| // SPDX-License-Identifier: GPL-2.0 | 
 | // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. | 
 |  | 
 | #include <linux/clk.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dma/qcom-gpi-dma.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/module.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/pm_opp.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/soc/qcom/geni-se.h> | 
 | #include <linux/spi/spi.h> | 
 | #include <linux/spinlock.h> | 
 |  | 
 | /* SPI SE specific registers and respective register fields */ | 
 | #define SE_SPI_CPHA		0x224 | 
 | #define CPHA			BIT(0) | 
 |  | 
 | #define SE_SPI_LOOPBACK		0x22c | 
 | #define LOOPBACK_ENABLE		0x1 | 
 | #define NORMAL_MODE		0x0 | 
 | #define LOOPBACK_MSK		GENMASK(1, 0) | 
 |  | 
 | #define SE_SPI_CPOL		0x230 | 
 | #define CPOL			BIT(2) | 
 |  | 
 | #define SE_SPI_DEMUX_OUTPUT_INV	0x24c | 
 | #define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0) | 
 |  | 
 | #define SE_SPI_DEMUX_SEL	0x250 | 
 | #define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0) | 
 |  | 
 | #define SE_SPI_TRANS_CFG	0x25c | 
 | #define CS_TOGGLE		BIT(1) | 
 |  | 
 | #define SE_SPI_WORD_LEN		0x268 | 
 | #define WORD_LEN_MSK		GENMASK(9, 0) | 
 | #define MIN_WORD_LEN		4 | 
 |  | 
 | #define SE_SPI_TX_TRANS_LEN	0x26c | 
 | #define SE_SPI_RX_TRANS_LEN	0x270 | 
 | #define TRANS_LEN_MSK		GENMASK(23, 0) | 
 |  | 
 | #define SE_SPI_PRE_POST_CMD_DLY	0x274 | 
 |  | 
 | #define SE_SPI_DELAY_COUNTERS	0x278 | 
 | #define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0) | 
 | #define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10) | 
 | #define SPI_CS_CLK_DELAY_SHFT		10 | 
 |  | 
 | /* M_CMD OP codes for SPI */ | 
 | #define SPI_TX_ONLY		1 | 
 | #define SPI_RX_ONLY		2 | 
 | #define SPI_TX_RX		7 | 
 | #define SPI_CS_ASSERT		8 | 
 | #define SPI_CS_DEASSERT		9 | 
 | #define SPI_SCK_ONLY		10 | 
 | /* M_CMD params for SPI */ | 
 | #define SPI_PRE_CMD_DELAY	BIT(0) | 
 | #define TIMESTAMP_BEFORE	BIT(1) | 
 | #define FRAGMENTATION		BIT(2) | 
 | #define TIMESTAMP_AFTER		BIT(3) | 
 | #define POST_CMD_DELAY		BIT(4) | 
 |  | 
 | #define GSI_LOOPBACK_EN		BIT(0) | 
 | #define GSI_CS_TOGGLE		BIT(3) | 
 | #define GSI_CPHA		BIT(4) | 
 | #define GSI_CPOL		BIT(5) | 
 |  | 
 | struct spi_geni_master { | 
 | 	struct geni_se se; | 
 | 	struct device *dev; | 
 | 	u32 tx_fifo_depth; | 
 | 	u32 fifo_width_bits; | 
 | 	u32 tx_wm; | 
 | 	u32 last_mode; | 
 | 	unsigned long cur_speed_hz; | 
 | 	unsigned long cur_sclk_hz; | 
 | 	unsigned int cur_bits_per_word; | 
 | 	unsigned int tx_rem_bytes; | 
 | 	unsigned int rx_rem_bytes; | 
 | 	const struct spi_transfer *cur_xfer; | 
 | 	struct completion cs_done; | 
 | 	struct completion cancel_done; | 
 | 	struct completion abort_done; | 
 | 	struct completion tx_reset_done; | 
 | 	struct completion rx_reset_done; | 
 | 	unsigned int oversampling; | 
 | 	spinlock_t lock; | 
 | 	int irq; | 
 | 	bool cs_flag; | 
 | 	bool abort_failed; | 
 | 	struct dma_chan *tx; | 
 | 	struct dma_chan *rx; | 
 | 	int cur_xfer_mode; | 
 | }; | 
 |  | 
 | static int get_spi_clk_cfg(unsigned int speed_hz, | 
 | 			struct spi_geni_master *mas, | 
 | 			unsigned int *clk_idx, | 
 | 			unsigned int *clk_div) | 
 | { | 
 | 	unsigned long sclk_freq; | 
 | 	unsigned int actual_hz; | 
 | 	int ret; | 
 |  | 
 | 	ret = geni_se_clk_freq_match(&mas->se, | 
 | 				speed_hz * mas->oversampling, | 
 | 				clk_idx, &sclk_freq, false); | 
 | 	if (ret) { | 
 | 		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n", | 
 | 							ret, speed_hz); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz); | 
 | 	actual_hz = sclk_freq / (mas->oversampling * *clk_div); | 
 |  | 
 | 	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz, | 
 | 				actual_hz, sclk_freq, *clk_idx, *clk_div); | 
 | 	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq); | 
 | 	if (ret) | 
 | 		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret); | 
 | 	else | 
 | 		mas->cur_sclk_hz = sclk_freq; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void handle_se_timeout(struct spi_master *spi, | 
 | 				struct spi_message *msg) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 | 	unsigned long time_left; | 
 | 	struct geni_se *se = &mas->se; | 
 | 	const struct spi_transfer *xfer; | 
 |  | 
 | 	spin_lock_irq(&mas->lock); | 
 | 	reinit_completion(&mas->cancel_done); | 
 | 	if (mas->cur_xfer_mode == GENI_SE_FIFO) | 
 | 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG); | 
 |  | 
 | 	xfer = mas->cur_xfer; | 
 | 	mas->cur_xfer = NULL; | 
 | 	geni_se_cancel_m_cmd(se); | 
 | 	spin_unlock_irq(&mas->lock); | 
 |  | 
 | 	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ); | 
 | 	if (time_left) | 
 | 		goto unmap_if_dma; | 
 |  | 
 | 	spin_lock_irq(&mas->lock); | 
 | 	reinit_completion(&mas->abort_done); | 
 | 	geni_se_abort_m_cmd(se); | 
 | 	spin_unlock_irq(&mas->lock); | 
 |  | 
 | 	time_left = wait_for_completion_timeout(&mas->abort_done, HZ); | 
 | 	if (!time_left) { | 
 | 		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n"); | 
 |  | 
 | 		/* | 
 | 		 * No need for a lock since SPI core has a lock and we never | 
 | 		 * access this from an interrupt. | 
 | 		 */ | 
 | 		mas->abort_failed = true; | 
 | 	} | 
 |  | 
 | unmap_if_dma: | 
 | 	if (mas->cur_xfer_mode == GENI_SE_DMA) { | 
 | 		if (xfer) { | 
 | 			if (xfer->tx_buf) { | 
 | 				spin_lock_irq(&mas->lock); | 
 | 				reinit_completion(&mas->tx_reset_done); | 
 | 				writel(1, se->base + SE_DMA_TX_FSM_RST); | 
 | 				spin_unlock_irq(&mas->lock); | 
 | 				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ); | 
 | 				if (!time_left) | 
 | 					dev_err(mas->dev, "DMA TX RESET failed\n"); | 
 | 			} | 
 | 			if (xfer->rx_buf) { | 
 | 				spin_lock_irq(&mas->lock); | 
 | 				reinit_completion(&mas->rx_reset_done); | 
 | 				writel(1, se->base + SE_DMA_RX_FSM_RST); | 
 | 				spin_unlock_irq(&mas->lock); | 
 | 				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ); | 
 | 				if (!time_left) | 
 | 					dev_err(mas->dev, "DMA RX RESET failed\n"); | 
 | 			} | 
 | 		} else { | 
 | 			/* | 
 | 			 * This can happen if a timeout happened and we had to wait | 
 | 			 * for lock in this function because isr was holding the lock | 
 | 			 * and handling transfer completion at that time. | 
 | 			 */ | 
 | 			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n"); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 |  | 
 | 	dmaengine_terminate_sync(mas->tx); | 
 | 	dmaengine_terminate_sync(mas->rx); | 
 | } | 
 |  | 
 | static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 |  | 
 | 	switch (mas->cur_xfer_mode) { | 
 | 	case GENI_SE_FIFO: | 
 | 	case GENI_SE_DMA: | 
 | 		handle_se_timeout(spi, msg); | 
 | 		break; | 
 | 	case GENI_GPI_DMA: | 
 | 		handle_gpi_timeout(spi, msg); | 
 | 		break; | 
 | 	default: | 
 | 		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode); | 
 | 	} | 
 | } | 
 |  | 
 | static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas) | 
 | { | 
 | 	struct geni_se *se = &mas->se; | 
 | 	u32 m_irq, m_irq_en; | 
 |  | 
 | 	if (!mas->abort_failed) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * The only known case where a transfer times out and then a cancel | 
 | 	 * times out then an abort times out is if something is blocking our | 
 | 	 * interrupt handler from running.  Avoid starting any new transfers | 
 | 	 * until that sorts itself out. | 
 | 	 */ | 
 | 	spin_lock_irq(&mas->lock); | 
 | 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); | 
 | 	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN); | 
 | 	spin_unlock_irq(&mas->lock); | 
 |  | 
 | 	if (m_irq & m_irq_en) { | 
 | 		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n", | 
 | 			m_irq & m_irq_en); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we're here the problem resolved itself so no need to check more | 
 | 	 * on future transfers. | 
 | 	 */ | 
 | 	mas->abort_failed = false; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void spi_geni_set_cs(struct spi_device *slv, bool set_flag) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master); | 
 | 	struct spi_master *spi = dev_get_drvdata(mas->dev); | 
 | 	struct geni_se *se = &mas->se; | 
 | 	unsigned long time_left; | 
 |  | 
 | 	if (!(slv->mode & SPI_CS_HIGH)) | 
 | 		set_flag = !set_flag; | 
 |  | 
 | 	if (set_flag == mas->cs_flag) | 
 | 		return; | 
 |  | 
 | 	pm_runtime_get_sync(mas->dev); | 
 |  | 
 | 	if (spi_geni_is_abort_still_pending(mas)) { | 
 | 		dev_err(mas->dev, "Can't set chip select\n"); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&mas->lock); | 
 | 	if (mas->cur_xfer) { | 
 | 		dev_err(mas->dev, "Can't set CS when prev xfer running\n"); | 
 | 		spin_unlock_irq(&mas->lock); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	mas->cs_flag = set_flag; | 
 | 	/* set xfer_mode to FIFO to complete cs_done in isr */ | 
 | 	mas->cur_xfer_mode = GENI_SE_FIFO; | 
 | 	geni_se_select_mode(se, mas->cur_xfer_mode); | 
 |  | 
 | 	reinit_completion(&mas->cs_done); | 
 | 	if (set_flag) | 
 | 		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0); | 
 | 	else | 
 | 		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0); | 
 | 	spin_unlock_irq(&mas->lock); | 
 |  | 
 | 	time_left = wait_for_completion_timeout(&mas->cs_done, HZ); | 
 | 	if (!time_left) { | 
 | 		dev_warn(mas->dev, "Timeout setting chip select\n"); | 
 | 		handle_se_timeout(spi, NULL); | 
 | 	} | 
 |  | 
 | exit: | 
 | 	pm_runtime_put(mas->dev); | 
 | } | 
 |  | 
 | static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode, | 
 | 					unsigned int bits_per_word) | 
 | { | 
 | 	unsigned int pack_words; | 
 | 	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true; | 
 | 	struct geni_se *se = &mas->se; | 
 | 	u32 word_len; | 
 |  | 
 | 	/* | 
 | 	 * If bits_per_word isn't a byte aligned value, set the packing to be | 
 | 	 * 1 SPI word per FIFO word. | 
 | 	 */ | 
 | 	if (!(mas->fifo_width_bits % bits_per_word)) | 
 | 		pack_words = mas->fifo_width_bits / bits_per_word; | 
 | 	else | 
 | 		pack_words = 1; | 
 | 	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first, | 
 | 								true, true); | 
 | 	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK; | 
 | 	writel(word_len, se->base + SE_SPI_WORD_LEN); | 
 | } | 
 |  | 
 | static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas, | 
 | 					unsigned long clk_hz) | 
 | { | 
 | 	u32 clk_sel, m_clk_cfg, idx, div; | 
 | 	struct geni_se *se = &mas->se; | 
 | 	int ret; | 
 |  | 
 | 	if (clk_hz == mas->cur_speed_hz) | 
 | 		return 0; | 
 |  | 
 | 	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div); | 
 | 	if (ret) { | 
 | 		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * SPI core clock gets configured with the requested frequency | 
 | 	 * or the frequency closer to the requested frequency. | 
 | 	 * For that reason requested frequency is stored in the | 
 | 	 * cur_speed_hz and referred in the consecutive transfer instead | 
 | 	 * of calling clk_get_rate() API. | 
 | 	 */ | 
 | 	mas->cur_speed_hz = clk_hz; | 
 |  | 
 | 	clk_sel = idx & CLK_SEL_MSK; | 
 | 	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN; | 
 | 	writel(clk_sel, se->base + SE_GENI_CLK_SEL); | 
 | 	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG); | 
 |  | 
 | 	/* Set BW quota for CPU as driver supports FIFO mode only. */ | 
 | 	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz); | 
 | 	ret = geni_icc_set_bw(se); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int setup_fifo_params(struct spi_device *spi_slv, | 
 | 					struct spi_master *spi) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 | 	struct geni_se *se = &mas->se; | 
 | 	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0; | 
 | 	u32 demux_sel; | 
 |  | 
 | 	if (mas->last_mode != spi_slv->mode) { | 
 | 		if (spi_slv->mode & SPI_LOOP) | 
 | 			loopback_cfg = LOOPBACK_ENABLE; | 
 |  | 
 | 		if (spi_slv->mode & SPI_CPOL) | 
 | 			cpol = CPOL; | 
 |  | 
 | 		if (spi_slv->mode & SPI_CPHA) | 
 | 			cpha = CPHA; | 
 |  | 
 | 		if (spi_slv->mode & SPI_CS_HIGH) | 
 | 			demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0)); | 
 |  | 
 | 		demux_sel = spi_get_chipselect(spi_slv, 0); | 
 | 		mas->cur_bits_per_word = spi_slv->bits_per_word; | 
 |  | 
 | 		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word); | 
 | 		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK); | 
 | 		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL); | 
 | 		writel(cpha, se->base + SE_SPI_CPHA); | 
 | 		writel(cpol, se->base + SE_SPI_CPOL); | 
 | 		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV); | 
 |  | 
 | 		mas->last_mode = spi_slv->mode; | 
 | 	} | 
 |  | 
 | 	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz); | 
 | } | 
 |  | 
 | static void | 
 | spi_gsi_callback_result(void *cb, const struct dmaengine_result *result) | 
 | { | 
 | 	struct spi_master *spi = cb; | 
 |  | 
 | 	spi->cur_msg->status = -EIO; | 
 | 	if (result->result != DMA_TRANS_NOERROR) { | 
 | 		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result); | 
 | 		spi_finalize_current_transfer(spi); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!result->residue) { | 
 | 		spi->cur_msg->status = 0; | 
 | 		dev_dbg(&spi->dev, "DMA txn completed\n"); | 
 | 	} else { | 
 | 		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue); | 
 | 	} | 
 |  | 
 | 	spi_finalize_current_transfer(spi); | 
 | } | 
 |  | 
 | static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas, | 
 | 			  struct spi_device *spi_slv, struct spi_master *spi) | 
 | { | 
 | 	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; | 
 | 	struct dma_slave_config config = {}; | 
 | 	struct gpi_spi_config peripheral = {}; | 
 | 	struct dma_async_tx_descriptor *tx_desc, *rx_desc; | 
 | 	int ret; | 
 |  | 
 | 	config.peripheral_config = &peripheral; | 
 | 	config.peripheral_size = sizeof(peripheral); | 
 | 	peripheral.set_config = true; | 
 |  | 
 | 	if (xfer->bits_per_word != mas->cur_bits_per_word || | 
 | 	    xfer->speed_hz != mas->cur_speed_hz) { | 
 | 		mas->cur_bits_per_word = xfer->bits_per_word; | 
 | 		mas->cur_speed_hz = xfer->speed_hz; | 
 | 	} | 
 |  | 
 | 	if (xfer->tx_buf && xfer->rx_buf) { | 
 | 		peripheral.cmd = SPI_DUPLEX; | 
 | 	} else if (xfer->tx_buf) { | 
 | 		peripheral.cmd = SPI_TX; | 
 | 		peripheral.rx_len = 0; | 
 | 	} else if (xfer->rx_buf) { | 
 | 		peripheral.cmd = SPI_RX; | 
 | 		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) { | 
 | 			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word); | 
 | 		} else { | 
 | 			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1; | 
 |  | 
 | 			peripheral.rx_len = (xfer->len / bytes_per_word); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP); | 
 | 	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL); | 
 | 	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA); | 
 | 	peripheral.cs = spi_get_chipselect(spi_slv, 0); | 
 | 	peripheral.pack_en = true; | 
 | 	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN; | 
 |  | 
 | 	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas, | 
 | 			      &peripheral.clk_src, &peripheral.clk_div); | 
 | 	if (ret) { | 
 | 		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (!xfer->cs_change) { | 
 | 		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers)) | 
 | 			peripheral.fragmentation = FRAGMENTATION; | 
 | 	} | 
 |  | 
 | 	if (peripheral.cmd & SPI_RX) { | 
 | 		dmaengine_slave_config(mas->rx, &config); | 
 | 		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, | 
 | 						  DMA_DEV_TO_MEM, flags); | 
 | 		if (!rx_desc) { | 
 | 			dev_err(mas->dev, "Err setting up rx desc\n"); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prepare the TX always, even for RX or tx_buf being null, we would | 
 | 	 * need TX to be prepared per GSI spec | 
 | 	 */ | 
 | 	dmaengine_slave_config(mas->tx, &config); | 
 | 	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, | 
 | 					  DMA_MEM_TO_DEV, flags); | 
 | 	if (!tx_desc) { | 
 | 		dev_err(mas->dev, "Err setting up tx desc\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	tx_desc->callback_result = spi_gsi_callback_result; | 
 | 	tx_desc->callback_param = spi; | 
 |  | 
 | 	if (peripheral.cmd & SPI_RX) | 
 | 		dmaengine_submit(rx_desc); | 
 | 	dmaengine_submit(tx_desc); | 
 |  | 
 | 	if (peripheral.cmd & SPI_RX) | 
 | 		dma_async_issue_pending(mas->rx); | 
 |  | 
 | 	dma_async_issue_pending(mas->tx); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static u32 get_xfer_len_in_words(struct spi_transfer *xfer, | 
 | 				struct spi_geni_master *mas) | 
 | { | 
 | 	u32 len; | 
 |  | 
 | 	if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) | 
 | 		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word; | 
 | 	else | 
 | 		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1); | 
 | 	len &= TRANS_LEN_MSK; | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | static bool geni_can_dma(struct spi_controller *ctlr, | 
 | 			 struct spi_device *slv, struct spi_transfer *xfer) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master); | 
 | 	u32 len, fifo_size; | 
 |  | 
 | 	if (mas->cur_xfer_mode == GENI_GPI_DMA) | 
 | 		return true; | 
 |  | 
 | 	len = get_xfer_len_in_words(xfer, mas); | 
 | 	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word; | 
 |  | 
 | 	if (len > fifo_size) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | static int spi_geni_prepare_message(struct spi_master *spi, | 
 | 					struct spi_message *spi_msg) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 | 	int ret; | 
 |  | 
 | 	switch (mas->cur_xfer_mode) { | 
 | 	case GENI_SE_FIFO: | 
 | 	case GENI_SE_DMA: | 
 | 		if (spi_geni_is_abort_still_pending(mas)) | 
 | 			return -EBUSY; | 
 | 		ret = setup_fifo_params(spi_msg->spi, spi); | 
 | 		if (ret) | 
 | 			dev_err(mas->dev, "Couldn't select mode %d\n", ret); | 
 | 		return ret; | 
 |  | 
 | 	case GENI_GPI_DMA: | 
 | 		/* nothing to do for GPI DMA */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mas->tx = dma_request_chan(mas->dev, "tx"); | 
 | 	if (IS_ERR(mas->tx)) { | 
 | 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx), | 
 | 				    "Failed to get tx DMA ch\n"); | 
 | 		goto err_tx; | 
 | 	} | 
 |  | 
 | 	mas->rx = dma_request_chan(mas->dev, "rx"); | 
 | 	if (IS_ERR(mas->rx)) { | 
 | 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx), | 
 | 				    "Failed to get rx DMA ch\n"); | 
 | 		goto err_rx; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_rx: | 
 | 	mas->rx = NULL; | 
 | 	dma_release_channel(mas->tx); | 
 | err_tx: | 
 | 	mas->tx = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void spi_geni_release_dma_chan(struct spi_geni_master *mas) | 
 | { | 
 | 	if (mas->rx) { | 
 | 		dma_release_channel(mas->rx); | 
 | 		mas->rx = NULL; | 
 | 	} | 
 |  | 
 | 	if (mas->tx) { | 
 | 		dma_release_channel(mas->tx); | 
 | 		mas->tx = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int spi_geni_init(struct spi_geni_master *mas) | 
 | { | 
 | 	struct geni_se *se = &mas->se; | 
 | 	unsigned int proto, major, minor, ver; | 
 | 	u32 spi_tx_cfg, fifo_disable; | 
 | 	int ret = -ENXIO; | 
 |  | 
 | 	pm_runtime_get_sync(mas->dev); | 
 |  | 
 | 	proto = geni_se_read_proto(se); | 
 | 	if (proto != GENI_SE_SPI) { | 
 | 		dev_err(mas->dev, "Invalid proto %d\n", proto); | 
 | 		goto out_pm; | 
 | 	} | 
 | 	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se); | 
 |  | 
 | 	/* Width of Tx and Rx FIFO is same */ | 
 | 	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se); | 
 |  | 
 | 	/* | 
 | 	 * Hardware programming guide suggests to configure | 
 | 	 * RX FIFO RFR level to fifo_depth-2. | 
 | 	 */ | 
 | 	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2); | 
 | 	/* Transmit an entire FIFO worth of data per IRQ */ | 
 | 	mas->tx_wm = 1; | 
 | 	ver = geni_se_get_qup_hw_version(se); | 
 | 	major = GENI_SE_VERSION_MAJOR(ver); | 
 | 	minor = GENI_SE_VERSION_MINOR(ver); | 
 |  | 
 | 	if (major == 1 && minor == 0) | 
 | 		mas->oversampling = 2; | 
 | 	else | 
 | 		mas->oversampling = 1; | 
 |  | 
 | 	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE; | 
 | 	switch (fifo_disable) { | 
 | 	case 1: | 
 | 		ret = spi_geni_grab_gpi_chan(mas); | 
 | 		if (!ret) { /* success case */ | 
 | 			mas->cur_xfer_mode = GENI_GPI_DMA; | 
 | 			geni_se_select_mode(se, GENI_GPI_DMA); | 
 | 			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n"); | 
 | 			break; | 
 | 		} else if (ret == -EPROBE_DEFER) { | 
 | 			goto out_pm; | 
 | 		} | 
 | 		/* | 
 | 		 * in case of failure to get gpi dma channel, we can still do the | 
 | 		 * FIFO mode, so fallthrough | 
 | 		 */ | 
 | 		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n"); | 
 | 		fallthrough; | 
 |  | 
 | 	case 0: | 
 | 		mas->cur_xfer_mode = GENI_SE_FIFO; | 
 | 		geni_se_select_mode(se, GENI_SE_FIFO); | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* We always control CS manually */ | 
 | 	spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG); | 
 | 	spi_tx_cfg &= ~CS_TOGGLE; | 
 | 	writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG); | 
 |  | 
 | out_pm: | 
 | 	pm_runtime_put(mas->dev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas) | 
 | { | 
 | 	/* | 
 | 	 * Calculate how many bytes we'll put in each FIFO word.  If the | 
 | 	 * transfer words don't pack cleanly into a FIFO word we'll just put | 
 | 	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em. | 
 | 	 */ | 
 | 	if (mas->fifo_width_bits % mas->cur_bits_per_word) | 
 | 		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word, | 
 | 						       BITS_PER_BYTE)); | 
 |  | 
 | 	return mas->fifo_width_bits / BITS_PER_BYTE; | 
 | } | 
 |  | 
 | static bool geni_spi_handle_tx(struct spi_geni_master *mas) | 
 | { | 
 | 	struct geni_se *se = &mas->se; | 
 | 	unsigned int max_bytes; | 
 | 	const u8 *tx_buf; | 
 | 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); | 
 | 	unsigned int i = 0; | 
 |  | 
 | 	/* Stop the watermark IRQ if nothing to send */ | 
 | 	if (!mas->cur_xfer) { | 
 | 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word; | 
 | 	if (mas->tx_rem_bytes < max_bytes) | 
 | 		max_bytes = mas->tx_rem_bytes; | 
 |  | 
 | 	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes; | 
 | 	while (i < max_bytes) { | 
 | 		unsigned int j; | 
 | 		unsigned int bytes_to_write; | 
 | 		u32 fifo_word = 0; | 
 | 		u8 *fifo_byte = (u8 *)&fifo_word; | 
 |  | 
 | 		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i); | 
 | 		for (j = 0; j < bytes_to_write; j++) | 
 | 			fifo_byte[j] = tx_buf[i++]; | 
 | 		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1); | 
 | 	} | 
 | 	mas->tx_rem_bytes -= max_bytes; | 
 | 	if (!mas->tx_rem_bytes) { | 
 | 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG); | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static void geni_spi_handle_rx(struct spi_geni_master *mas) | 
 | { | 
 | 	struct geni_se *se = &mas->se; | 
 | 	u32 rx_fifo_status; | 
 | 	unsigned int rx_bytes; | 
 | 	unsigned int rx_last_byte_valid; | 
 | 	u8 *rx_buf; | 
 | 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); | 
 | 	unsigned int i = 0; | 
 |  | 
 | 	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS); | 
 | 	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word; | 
 | 	if (rx_fifo_status & RX_LAST) { | 
 | 		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK; | 
 | 		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT; | 
 | 		if (rx_last_byte_valid && rx_last_byte_valid < 4) | 
 | 			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid; | 
 | 	} | 
 |  | 
 | 	/* Clear out the FIFO and bail if nowhere to put it */ | 
 | 	if (!mas->cur_xfer) { | 
 | 		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++) | 
 | 			readl(se->base + SE_GENI_RX_FIFOn); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (mas->rx_rem_bytes < rx_bytes) | 
 | 		rx_bytes = mas->rx_rem_bytes; | 
 |  | 
 | 	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes; | 
 | 	while (i < rx_bytes) { | 
 | 		u32 fifo_word = 0; | 
 | 		u8 *fifo_byte = (u8 *)&fifo_word; | 
 | 		unsigned int bytes_to_read; | 
 | 		unsigned int j; | 
 |  | 
 | 		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i); | 
 | 		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1); | 
 | 		for (j = 0; j < bytes_to_read; j++) | 
 | 			rx_buf[i++] = fifo_byte[j]; | 
 | 	} | 
 | 	mas->rx_rem_bytes -= rx_bytes; | 
 | } | 
 |  | 
 | static int setup_se_xfer(struct spi_transfer *xfer, | 
 | 				struct spi_geni_master *mas, | 
 | 				u16 mode, struct spi_master *spi) | 
 | { | 
 | 	u32 m_cmd = 0; | 
 | 	u32 len; | 
 | 	struct geni_se *se = &mas->se; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Ensure that our interrupt handler isn't still running from some | 
 | 	 * prior command before we start messing with the hardware behind | 
 | 	 * its back.  We don't need to _keep_ the lock here since we're only | 
 | 	 * worried about racing with out interrupt handler.  The SPI core | 
 | 	 * already handles making sure that we're not trying to do two | 
 | 	 * transfers at once or setting a chip select and doing a transfer | 
 | 	 * concurrently. | 
 | 	 * | 
 | 	 * NOTE: we actually _can't_ hold the lock here because possibly we | 
 | 	 * might call clk_set_rate() which needs to be able to sleep. | 
 | 	 */ | 
 | 	spin_lock_irq(&mas->lock); | 
 | 	spin_unlock_irq(&mas->lock); | 
 |  | 
 | 	if (xfer->bits_per_word != mas->cur_bits_per_word) { | 
 | 		spi_setup_word_len(mas, mode, xfer->bits_per_word); | 
 | 		mas->cur_bits_per_word = xfer->bits_per_word; | 
 | 	} | 
 |  | 
 | 	/* Speed and bits per word can be overridden per transfer */ | 
 | 	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	mas->tx_rem_bytes = 0; | 
 | 	mas->rx_rem_bytes = 0; | 
 |  | 
 | 	len = get_xfer_len_in_words(xfer, mas); | 
 |  | 
 | 	mas->cur_xfer = xfer; | 
 | 	if (xfer->tx_buf) { | 
 | 		m_cmd |= SPI_TX_ONLY; | 
 | 		mas->tx_rem_bytes = xfer->len; | 
 | 		writel(len, se->base + SE_SPI_TX_TRANS_LEN); | 
 | 	} | 
 |  | 
 | 	if (xfer->rx_buf) { | 
 | 		m_cmd |= SPI_RX_ONLY; | 
 | 		writel(len, se->base + SE_SPI_RX_TRANS_LEN); | 
 | 		mas->rx_rem_bytes = xfer->len; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Select DMA mode if sgt are present; and with only 1 entry | 
 | 	 * This is not a serious limitation because the xfer buffers are | 
 | 	 * expected to fit into in 1 entry almost always, and if any | 
 | 	 * doesn't for any reason we fall back to FIFO mode anyway | 
 | 	 */ | 
 | 	if (!xfer->tx_sg.nents && !xfer->rx_sg.nents) | 
 | 		mas->cur_xfer_mode = GENI_SE_FIFO; | 
 | 	else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) { | 
 | 		dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n", | 
 | 			xfer->tx_sg.nents, xfer->rx_sg.nents); | 
 | 		mas->cur_xfer_mode = GENI_SE_FIFO; | 
 | 	} else | 
 | 		mas->cur_xfer_mode = GENI_SE_DMA; | 
 | 	geni_se_select_mode(se, mas->cur_xfer_mode); | 
 |  | 
 | 	/* | 
 | 	 * Lock around right before we start the transfer since our | 
 | 	 * interrupt could come in at any time now. | 
 | 	 */ | 
 | 	spin_lock_irq(&mas->lock); | 
 | 	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION); | 
 |  | 
 | 	if (mas->cur_xfer_mode == GENI_SE_DMA) { | 
 | 		if (m_cmd & SPI_RX_ONLY) | 
 | 			geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl), | 
 | 				sg_dma_len(xfer->rx_sg.sgl)); | 
 | 		if (m_cmd & SPI_TX_ONLY) | 
 | 			geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl), | 
 | 				sg_dma_len(xfer->tx_sg.sgl)); | 
 | 	} else if (m_cmd & SPI_TX_ONLY) { | 
 | 		if (geni_spi_handle_tx(mas)) | 
 | 			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&mas->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int spi_geni_transfer_one(struct spi_master *spi, | 
 | 				struct spi_device *slv, | 
 | 				struct spi_transfer *xfer) | 
 | { | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 | 	int ret; | 
 |  | 
 | 	if (spi_geni_is_abort_still_pending(mas)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* Terminate and return success for 0 byte length transfer */ | 
 | 	if (!xfer->len) | 
 | 		return 0; | 
 |  | 
 | 	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) { | 
 | 		ret = setup_se_xfer(xfer, mas, slv->mode, spi); | 
 | 		/* SPI framework expects +ve ret code to wait for transfer complete */ | 
 | 		if (!ret) | 
 | 			ret = 1; | 
 | 		return ret; | 
 | 	} | 
 | 	return setup_gsi_xfer(xfer, mas, slv, spi); | 
 | } | 
 |  | 
 | static irqreturn_t geni_spi_isr(int irq, void *data) | 
 | { | 
 | 	struct spi_master *spi = data; | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 | 	struct geni_se *se = &mas->se; | 
 | 	u32 m_irq; | 
 |  | 
 | 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); | 
 | 	if (!m_irq) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN | | 
 | 		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN | | 
 | 		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN)) | 
 | 		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq); | 
 |  | 
 | 	spin_lock(&mas->lock); | 
 |  | 
 | 	if (mas->cur_xfer_mode == GENI_SE_FIFO) { | 
 | 		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN)) | 
 | 			geni_spi_handle_rx(mas); | 
 |  | 
 | 		if (m_irq & M_TX_FIFO_WATERMARK_EN) | 
 | 			geni_spi_handle_tx(mas); | 
 |  | 
 | 		if (m_irq & M_CMD_DONE_EN) { | 
 | 			if (mas->cur_xfer) { | 
 | 				spi_finalize_current_transfer(spi); | 
 | 				mas->cur_xfer = NULL; | 
 | 				/* | 
 | 				 * If this happens, then a CMD_DONE came before all the | 
 | 				 * Tx buffer bytes were sent out. This is unusual, log | 
 | 				 * this condition and disable the WM interrupt to | 
 | 				 * prevent the system from stalling due an interrupt | 
 | 				 * storm. | 
 | 				 * | 
 | 				 * If this happens when all Rx bytes haven't been | 
 | 				 * received, log the condition. The only known time | 
 | 				 * this can happen is if bits_per_word != 8 and some | 
 | 				 * registers that expect xfer lengths in num spi_words | 
 | 				 * weren't written correctly. | 
 | 				 */ | 
 | 				if (mas->tx_rem_bytes) { | 
 | 					writel(0, se->base + SE_GENI_TX_WATERMARK_REG); | 
 | 					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n", | 
 | 						mas->tx_rem_bytes, mas->cur_bits_per_word); | 
 | 				} | 
 | 				if (mas->rx_rem_bytes) | 
 | 					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n", | 
 | 						mas->rx_rem_bytes, mas->cur_bits_per_word); | 
 | 			} else { | 
 | 				complete(&mas->cs_done); | 
 | 			} | 
 | 		} | 
 | 	} else if (mas->cur_xfer_mode == GENI_SE_DMA) { | 
 | 		const struct spi_transfer *xfer = mas->cur_xfer; | 
 | 		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT); | 
 | 		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT); | 
 |  | 
 | 		if (dma_tx_status) | 
 | 			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR); | 
 | 		if (dma_rx_status) | 
 | 			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR); | 
 | 		if (dma_tx_status & TX_DMA_DONE) | 
 | 			mas->tx_rem_bytes = 0; | 
 | 		if (dma_rx_status & RX_DMA_DONE) | 
 | 			mas->rx_rem_bytes = 0; | 
 | 		if (dma_tx_status & TX_RESET_DONE) | 
 | 			complete(&mas->tx_reset_done); | 
 | 		if (dma_rx_status & RX_RESET_DONE) | 
 | 			complete(&mas->rx_reset_done); | 
 | 		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) { | 
 | 			spi_finalize_current_transfer(spi); | 
 | 			mas->cur_xfer = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (m_irq & M_CMD_CANCEL_EN) | 
 | 		complete(&mas->cancel_done); | 
 | 	if (m_irq & M_CMD_ABORT_EN) | 
 | 		complete(&mas->abort_done); | 
 |  | 
 | 	/* | 
 | 	 * It's safe or a good idea to Ack all of our interrupts at the end | 
 | 	 * of the function. Specifically: | 
 | 	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and | 
 | 	 *   clearing Acks. Clearing at the end relies on nobody else having | 
 | 	 *   started a new transfer yet or else we could be clearing _their_ | 
 | 	 *   done bit, but everyone grabs the spinlock before starting a new | 
 | 	 *   transfer. | 
 | 	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear | 
 | 	 *   to be "latched level" interrupts so it's important to clear them | 
 | 	 *   _after_ you've handled the condition and always safe to do so | 
 | 	 *   since they'll re-assert if they're still happening. | 
 | 	 */ | 
 | 	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR); | 
 |  | 
 | 	spin_unlock(&mas->lock); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int spi_geni_probe(struct platform_device *pdev) | 
 | { | 
 | 	int ret, irq; | 
 | 	struct spi_master *spi; | 
 | 	struct spi_geni_master *mas; | 
 | 	void __iomem *base; | 
 | 	struct clk *clk; | 
 | 	struct device *dev = &pdev->dev; | 
 |  | 
 | 	irq = platform_get_irq(pdev, 0); | 
 | 	if (irq < 0) | 
 | 		return irq; | 
 |  | 
 | 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); | 
 | 	if (ret) | 
 | 		return dev_err_probe(dev, ret, "could not set DMA mask\n"); | 
 |  | 
 | 	base = devm_platform_ioremap_resource(pdev, 0); | 
 | 	if (IS_ERR(base)) | 
 | 		return PTR_ERR(base); | 
 |  | 
 | 	clk = devm_clk_get(dev, "se"); | 
 | 	if (IS_ERR(clk)) | 
 | 		return PTR_ERR(clk); | 
 |  | 
 | 	spi = devm_spi_alloc_master(dev, sizeof(*mas)); | 
 | 	if (!spi) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	platform_set_drvdata(pdev, spi); | 
 | 	mas = spi_master_get_devdata(spi); | 
 | 	mas->irq = irq; | 
 | 	mas->dev = dev; | 
 | 	mas->se.dev = dev; | 
 | 	mas->se.wrapper = dev_get_drvdata(dev->parent); | 
 | 	mas->se.base = base; | 
 | 	mas->se.clk = clk; | 
 |  | 
 | 	ret = devm_pm_opp_set_clkname(&pdev->dev, "se"); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	/* OPP table is optional */ | 
 | 	ret = devm_pm_opp_of_add_table(&pdev->dev); | 
 | 	if (ret && ret != -ENODEV) { | 
 | 		dev_err(&pdev->dev, "invalid OPP table in device tree\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	spi->bus_num = -1; | 
 | 	spi->dev.of_node = dev->of_node; | 
 | 	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; | 
 | 	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); | 
 | 	spi->num_chipselect = 4; | 
 | 	spi->max_speed_hz = 50000000; | 
 | 	spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */ | 
 | 	spi->prepare_message = spi_geni_prepare_message; | 
 | 	spi->transfer_one = spi_geni_transfer_one; | 
 | 	spi->can_dma = geni_can_dma; | 
 | 	spi->dma_map_dev = dev->parent; | 
 | 	spi->auto_runtime_pm = true; | 
 | 	spi->handle_err = spi_geni_handle_err; | 
 | 	spi->use_gpio_descriptors = true; | 
 |  | 
 | 	init_completion(&mas->cs_done); | 
 | 	init_completion(&mas->cancel_done); | 
 | 	init_completion(&mas->abort_done); | 
 | 	init_completion(&mas->tx_reset_done); | 
 | 	init_completion(&mas->rx_reset_done); | 
 | 	spin_lock_init(&mas->lock); | 
 | 	pm_runtime_use_autosuspend(&pdev->dev); | 
 | 	pm_runtime_set_autosuspend_delay(&pdev->dev, 250); | 
 | 	pm_runtime_enable(dev); | 
 |  | 
 | 	ret = geni_icc_get(&mas->se, NULL); | 
 | 	if (ret) | 
 | 		goto spi_geni_probe_runtime_disable; | 
 | 	/* Set the bus quota to a reasonable value for register access */ | 
 | 	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ); | 
 | 	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; | 
 |  | 
 | 	ret = geni_icc_set_bw(&mas->se); | 
 | 	if (ret) | 
 | 		goto spi_geni_probe_runtime_disable; | 
 |  | 
 | 	ret = spi_geni_init(mas); | 
 | 	if (ret) | 
 | 		goto spi_geni_probe_runtime_disable; | 
 |  | 
 | 	/* | 
 | 	 * check the mode supported and set_cs for fifo mode only | 
 | 	 * for dma (gsi) mode, the gsi will set cs based on params passed in | 
 | 	 * TRE | 
 | 	 */ | 
 | 	if (mas->cur_xfer_mode == GENI_SE_FIFO) | 
 | 		spi->set_cs = spi_geni_set_cs; | 
 |  | 
 | 	/* | 
 | 	 * TX is required per GSI spec, see setup_gsi_xfer(). | 
 | 	 */ | 
 | 	if (mas->cur_xfer_mode == GENI_GPI_DMA) | 
 | 		spi->flags = SPI_CONTROLLER_MUST_TX; | 
 |  | 
 | 	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi); | 
 | 	if (ret) | 
 | 		goto spi_geni_release_dma; | 
 |  | 
 | 	ret = spi_register_master(spi); | 
 | 	if (ret) | 
 | 		goto spi_geni_probe_free_irq; | 
 |  | 
 | 	return 0; | 
 | spi_geni_probe_free_irq: | 
 | 	free_irq(mas->irq, spi); | 
 | spi_geni_release_dma: | 
 | 	spi_geni_release_dma_chan(mas); | 
 | spi_geni_probe_runtime_disable: | 
 | 	pm_runtime_disable(dev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void spi_geni_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct spi_master *spi = platform_get_drvdata(pdev); | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 |  | 
 | 	/* Unregister _before_ disabling pm_runtime() so we stop transfers */ | 
 | 	spi_unregister_master(spi); | 
 |  | 
 | 	spi_geni_release_dma_chan(mas); | 
 |  | 
 | 	free_irq(mas->irq, spi); | 
 | 	pm_runtime_disable(&pdev->dev); | 
 | } | 
 |  | 
 | static int __maybe_unused spi_geni_runtime_suspend(struct device *dev) | 
 | { | 
 | 	struct spi_master *spi = dev_get_drvdata(dev); | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 | 	int ret; | 
 |  | 
 | 	/* Drop the performance state vote */ | 
 | 	dev_pm_opp_set_rate(dev, 0); | 
 |  | 
 | 	ret = geni_se_resources_off(&mas->se); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return geni_icc_disable(&mas->se); | 
 | } | 
 |  | 
 | static int __maybe_unused spi_geni_runtime_resume(struct device *dev) | 
 | { | 
 | 	struct spi_master *spi = dev_get_drvdata(dev); | 
 | 	struct spi_geni_master *mas = spi_master_get_devdata(spi); | 
 | 	int ret; | 
 |  | 
 | 	ret = geni_icc_enable(&mas->se); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = geni_se_resources_on(&mas->se); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz); | 
 | } | 
 |  | 
 | static int __maybe_unused spi_geni_suspend(struct device *dev) | 
 | { | 
 | 	struct spi_master *spi = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = spi_master_suspend(spi); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = pm_runtime_force_suspend(dev); | 
 | 	if (ret) | 
 | 		spi_master_resume(spi); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __maybe_unused spi_geni_resume(struct device *dev) | 
 | { | 
 | 	struct spi_master *spi = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = pm_runtime_force_resume(dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = spi_master_resume(spi); | 
 | 	if (ret) | 
 | 		pm_runtime_force_suspend(dev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct dev_pm_ops spi_geni_pm_ops = { | 
 | 	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend, | 
 | 					spi_geni_runtime_resume, NULL) | 
 | 	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume) | 
 | }; | 
 |  | 
 | static const struct of_device_id spi_geni_dt_match[] = { | 
 | 	{ .compatible = "qcom,geni-spi" }, | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, spi_geni_dt_match); | 
 |  | 
 | static struct platform_driver spi_geni_driver = { | 
 | 	.probe  = spi_geni_probe, | 
 | 	.remove_new = spi_geni_remove, | 
 | 	.driver = { | 
 | 		.name = "geni_spi", | 
 | 		.pm = &spi_geni_pm_ops, | 
 | 		.of_match_table = spi_geni_dt_match, | 
 | 	}, | 
 | }; | 
 | module_platform_driver(spi_geni_driver); | 
 |  | 
 | MODULE_DESCRIPTION("SPI driver for GENI based QUP cores"); | 
 | MODULE_LICENSE("GPL v2"); |