = -ENOTTY, srcu_idx; | 
 |  | 
 | 	table = dm_get_live_table(md, &srcu_idx); | 
 | 	if (!table || !dm_table_get_size(table)) | 
 | 		goto out; | 
 |  | 
 | 	/* We only support devices that have a single target */ | 
 | 	if (table->num_targets != 1) | 
 | 		goto out; | 
 | 	ti = dm_table_get_target(table, 0); | 
 |  | 
 | 	if (dm_suspended_md(md)) { | 
 | 		ret = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (!ti->type->iterate_devices) | 
 | 		goto out; | 
 |  | 
 | 	ti->type->iterate_devices(ti, fn, pr); | 
 | 	ret = 0; | 
 | out: | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * For register / unregister we need to manually call out to every path. | 
 |  */ | 
 | static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, | 
 | 			    sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct dm_pr *pr = data; | 
 | 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; | 
 | 	int ret; | 
 |  | 
 | 	if (!ops || !ops->pr_register) { | 
 | 		pr->ret = -EOPNOTSUPP; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	if (!pr->ret) | 
 | 		pr->ret = ret; | 
 |  | 
 | 	if (pr->fail_early) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, | 
 | 			  u32 flags) | 
 | { | 
 | 	struct dm_pr pr = { | 
 | 		.old_key	= old_key, | 
 | 		.new_key	= new_key, | 
 | 		.flags		= flags, | 
 | 		.fail_early	= true, | 
 | 		.ret		= 0, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = dm_call_pr(bdev, __dm_pr_register, &pr); | 
 | 	if (ret) { | 
 | 		/* Didn't even get to register a path */ | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (!pr.ret) | 
 | 		return 0; | 
 | 	ret = pr.ret; | 
 |  | 
 | 	if (!new_key) | 
 | 		return ret; | 
 |  | 
 | 	/* unregister all paths if we failed to register any path */ | 
 | 	pr.old_key = new_key; | 
 | 	pr.new_key = 0; | 
 | 	pr.flags = 0; | 
 | 	pr.fail_early = false; | 
 | 	(void) dm_call_pr(bdev, __dm_pr_register, &pr); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, | 
 | 			   sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct dm_pr *pr = data; | 
 | 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; | 
 |  | 
 | 	if (!ops || !ops->pr_reserve) { | 
 | 		pr->ret = -EOPNOTSUPP; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); | 
 | 	if (!pr->ret) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, | 
 | 			 u32 flags) | 
 | { | 
 | 	struct dm_pr pr = { | 
 | 		.old_key	= key, | 
 | 		.flags		= flags, | 
 | 		.type		= type, | 
 | 		.fail_early	= false, | 
 | 		.ret		= 0, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return pr.ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If there is a non-All Registrants type of reservation, the release must be | 
 |  * sent down the holding path. For the cases where there is no reservation or | 
 |  * the path is not the holder the device will also return success, so we must | 
 |  * try each path to make sure we got the correct path. | 
 |  */ | 
 | static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, | 
 | 			   sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct dm_pr *pr = data; | 
 | 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; | 
 |  | 
 | 	if (!ops || !ops->pr_release) { | 
 | 		pr->ret = -EOPNOTSUPP; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); | 
 | 	if (pr->ret) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) | 
 | { | 
 | 	struct dm_pr pr = { | 
 | 		.old_key	= key, | 
 | 		.type		= type, | 
 | 		.fail_early	= false, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = dm_call_pr(bdev, __dm_pr_release, &pr); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return pr.ret; | 
 | } | 
 |  | 
 | static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, | 
 | 			   sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct dm_pr *pr = data; | 
 | 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; | 
 |  | 
 | 	if (!ops || !ops->pr_preempt) { | 
 | 		pr->ret = -EOPNOTSUPP; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, | 
 | 				  pr->abort); | 
 | 	if (!pr->ret) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, | 
 | 			 enum pr_type type, bool abort) | 
 | { | 
 | 	struct dm_pr pr = { | 
 | 		.new_key	= new_key, | 
 | 		.old_key	= old_key, | 
 | 		.type		= type, | 
 | 		.fail_early	= false, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return pr.ret; | 
 | } | 
 |  | 
 | static int dm_pr_clear(struct block_device *bdev, u64 key) | 
 | { | 
 | 	struct mapped_device *md = bdev->bd_disk->private_data; | 
 | 	const struct pr_ops *ops; | 
 | 	int r, srcu_idx; | 
 |  | 
 | 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 |  | 
 | 	ops = bdev->bd_disk->fops->pr_ops; | 
 | 	if (ops && ops->pr_clear) | 
 | 		r = ops->pr_clear(bdev, key); | 
 | 	else | 
 | 		r = -EOPNOTSUPP; | 
 | out: | 
 | 	dm_unprepare_ioctl(md, srcu_idx); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, | 
 | 			     sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct dm_pr *pr = data; | 
 | 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; | 
 |  | 
 | 	if (!ops || !ops->pr_read_keys) { | 
 | 		pr->ret = -EOPNOTSUPP; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); | 
 | 	if (!pr->ret) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) | 
 | { | 
 | 	struct dm_pr pr = { | 
 | 		.read_keys = keys, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return pr.ret; | 
 | } | 
 |  | 
 | static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, | 
 | 				    sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct dm_pr *pr = data; | 
 | 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; | 
 |  | 
 | 	if (!ops || !ops->pr_read_reservation) { | 
 | 		pr->ret = -EOPNOTSUPP; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); | 
 | 	if (!pr->ret) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dm_pr_read_reservation(struct block_device *bdev, | 
 | 				  struct pr_held_reservation *rsv) | 
 | { | 
 | 	struct dm_pr pr = { | 
 | 		.rsv = rsv, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return pr.ret; | 
 | } | 
 |  | 
 | static const struct pr_ops dm_pr_ops = { | 
 | 	.pr_register	= dm_pr_register, | 
 | 	.pr_reserve	= dm_pr_reserve, | 
 | 	.pr_release	= dm_pr_release, | 
 | 	.pr_preempt	= dm_pr_preempt, | 
 | 	.pr_clear	= dm_pr_clear, | 
 | 	.pr_read_keys	= dm_pr_read_keys, | 
 | 	.pr_read_reservation = dm_pr_read_reservation, | 
 | }; | 
 |  | 
 | static const struct block_device_operations dm_blk_dops = { | 
 | 	.submit_bio = dm_submit_bio, | 
 | 	.poll_bio = dm_poll_bio, | 
 | 	.open = dm_blk_open, | 
 | 	.release = dm_blk_close, | 
 | 	.ioctl = dm_blk_ioctl, | 
 | 	.getgeo = dm_blk_getgeo, | 
 | 	.report_zones = dm_blk_report_zones, | 
 | 	.pr_ops = &dm_pr_ops, | 
 | 	.owner = THIS_MODULE | 
 | }; | 
 |  | 
 | static const struct block_device_operations dm_rq_blk_dops = { | 
 | 	.open = dm_blk_open, | 
 | 	.release = dm_blk_close, | 
 | 	.ioctl = dm_blk_ioctl, | 
 | 	.getgeo = dm_blk_getgeo, | 
 | 	.pr_ops = &dm_pr_ops, | 
 | 	.owner = THIS_MODULE | 
 | }; | 
 |  | 
 | static const struct dax_operations dm_dax_ops = { | 
 | 	.direct_access = dm_dax_direct_access, | 
 | 	.zero_page_range = dm_dax_zero_page_range, | 
 | 	.recovery_write = dm_dax_recovery_write, | 
 | }; | 
 |  | 
 | /* | 
 |  * module hooks | 
 |  */ | 
 | module_init(dm_init); | 
 | module_exit(dm_exit); | 
 |  | 
 | module_param(major, uint, 0); | 
 | MODULE_PARM_DESC(major, "The major number of the device mapper"); | 
 |  | 
 | module_param(reserved_bio_based_ios, uint, 0644); | 
 | MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); | 
 |  | 
 | module_param(dm_numa_node, int, 0644); | 
 | MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); | 
 |  | 
 | module_param(swap_bios, int, 0644); | 
 | MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); | 
 |  | 
 | MODULE_DESCRIPTION(DM_NAME " driver"); | 
 | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | 
 | MODULE_LICENSE("GPL"); |