|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Intel PCH/PCU SPI flash driver. | 
|  | * | 
|  | * Copyright (C) 2016 - 2022, Intel Corporation | 
|  | * Author: Mika Westerberg <mika.westerberg@linux.intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/mtd/spi-nor.h> | 
|  |  | 
|  | #include <linux/spi/flash.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/spi-mem.h> | 
|  |  | 
|  | #include "spi-intel.h" | 
|  |  | 
|  | /* Offsets are from @ispi->base */ | 
|  | #define BFPREG				0x00 | 
|  |  | 
|  | #define HSFSTS_CTL			0x04 | 
|  | #define HSFSTS_CTL_FSMIE		BIT(31) | 
|  | #define HSFSTS_CTL_FDBC_SHIFT		24 | 
|  | #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT) | 
|  |  | 
|  | #define HSFSTS_CTL_FCYCLE_SHIFT		17 | 
|  | #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | /* HW sequencer opcodes */ | 
|  | #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | #define HSFSTS_CTL_FCYCLE_RDSFDP	(0x05 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  | #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT) | 
|  |  | 
|  | #define HSFSTS_CTL_FGO			BIT(16) | 
|  | #define HSFSTS_CTL_FLOCKDN		BIT(15) | 
|  | #define HSFSTS_CTL_FDV			BIT(14) | 
|  | #define HSFSTS_CTL_SCIP			BIT(5) | 
|  | #define HSFSTS_CTL_AEL			BIT(2) | 
|  | #define HSFSTS_CTL_FCERR		BIT(1) | 
|  | #define HSFSTS_CTL_FDONE		BIT(0) | 
|  |  | 
|  | #define FADDR				0x08 | 
|  | #define DLOCK				0x0c | 
|  | #define FDATA(n)			(0x10 + ((n) * 4)) | 
|  |  | 
|  | #define FRACC				0x50 | 
|  |  | 
|  | #define FREG(n)				(0x54 + ((n) * 4)) | 
|  | #define FREG_BASE_MASK			GENMASK(14, 0) | 
|  | #define FREG_LIMIT_SHIFT		16 | 
|  | #define FREG_LIMIT_MASK			GENMASK(30, 16) | 
|  |  | 
|  | /* Offset is from @ispi->pregs */ | 
|  | #define PR(n)				((n) * 4) | 
|  | #define PR_WPE				BIT(31) | 
|  | #define PR_LIMIT_SHIFT			16 | 
|  | #define PR_LIMIT_MASK			GENMASK(30, 16) | 
|  | #define PR_RPE				BIT(15) | 
|  | #define PR_BASE_MASK			GENMASK(14, 0) | 
|  |  | 
|  | /* Offsets are from @ispi->sregs */ | 
|  | #define SSFSTS_CTL			0x00 | 
|  | #define SSFSTS_CTL_FSMIE		BIT(23) | 
|  | #define SSFSTS_CTL_DS			BIT(22) | 
|  | #define SSFSTS_CTL_DBC_SHIFT		16 | 
|  | #define SSFSTS_CTL_SPOP			BIT(11) | 
|  | #define SSFSTS_CTL_ACS			BIT(10) | 
|  | #define SSFSTS_CTL_SCGO			BIT(9) | 
|  | #define SSFSTS_CTL_COP_SHIFT		12 | 
|  | #define SSFSTS_CTL_FRS			BIT(7) | 
|  | #define SSFSTS_CTL_DOFRS		BIT(6) | 
|  | #define SSFSTS_CTL_AEL			BIT(4) | 
|  | #define SSFSTS_CTL_FCERR		BIT(3) | 
|  | #define SSFSTS_CTL_FDONE		BIT(2) | 
|  | #define SSFSTS_CTL_SCIP			BIT(0) | 
|  |  | 
|  | #define PREOP_OPTYPE			0x04 | 
|  | #define OPMENU0				0x08 | 
|  | #define OPMENU1				0x0c | 
|  |  | 
|  | #define OPTYPE_READ_NO_ADDR		0 | 
|  | #define OPTYPE_WRITE_NO_ADDR		1 | 
|  | #define OPTYPE_READ_WITH_ADDR		2 | 
|  | #define OPTYPE_WRITE_WITH_ADDR		3 | 
|  |  | 
|  | /* CPU specifics */ | 
|  | #define BYT_PR				0x74 | 
|  | #define BYT_SSFSTS_CTL			0x90 | 
|  | #define BYT_FREG_NUM			5 | 
|  | #define BYT_PR_NUM			5 | 
|  |  | 
|  | #define LPT_PR				0x74 | 
|  | #define LPT_SSFSTS_CTL			0x90 | 
|  | #define LPT_FREG_NUM			5 | 
|  | #define LPT_PR_NUM			5 | 
|  |  | 
|  | #define BXT_PR				0x84 | 
|  | #define BXT_SSFSTS_CTL			0xa0 | 
|  | #define BXT_FREG_NUM			12 | 
|  | #define BXT_PR_NUM			5 | 
|  |  | 
|  | #define CNL_PR				0x84 | 
|  | #define CNL_FREG_NUM			6 | 
|  | #define CNL_PR_NUM			5 | 
|  |  | 
|  | #define LVSCC				0xc4 | 
|  | #define UVSCC				0xc8 | 
|  | #define ERASE_OPCODE_SHIFT		8 | 
|  | #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT) | 
|  | #define ERASE_64K_OPCODE_SHIFT		16 | 
|  | #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_64K_OPCODE_SHIFT) | 
|  |  | 
|  | /* Flash descriptor fields */ | 
|  | #define FLVALSIG_MAGIC			0x0ff0a55a | 
|  | #define FLMAP0_NC_MASK			GENMASK(9, 8) | 
|  | #define FLMAP0_NC_SHIFT			8 | 
|  | #define FLMAP0_FCBA_MASK		GENMASK(7, 0) | 
|  |  | 
|  | #define FLCOMP_C0DEN_MASK		GENMASK(3, 0) | 
|  | #define FLCOMP_C0DEN_512K		0x00 | 
|  | #define FLCOMP_C0DEN_1M			0x01 | 
|  | #define FLCOMP_C0DEN_2M			0x02 | 
|  | #define FLCOMP_C0DEN_4M			0x03 | 
|  | #define FLCOMP_C0DEN_8M			0x04 | 
|  | #define FLCOMP_C0DEN_16M		0x05 | 
|  | #define FLCOMP_C0DEN_32M		0x06 | 
|  | #define FLCOMP_C0DEN_64M		0x07 | 
|  |  | 
|  | #define INTEL_SPI_TIMEOUT		5000 /* ms */ | 
|  | #define INTEL_SPI_FIFO_SZ		64 | 
|  |  | 
|  | /** | 
|  | * struct intel_spi - Driver private data | 
|  | * @dev: Device pointer | 
|  | * @info: Pointer to board specific info | 
|  | * @base: Beginning of MMIO space | 
|  | * @pregs: Start of protection registers | 
|  | * @sregs: Start of software sequencer registers | 
|  | * @master: Pointer to the SPI controller structure | 
|  | * @nregions: Maximum number of regions | 
|  | * @pr_num: Maximum number of protected range registers | 
|  | * @chip0_size: Size of the first flash chip in bytes | 
|  | * @locked: Is SPI setting locked | 
|  | * @swseq_reg: Use SW sequencer in register reads/writes | 
|  | * @swseq_erase: Use SW sequencer in erase operation | 
|  | * @atomic_preopcode: Holds preopcode when atomic sequence is requested | 
|  | * @opcodes: Opcodes which are supported. This are programmed by BIOS | 
|  | *           before it locks down the controller. | 
|  | * @mem_ops: Pointer to SPI MEM ops supported by the controller | 
|  | */ | 
|  | struct intel_spi { | 
|  | struct device *dev; | 
|  | const struct intel_spi_boardinfo *info; | 
|  | void __iomem *base; | 
|  | void __iomem *pregs; | 
|  | void __iomem *sregs; | 
|  | struct spi_controller *master; | 
|  | size_t nregions; | 
|  | size_t pr_num; | 
|  | size_t chip0_size; | 
|  | bool locked; | 
|  | bool swseq_reg; | 
|  | bool swseq_erase; | 
|  | u8 atomic_preopcode; | 
|  | u8 opcodes[8]; | 
|  | const struct intel_spi_mem_op *mem_ops; | 
|  | }; | 
|  |  | 
|  | struct intel_spi_mem_op { | 
|  | struct spi_mem_op mem_op; | 
|  | u32 replacement_op; | 
|  | int (*exec_op)(struct intel_spi *ispi, | 
|  | const struct spi_mem *mem, | 
|  | const struct intel_spi_mem_op *iop, | 
|  | const struct spi_mem_op *op); | 
|  | }; | 
|  |  | 
|  | static bool writeable; | 
|  | module_param(writeable, bool, 0); | 
|  | MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)"); | 
|  |  | 
|  | static void intel_spi_dump_regs(struct intel_spi *ispi) | 
|  | { | 
|  | u32 value; | 
|  | int i; | 
|  |  | 
|  | dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG)); | 
|  |  | 
|  | value = readl(ispi->base + HSFSTS_CTL); | 
|  | dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value); | 
|  | if (value & HSFSTS_CTL_FLOCKDN) | 
|  | dev_dbg(ispi->dev, "-> Locked\n"); | 
|  |  | 
|  | dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR)); | 
|  | dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK)); | 
|  |  | 
|  | for (i = 0; i < 16; i++) | 
|  | dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n", | 
|  | i, readl(ispi->base + FDATA(i))); | 
|  |  | 
|  | dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC)); | 
|  |  | 
|  | for (i = 0; i < ispi->nregions; i++) | 
|  | dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i, | 
|  | readl(ispi->base + FREG(i))); | 
|  | for (i = 0; i < ispi->pr_num; i++) | 
|  | dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i, | 
|  | readl(ispi->pregs + PR(i))); | 
|  |  | 
|  | if (ispi->sregs) { | 
|  | value = readl(ispi->sregs + SSFSTS_CTL); | 
|  | dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value); | 
|  | dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n", | 
|  | readl(ispi->sregs + PREOP_OPTYPE)); | 
|  | dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", | 
|  | readl(ispi->sregs + OPMENU0)); | 
|  | dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", | 
|  | readl(ispi->sregs + OPMENU1)); | 
|  | } | 
|  |  | 
|  | dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC)); | 
|  | dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC)); | 
|  |  | 
|  | dev_dbg(ispi->dev, "Protected regions:\n"); | 
|  | for (i = 0; i < ispi->pr_num; i++) { | 
|  | u32 base, limit; | 
|  |  | 
|  | value = readl(ispi->pregs + PR(i)); | 
|  | if (!(value & (PR_WPE | PR_RPE))) | 
|  | continue; | 
|  |  | 
|  | limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; | 
|  | base = value & PR_BASE_MASK; | 
|  |  | 
|  | dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n", | 
|  | i, base << 12, (limit << 12) | 0xfff, | 
|  | value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.'); | 
|  | } | 
|  |  | 
|  | dev_dbg(ispi->dev, "Flash regions:\n"); | 
|  | for (i = 0; i < ispi->nregions; i++) { | 
|  | u32 region, base, limit; | 
|  |  | 
|  | region = readl(ispi->base + FREG(i)); | 
|  | base = region & FREG_BASE_MASK; | 
|  | limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; | 
|  |  | 
|  | if (base >= limit || (i > 0 && limit == 0)) | 
|  | dev_dbg(ispi->dev, " %02d disabled\n", i); | 
|  | else | 
|  | dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n", | 
|  | i, base << 12, (limit << 12) | 0xfff); | 
|  | } | 
|  |  | 
|  | dev_dbg(ispi->dev, "Using %cW sequencer for register access\n", | 
|  | ispi->swseq_reg ? 'S' : 'H'); | 
|  | dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n", | 
|  | ispi->swseq_erase ? 'S' : 'H'); | 
|  | } | 
|  |  | 
|  | /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */ | 
|  | static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size) | 
|  | { | 
|  | size_t bytes; | 
|  | int i = 0; | 
|  |  | 
|  | if (size > INTEL_SPI_FIFO_SZ) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (size > 0) { | 
|  | bytes = min_t(size_t, size, 4); | 
|  | memcpy_fromio(buf, ispi->base + FDATA(i), bytes); | 
|  | size -= bytes; | 
|  | buf += bytes; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */ | 
|  | static int intel_spi_write_block(struct intel_spi *ispi, const void *buf, | 
|  | size_t size) | 
|  | { | 
|  | size_t bytes; | 
|  | int i = 0; | 
|  |  | 
|  | if (size > INTEL_SPI_FIFO_SZ) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (size > 0) { | 
|  | bytes = min_t(size_t, size, 4); | 
|  | memcpy_toio(ispi->base + FDATA(i), buf, bytes); | 
|  | size -= bytes; | 
|  | buf += bytes; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_wait_hw_busy(struct intel_spi *ispi) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | return readl_poll_timeout(ispi->base + HSFSTS_CTL, val, | 
|  | !(val & HSFSTS_CTL_SCIP), 0, | 
|  | INTEL_SPI_TIMEOUT * 1000); | 
|  | } | 
|  |  | 
|  | static int intel_spi_wait_sw_busy(struct intel_spi *ispi) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val, | 
|  | !(val & SSFSTS_CTL_SCIP), 0, | 
|  | INTEL_SPI_TIMEOUT * 1000); | 
|  | } | 
|  |  | 
|  | static bool intel_spi_set_writeable(struct intel_spi *ispi) | 
|  | { | 
|  | if (!ispi->info->set_writeable) | 
|  | return false; | 
|  |  | 
|  | return ispi->info->set_writeable(ispi->base, ispi->info->data); | 
|  | } | 
|  |  | 
|  | static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype) | 
|  | { | 
|  | int i; | 
|  | int preop; | 
|  |  | 
|  | if (ispi->locked) { | 
|  | for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) | 
|  | if (ispi->opcodes[i] == opcode) | 
|  | return i; | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* The lock is off, so just use index 0 */ | 
|  | writel(opcode, ispi->sregs + OPMENU0); | 
|  | preop = readw(ispi->sregs + PREOP_OPTYPE); | 
|  | writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_hw_cycle(struct intel_spi *ispi, | 
|  | const struct intel_spi_mem_op *iop, size_t len) | 
|  | { | 
|  | u32 val, status; | 
|  | int ret; | 
|  |  | 
|  | if (!iop->replacement_op) | 
|  | return -EINVAL; | 
|  |  | 
|  | val = readl(ispi->base + HSFSTS_CTL); | 
|  | val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK); | 
|  | val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT; | 
|  | val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; | 
|  | val |= HSFSTS_CTL_FGO; | 
|  | val |= iop->replacement_op; | 
|  | writel(val, ispi->base + HSFSTS_CTL); | 
|  |  | 
|  | ret = intel_spi_wait_hw_busy(ispi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | status = readl(ispi->base + HSFSTS_CTL); | 
|  | if (status & HSFSTS_CTL_FCERR) | 
|  | return -EIO; | 
|  | else if (status & HSFSTS_CTL_AEL) | 
|  | return -EACCES; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len, | 
|  | int optype) | 
|  | { | 
|  | u32 val = 0, status; | 
|  | u8 atomic_preopcode; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_spi_opcode_index(ispi, opcode, optype); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Always clear it after each SW sequencer operation regardless | 
|  | * of whether it is successful or not. | 
|  | */ | 
|  | atomic_preopcode = ispi->atomic_preopcode; | 
|  | ispi->atomic_preopcode = 0; | 
|  |  | 
|  | /* Only mark 'Data Cycle' bit when there is data to be transferred */ | 
|  | if (len > 0) | 
|  | val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS; | 
|  | val |= ret << SSFSTS_CTL_COP_SHIFT; | 
|  | val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE; | 
|  | val |= SSFSTS_CTL_SCGO; | 
|  | if (atomic_preopcode) { | 
|  | u16 preop; | 
|  |  | 
|  | switch (optype) { | 
|  | case OPTYPE_WRITE_NO_ADDR: | 
|  | case OPTYPE_WRITE_WITH_ADDR: | 
|  | /* Pick matching preopcode for the atomic sequence */ | 
|  | preop = readw(ispi->sregs + PREOP_OPTYPE); | 
|  | if ((preop & 0xff) == atomic_preopcode) | 
|  | ; /* Do nothing */ | 
|  | else if ((preop >> 8) == atomic_preopcode) | 
|  | val |= SSFSTS_CTL_SPOP; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Enable atomic sequence */ | 
|  | val |= SSFSTS_CTL_ACS; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | writel(val, ispi->sregs + SSFSTS_CTL); | 
|  |  | 
|  | ret = intel_spi_wait_sw_busy(ispi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | status = readl(ispi->sregs + SSFSTS_CTL); | 
|  | if (status & SSFSTS_CTL_FCERR) | 
|  | return -EIO; | 
|  | else if (status & SSFSTS_CTL_AEL) | 
|  | return -EACCES; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 intel_spi_chip_addr(const struct intel_spi *ispi, | 
|  | const struct spi_mem *mem) | 
|  | { | 
|  | /* Pick up the correct start address */ | 
|  | if (!mem) | 
|  | return 0; | 
|  | return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem, | 
|  | const struct intel_spi_mem_op *iop, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; | 
|  | size_t nbytes = op->data.nbytes; | 
|  | u8 opcode = op->cmd.opcode; | 
|  | int ret; | 
|  |  | 
|  | writel(addr, ispi->base + FADDR); | 
|  |  | 
|  | if (ispi->swseq_reg) | 
|  | ret = intel_spi_sw_cycle(ispi, opcode, nbytes, | 
|  | OPTYPE_READ_NO_ADDR); | 
|  | else | 
|  | ret = intel_spi_hw_cycle(ispi, iop, nbytes); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return intel_spi_read_block(ispi, op->data.buf.in, nbytes); | 
|  | } | 
|  |  | 
|  | static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem, | 
|  | const struct intel_spi_mem_op *iop, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; | 
|  | size_t nbytes = op->data.nbytes; | 
|  | u8 opcode = op->cmd.opcode; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * This is handled with atomic operation and preop code in Intel | 
|  | * controller so we only verify that it is available. If the | 
|  | * controller is not locked, program the opcode to the PREOP | 
|  | * register for later use. | 
|  | * | 
|  | * When hardware sequencer is used there is no need to program | 
|  | * any opcodes (it handles them automatically as part of a command). | 
|  | */ | 
|  | if (opcode == SPINOR_OP_WREN) { | 
|  | u16 preop; | 
|  |  | 
|  | if (!ispi->swseq_reg) | 
|  | return 0; | 
|  |  | 
|  | preop = readw(ispi->sregs + PREOP_OPTYPE); | 
|  | if ((preop & 0xff) != opcode && (preop >> 8) != opcode) { | 
|  | if (ispi->locked) | 
|  | return -EINVAL; | 
|  | writel(opcode, ispi->sregs + PREOP_OPTYPE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This enables atomic sequence on next SW sycle. Will | 
|  | * be cleared after next operation. | 
|  | */ | 
|  | ispi->atomic_preopcode = opcode; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We hope that HW sequencer will do the right thing automatically and | 
|  | * with the SW sequencer we cannot use preopcode anyway, so just ignore | 
|  | * the Write Disable operation and pretend it was completed | 
|  | * successfully. | 
|  | */ | 
|  | if (opcode == SPINOR_OP_WRDI) | 
|  | return 0; | 
|  |  | 
|  | writel(addr, ispi->base + FADDR); | 
|  |  | 
|  | /* Write the value beforehand */ | 
|  | ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (ispi->swseq_reg) | 
|  | return intel_spi_sw_cycle(ispi, opcode, nbytes, | 
|  | OPTYPE_WRITE_NO_ADDR); | 
|  | return intel_spi_hw_cycle(ispi, iop, nbytes); | 
|  | } | 
|  |  | 
|  | static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem, | 
|  | const struct intel_spi_mem_op *iop, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; | 
|  | size_t block_size, nbytes = op->data.nbytes; | 
|  | void *read_buf = op->data.buf.in; | 
|  | u32 val, status; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Atomic sequence is not expected with HW sequencer reads. Make | 
|  | * sure it is cleared regardless. | 
|  | */ | 
|  | if (WARN_ON_ONCE(ispi->atomic_preopcode)) | 
|  | ispi->atomic_preopcode = 0; | 
|  |  | 
|  | while (nbytes > 0) { | 
|  | block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); | 
|  |  | 
|  | /* Read cannot cross 4K boundary */ | 
|  | block_size = min_t(loff_t, addr + block_size, | 
|  | round_up(addr + 1, SZ_4K)) - addr; | 
|  |  | 
|  | writel(addr, ispi->base + FADDR); | 
|  |  | 
|  | val = readl(ispi->base + HSFSTS_CTL); | 
|  | val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); | 
|  | val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; | 
|  | val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; | 
|  | val |= HSFSTS_CTL_FCYCLE_READ; | 
|  | val |= HSFSTS_CTL_FGO; | 
|  | writel(val, ispi->base + HSFSTS_CTL); | 
|  |  | 
|  | ret = intel_spi_wait_hw_busy(ispi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | status = readl(ispi->base + HSFSTS_CTL); | 
|  | if (status & HSFSTS_CTL_FCERR) | 
|  | ret = -EIO; | 
|  | else if (status & HSFSTS_CTL_AEL) | 
|  | ret = -EACCES; | 
|  |  | 
|  | if (ret < 0) { | 
|  | dev_err(ispi->dev, "read error: %x: %#x\n", addr, status); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = intel_spi_read_block(ispi, read_buf, block_size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | nbytes -= block_size; | 
|  | addr += block_size; | 
|  | read_buf += block_size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem, | 
|  | const struct intel_spi_mem_op *iop, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; | 
|  | size_t block_size, nbytes = op->data.nbytes; | 
|  | const void *write_buf = op->data.buf.out; | 
|  | u32 val, status; | 
|  | int ret; | 
|  |  | 
|  | /* Not needed with HW sequencer write, make sure it is cleared */ | 
|  | ispi->atomic_preopcode = 0; | 
|  |  | 
|  | while (nbytes > 0) { | 
|  | block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); | 
|  |  | 
|  | /* Write cannot cross 4K boundary */ | 
|  | block_size = min_t(loff_t, addr + block_size, | 
|  | round_up(addr + 1, SZ_4K)) - addr; | 
|  |  | 
|  | writel(addr, ispi->base + FADDR); | 
|  |  | 
|  | val = readl(ispi->base + HSFSTS_CTL); | 
|  | val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); | 
|  | val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; | 
|  | val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; | 
|  | val |= HSFSTS_CTL_FCYCLE_WRITE; | 
|  |  | 
|  | ret = intel_spi_write_block(ispi, write_buf, block_size); | 
|  | if (ret) { | 
|  | dev_err(ispi->dev, "failed to write block\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Start the write now */ | 
|  | val |= HSFSTS_CTL_FGO; | 
|  | writel(val, ispi->base + HSFSTS_CTL); | 
|  |  | 
|  | ret = intel_spi_wait_hw_busy(ispi); | 
|  | if (ret) { | 
|  | dev_err(ispi->dev, "timeout\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | status = readl(ispi->base + HSFSTS_CTL); | 
|  | if (status & HSFSTS_CTL_FCERR) | 
|  | ret = -EIO; | 
|  | else if (status & HSFSTS_CTL_AEL) | 
|  | ret = -EACCES; | 
|  |  | 
|  | if (ret < 0) { | 
|  | dev_err(ispi->dev, "write error: %x: %#x\n", addr, status); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | nbytes -= block_size; | 
|  | addr += block_size; | 
|  | write_buf += block_size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem, | 
|  | const struct intel_spi_mem_op *iop, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; | 
|  | u8 opcode = op->cmd.opcode; | 
|  | u32 val, status; | 
|  | int ret; | 
|  |  | 
|  | writel(addr, ispi->base + FADDR); | 
|  |  | 
|  | if (ispi->swseq_erase) | 
|  | return intel_spi_sw_cycle(ispi, opcode, 0, | 
|  | OPTYPE_WRITE_WITH_ADDR); | 
|  |  | 
|  | /* Not needed with HW sequencer erase, make sure it is cleared */ | 
|  | ispi->atomic_preopcode = 0; | 
|  |  | 
|  | val = readl(ispi->base + HSFSTS_CTL); | 
|  | val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); | 
|  | val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; | 
|  | val |= HSFSTS_CTL_FGO; | 
|  | val |= iop->replacement_op; | 
|  | writel(val, ispi->base + HSFSTS_CTL); | 
|  |  | 
|  | ret = intel_spi_wait_hw_busy(ispi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | status = readl(ispi->base + HSFSTS_CTL); | 
|  | if (status & HSFSTS_CTL_FCERR) | 
|  | return -EIO; | 
|  | if (status & HSFSTS_CTL_AEL) | 
|  | return -EACCES; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) | 
|  | { | 
|  | op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | if (iop->mem_op.cmd.nbytes != op->cmd.nbytes || | 
|  | iop->mem_op.cmd.buswidth != op->cmd.buswidth || | 
|  | iop->mem_op.cmd.dtr != op->cmd.dtr || | 
|  | iop->mem_op.cmd.opcode != op->cmd.opcode) | 
|  | return false; | 
|  |  | 
|  | if (iop->mem_op.addr.nbytes != op->addr.nbytes || | 
|  | iop->mem_op.addr.dtr != op->addr.dtr) | 
|  | return false; | 
|  |  | 
|  | if (iop->mem_op.data.dir != op->data.dir || | 
|  | iop->mem_op.data.dtr != op->data.dtr) | 
|  | return false; | 
|  |  | 
|  | if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) { | 
|  | if (iop->mem_op.data.buswidth != op->data.buswidth) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const struct intel_spi_mem_op * | 
|  | intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op) | 
|  | { | 
|  | const struct intel_spi_mem_op *iop; | 
|  |  | 
|  | for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) { | 
|  | if (intel_spi_cmp_mem_op(iop, op)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return iop->mem_op.cmd.opcode ? iop : NULL; | 
|  | } | 
|  |  | 
|  | static bool intel_spi_supports_mem_op(struct spi_mem *mem, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); | 
|  | const struct intel_spi_mem_op *iop; | 
|  |  | 
|  | iop = intel_spi_match_mem_op(ispi, op); | 
|  | if (!iop) { | 
|  | dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For software sequencer check that the opcode is actually | 
|  | * present in the opmenu if it is locked. | 
|  | */ | 
|  | if (ispi->swseq_reg && ispi->locked) { | 
|  | int i; | 
|  |  | 
|  | /* Check if it is in the locked opcodes list */ | 
|  | for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) { | 
|  | if (ispi->opcodes[i] == op->cmd.opcode) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) | 
|  | { | 
|  | struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); | 
|  | const struct intel_spi_mem_op *iop; | 
|  |  | 
|  | iop = intel_spi_match_mem_op(ispi, op); | 
|  | if (!iop) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return iop->exec_op(ispi, mem, iop, op); | 
|  | } | 
|  |  | 
|  | static const char *intel_spi_get_name(struct spi_mem *mem) | 
|  | { | 
|  | const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); | 
|  |  | 
|  | /* | 
|  | * Return name of the flash controller device to be compatible | 
|  | * with the MTD version. | 
|  | */ | 
|  | return dev_name(ispi->dev); | 
|  | } | 
|  |  | 
|  | static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) | 
|  | { | 
|  | struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); | 
|  | const struct intel_spi_mem_op *iop; | 
|  |  | 
|  | iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl); | 
|  | if (!iop) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | desc->priv = (void *)iop; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, | 
|  | size_t len, void *buf) | 
|  | { | 
|  | struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); | 
|  | const struct intel_spi_mem_op *iop = desc->priv; | 
|  | struct spi_mem_op op = desc->info.op_tmpl; | 
|  | int ret; | 
|  |  | 
|  | /* Fill in the gaps */ | 
|  | op.addr.val = offs; | 
|  | op.data.nbytes = len; | 
|  | op.data.buf.in = buf; | 
|  |  | 
|  | ret = iop->exec_op(ispi, desc->mem, iop, &op); | 
|  | return ret ? ret : len; | 
|  | } | 
|  |  | 
|  | static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, | 
|  | size_t len, const void *buf) | 
|  | { | 
|  | struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); | 
|  | const struct intel_spi_mem_op *iop = desc->priv; | 
|  | struct spi_mem_op op = desc->info.op_tmpl; | 
|  | int ret; | 
|  |  | 
|  | op.addr.val = offs; | 
|  | op.data.nbytes = len; | 
|  | op.data.buf.out = buf; | 
|  |  | 
|  | ret = iop->exec_op(ispi, desc->mem, iop, &op); | 
|  | return ret ? ret : len; | 
|  | } | 
|  |  | 
|  | static const struct spi_controller_mem_ops intel_spi_mem_ops = { | 
|  | .adjust_op_size = intel_spi_adjust_op_size, | 
|  | .supports_op = intel_spi_supports_mem_op, | 
|  | .exec_op = intel_spi_exec_mem_op, | 
|  | .get_name = intel_spi_get_name, | 
|  | .dirmap_create = intel_spi_dirmap_create, | 
|  | .dirmap_read = intel_spi_dirmap_read, | 
|  | .dirmap_write = intel_spi_dirmap_write, | 
|  | }; | 
|  |  | 
|  | #define INTEL_SPI_OP_ADDR(__nbytes)					\ | 
|  | {								\ | 
|  | .nbytes = __nbytes,					\ | 
|  | } | 
|  |  | 
|  | #define INTEL_SPI_OP_NO_DATA						\ | 
|  | {								\ | 
|  | .dir = SPI_MEM_NO_DATA,					\ | 
|  | } | 
|  |  | 
|  | #define INTEL_SPI_OP_DATA_IN(__buswidth)				\ | 
|  | {								\ | 
|  | .dir = SPI_MEM_DATA_IN,					\ | 
|  | .buswidth = __buswidth,					\ | 
|  | } | 
|  |  | 
|  | #define INTEL_SPI_OP_DATA_OUT(__buswidth)				\ | 
|  | {								\ | 
|  | .dir = SPI_MEM_DATA_OUT,				\ | 
|  | .buswidth = __buswidth,					\ | 
|  | } | 
|  |  | 
|  | #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)		\ | 
|  | {								\ | 
|  | .mem_op = {						\ | 
|  | .cmd = __cmd,					\ | 
|  | .addr = __addr,					\ | 
|  | .data = __data,					\ | 
|  | },							\ | 
|  | .exec_op = __exec_op,					\ | 
|  | } | 
|  |  | 
|  | #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl)	\ | 
|  | {								\ | 
|  | .mem_op = {						\ | 
|  | .cmd = __cmd,					\ | 
|  | .addr = __addr,					\ | 
|  | .data = __data,					\ | 
|  | },							\ | 
|  | .exec_op = __exec_op,					\ | 
|  | .replacement_op = __repl,				\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The controller handles pretty much everything internally based on the | 
|  | * SFDP data but we want to make sure we only support the operations | 
|  | * actually possible. Only check buswidth and transfer direction, the | 
|  | * core validates data. | 
|  | */ | 
|  | #define INTEL_SPI_GENERIC_OPS						\ | 
|  | /* Status register operations */				\ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),	\ | 
|  | SPI_MEM_OP_NO_ADDR,			\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read_reg,			\ | 
|  | HSFSTS_CTL_FCYCLE_RDID),			\ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),	\ | 
|  | SPI_MEM_OP_NO_ADDR,			\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read_reg,			\ | 
|  | HSFSTS_CTL_FCYCLE_RDSR),			\ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),	\ | 
|  | SPI_MEM_OP_NO_ADDR,			\ | 
|  | INTEL_SPI_OP_DATA_OUT(1),			\ | 
|  | intel_spi_write_reg,			\ | 
|  | HSFSTS_CTL_FCYCLE_WRSR),			\ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(3),			\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read_reg,			\ | 
|  | HSFSTS_CTL_FCYCLE_RDSFDP),		\ | 
|  | /* Normal read */						\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(3),				\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(3),				\ | 
|  | INTEL_SPI_OP_DATA_IN(2),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(3),				\ | 
|  | INTEL_SPI_OP_DATA_IN(4),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(2),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(4),			\ | 
|  | intel_spi_read),				\ | 
|  | /* Fast read */							\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(3),				\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(3),				\ | 
|  | INTEL_SPI_OP_DATA_IN(2),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(3),				\ | 
|  | INTEL_SPI_OP_DATA_IN(4),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(2),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(4),			\ | 
|  | intel_spi_read),				\ | 
|  | /* Read with 4-byte address opcode */				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(2),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(4),			\ | 
|  | intel_spi_read),				\ | 
|  | /* Fast read with 4-byte address opcode */			\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(1),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(2),			\ | 
|  | intel_spi_read),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_IN(4),			\ | 
|  | intel_spi_read),				\ | 
|  | /* Write operations */						\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(3),				\ | 
|  | INTEL_SPI_OP_DATA_OUT(1),			\ | 
|  | intel_spi_write),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_OUT(1),			\ | 
|  | intel_spi_write),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),		\ | 
|  | INTEL_SPI_OP_ADDR(4),				\ | 
|  | INTEL_SPI_OP_DATA_OUT(1),			\ | 
|  | intel_spi_write),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),		\ | 
|  | SPI_MEM_OP_NO_ADDR,				\ | 
|  | SPI_MEM_OP_NO_DATA,				\ | 
|  | intel_spi_write_reg),				\ | 
|  | INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),		\ | 
|  | SPI_MEM_OP_NO_ADDR,				\ | 
|  | SPI_MEM_OP_NO_DATA,				\ | 
|  | intel_spi_write_reg),				\ | 
|  | /* Erase operations */						\ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(3),			\ | 
|  | SPI_MEM_OP_NO_DATA,			\ | 
|  | intel_spi_erase,				\ | 
|  | HSFSTS_CTL_FCYCLE_ERASE),			\ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),			\ | 
|  | SPI_MEM_OP_NO_DATA,			\ | 
|  | intel_spi_erase,				\ | 
|  | HSFSTS_CTL_FCYCLE_ERASE),			\ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),	\ | 
|  | INTEL_SPI_OP_ADDR(4),			\ | 
|  | SPI_MEM_OP_NO_DATA,			\ | 
|  | intel_spi_erase,				\ | 
|  | HSFSTS_CTL_FCYCLE_ERASE)			\ | 
|  |  | 
|  | static const struct intel_spi_mem_op generic_mem_ops[] = { | 
|  | INTEL_SPI_GENERIC_OPS, | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_spi_mem_op erase_64k_mem_ops[] = { | 
|  | INTEL_SPI_GENERIC_OPS, | 
|  | /* 64k sector erase operations */ | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), | 
|  | INTEL_SPI_OP_ADDR(3), | 
|  | SPI_MEM_OP_NO_DATA, | 
|  | intel_spi_erase, | 
|  | HSFSTS_CTL_FCYCLE_ERASE_64K), | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), | 
|  | INTEL_SPI_OP_ADDR(4), | 
|  | SPI_MEM_OP_NO_DATA, | 
|  | intel_spi_erase, | 
|  | HSFSTS_CTL_FCYCLE_ERASE_64K), | 
|  | INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1), | 
|  | INTEL_SPI_OP_ADDR(4), | 
|  | SPI_MEM_OP_NO_DATA, | 
|  | intel_spi_erase, | 
|  | HSFSTS_CTL_FCYCLE_ERASE_64K), | 
|  | { }, | 
|  | }; | 
|  |  | 
|  | static int intel_spi_init(struct intel_spi *ispi) | 
|  | { | 
|  | u32 opmenu0, opmenu1, lvscc, uvscc, val; | 
|  | bool erase_64k = false; | 
|  | int i; | 
|  |  | 
|  | switch (ispi->info->type) { | 
|  | case INTEL_SPI_BYT: | 
|  | ispi->sregs = ispi->base + BYT_SSFSTS_CTL; | 
|  | ispi->pregs = ispi->base + BYT_PR; | 
|  | ispi->nregions = BYT_FREG_NUM; | 
|  | ispi->pr_num = BYT_PR_NUM; | 
|  | ispi->swseq_reg = true; | 
|  | break; | 
|  |  | 
|  | case INTEL_SPI_LPT: | 
|  | ispi->sregs = ispi->base + LPT_SSFSTS_CTL; | 
|  | ispi->pregs = ispi->base + LPT_PR; | 
|  | ispi->nregions = LPT_FREG_NUM; | 
|  | ispi->pr_num = LPT_PR_NUM; | 
|  | ispi->swseq_reg = true; | 
|  | break; | 
|  |  | 
|  | case INTEL_SPI_BXT: | 
|  | ispi->sregs = ispi->base + BXT_SSFSTS_CTL; | 
|  | ispi->pregs = ispi->base + BXT_PR; | 
|  | ispi->nregions = BXT_FREG_NUM; | 
|  | ispi->pr_num = BXT_PR_NUM; | 
|  | erase_64k = true; | 
|  | break; | 
|  |  | 
|  | case INTEL_SPI_CNL: | 
|  | ispi->sregs = NULL; | 
|  | ispi->pregs = ispi->base + CNL_PR; | 
|  | ispi->nregions = CNL_FREG_NUM; | 
|  | ispi->pr_num = CNL_PR_NUM; | 
|  | erase_64k = true; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Try to disable write protection if user asked to do so */ | 
|  | if (writeable && !intel_spi_set_writeable(ispi)) { | 
|  | dev_warn(ispi->dev, "can't disable chip write protection\n"); | 
|  | writeable = false; | 
|  | } | 
|  |  | 
|  | /* Disable #SMI generation from HW sequencer */ | 
|  | val = readl(ispi->base + HSFSTS_CTL); | 
|  | val &= ~HSFSTS_CTL_FSMIE; | 
|  | writel(val, ispi->base + HSFSTS_CTL); | 
|  |  | 
|  | /* | 
|  | * Determine whether erase operation should use HW or SW sequencer. | 
|  | * | 
|  | * The HW sequencer has a predefined list of opcodes, with only the | 
|  | * erase opcode being programmable in LVSCC and UVSCC registers. | 
|  | * If these registers don't contain a valid erase opcode, erase | 
|  | * cannot be done using HW sequencer. | 
|  | */ | 
|  | lvscc = readl(ispi->base + LVSCC); | 
|  | uvscc = readl(ispi->base + UVSCC); | 
|  | if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK)) | 
|  | ispi->swseq_erase = true; | 
|  | /* SPI controller on Intel BXT supports 64K erase opcode */ | 
|  | if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase) | 
|  | if (!(lvscc & ERASE_64K_OPCODE_MASK) || | 
|  | !(uvscc & ERASE_64K_OPCODE_MASK)) | 
|  | erase_64k = false; | 
|  |  | 
|  | if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) { | 
|  | dev_err(ispi->dev, "software sequencer not supported, but required\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some controllers can only do basic operations using hardware | 
|  | * sequencer. All other operations are supposed to be carried out | 
|  | * using software sequencer. | 
|  | */ | 
|  | if (ispi->swseq_reg) { | 
|  | /* Disable #SMI generation from SW sequencer */ | 
|  | val = readl(ispi->sregs + SSFSTS_CTL); | 
|  | val &= ~SSFSTS_CTL_FSMIE; | 
|  | writel(val, ispi->sregs + SSFSTS_CTL); | 
|  | } | 
|  |  | 
|  | /* Check controller's lock status */ | 
|  | val = readl(ispi->base + HSFSTS_CTL); | 
|  | ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN); | 
|  |  | 
|  | if (ispi->locked && ispi->sregs) { | 
|  | /* | 
|  | * BIOS programs allowed opcodes and then locks down the | 
|  | * register. So read back what opcodes it decided to support. | 
|  | * That's the set we are going to support as well. | 
|  | */ | 
|  | opmenu0 = readl(ispi->sregs + OPMENU0); | 
|  | opmenu1 = readl(ispi->sregs + OPMENU1); | 
|  |  | 
|  | if (opmenu0 && opmenu1) { | 
|  | for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) { | 
|  | ispi->opcodes[i] = opmenu0 >> i * 8; | 
|  | ispi->opcodes[i + 4] = opmenu1 >> i * 8; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (erase_64k) { | 
|  | dev_dbg(ispi->dev, "Using erase_64k memory operations"); | 
|  | ispi->mem_ops = erase_64k_mem_ops; | 
|  | } else { | 
|  | dev_dbg(ispi->dev, "Using generic memory operations"); | 
|  | ispi->mem_ops = generic_mem_ops; | 
|  | } | 
|  |  | 
|  | intel_spi_dump_regs(ispi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool intel_spi_is_protected(const struct intel_spi *ispi, | 
|  | unsigned int base, unsigned int limit) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ispi->pr_num; i++) { | 
|  | u32 pr_base, pr_limit, pr_value; | 
|  |  | 
|  | pr_value = readl(ispi->pregs + PR(i)); | 
|  | if (!(pr_value & (PR_WPE | PR_RPE))) | 
|  | continue; | 
|  |  | 
|  | pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; | 
|  | pr_base = pr_value & PR_BASE_MASK; | 
|  |  | 
|  | if (pr_base >= base && pr_limit <= limit) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There will be a single partition holding all enabled flash regions. We | 
|  | * call this "BIOS". | 
|  | */ | 
|  | static void intel_spi_fill_partition(struct intel_spi *ispi, | 
|  | struct mtd_partition *part) | 
|  | { | 
|  | u64 end; | 
|  | int i; | 
|  |  | 
|  | memset(part, 0, sizeof(*part)); | 
|  |  | 
|  | /* Start from the mandatory descriptor region */ | 
|  | part->size = 4096; | 
|  | part->name = "BIOS"; | 
|  |  | 
|  | /* | 
|  | * Now try to find where this partition ends based on the flash | 
|  | * region registers. | 
|  | */ | 
|  | for (i = 1; i < ispi->nregions; i++) { | 
|  | u32 region, base, limit; | 
|  |  | 
|  | region = readl(ispi->base + FREG(i)); | 
|  | base = region & FREG_BASE_MASK; | 
|  | limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; | 
|  |  | 
|  | if (base >= limit || limit == 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If any of the regions have protection bits set, make the | 
|  | * whole partition read-only to be on the safe side. | 
|  | * | 
|  | * Also if the user did not ask the chip to be writeable | 
|  | * mask the bit too. | 
|  | */ | 
|  | if (!writeable || intel_spi_is_protected(ispi, base, limit)) | 
|  | part->mask_flags |= MTD_WRITEABLE; | 
|  |  | 
|  | end = (limit << 12) + 4096; | 
|  | if (end > part->size) | 
|  | part->size = end; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int intel_spi_read_desc(struct intel_spi *ispi) | 
|  | { | 
|  | struct spi_mem_op op = | 
|  | SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0), | 
|  | SPI_MEM_OP_ADDR(3, 0, 0), | 
|  | SPI_MEM_OP_NO_DUMMY, | 
|  | SPI_MEM_OP_DATA_IN(0, NULL, 0)); | 
|  | u32 buf[2], nc, fcba, flcomp; | 
|  | ssize_t ret; | 
|  |  | 
|  | op.addr.val = 0x10; | 
|  | op.data.buf.in = buf; | 
|  | op.data.nbytes = sizeof(buf); | 
|  |  | 
|  | ret = intel_spi_read(ispi, NULL, NULL, &op); | 
|  | if (ret) { | 
|  | dev_warn(ispi->dev, "failed to read descriptor\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]); | 
|  | dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]); | 
|  |  | 
|  | if (buf[0] != FLVALSIG_MAGIC) { | 
|  | dev_warn(ispi->dev, "descriptor signature not valid\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4; | 
|  | dev_dbg(ispi->dev, "FCBA=%#x\n", fcba); | 
|  |  | 
|  | op.addr.val = fcba; | 
|  | op.data.buf.in = &flcomp; | 
|  | op.data.nbytes = sizeof(flcomp); | 
|  |  | 
|  | ret = intel_spi_read(ispi, NULL, NULL, &op); | 
|  | if (ret) { | 
|  | dev_warn(ispi->dev, "failed to read FLCOMP\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp); | 
|  |  | 
|  | switch (flcomp & FLCOMP_C0DEN_MASK) { | 
|  | case FLCOMP_C0DEN_512K: | 
|  | ispi->chip0_size = SZ_512K; | 
|  | break; | 
|  | case FLCOMP_C0DEN_1M: | 
|  | ispi->chip0_size = SZ_1M; | 
|  | break; | 
|  | case FLCOMP_C0DEN_2M: | 
|  | ispi->chip0_size = SZ_2M; | 
|  | break; | 
|  | case FLCOMP_C0DEN_4M: | 
|  | ispi->chip0_size = SZ_4M; | 
|  | break; | 
|  | case FLCOMP_C0DEN_8M: | 
|  | ispi->chip0_size = SZ_8M; | 
|  | break; | 
|  | case FLCOMP_C0DEN_16M: | 
|  | ispi->chip0_size = SZ_16M; | 
|  | break; | 
|  | case FLCOMP_C0DEN_32M: | 
|  | ispi->chip0_size = SZ_32M; | 
|  | break; | 
|  | case FLCOMP_C0DEN_64M: | 
|  | ispi->chip0_size = SZ_64M; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K); | 
|  |  | 
|  | nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT; | 
|  | if (!nc) | 
|  | ispi->master->num_chipselect = 1; | 
|  | else if (nc == 1) | 
|  | ispi->master->num_chipselect = 2; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | dev_dbg(ispi->dev, "%u flash components found\n", | 
|  | ispi->master->num_chipselect); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_spi_populate_chip(struct intel_spi *ispi) | 
|  | { | 
|  | struct flash_platform_data *pdata; | 
|  | struct spi_board_info chip; | 
|  | int ret; | 
|  |  | 
|  | pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL); | 
|  | if (!pdata) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pdata->nr_parts = 1; | 
|  | pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts, | 
|  | sizeof(*pdata->parts), GFP_KERNEL); | 
|  | if (!pdata->parts) | 
|  | return -ENOMEM; | 
|  |  | 
|  | intel_spi_fill_partition(ispi, pdata->parts); | 
|  |  | 
|  | memset(&chip, 0, sizeof(chip)); | 
|  | snprintf(chip.modalias, 8, "spi-nor"); | 
|  | chip.platform_data = pdata; | 
|  |  | 
|  | if (!spi_new_device(ispi->master, &chip)) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = intel_spi_read_desc(ispi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Add the second chip if present */ | 
|  | if (ispi->master->num_chipselect < 2) | 
|  | return 0; | 
|  |  | 
|  | chip.platform_data = NULL; | 
|  | chip.chip_select = 1; | 
|  |  | 
|  | if (!spi_new_device(ispi->master, &chip)) | 
|  | return -ENODEV; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_spi_probe() - Probe the Intel SPI flash controller | 
|  | * @dev: Pointer to the parent device | 
|  | * @mem: MMIO resource | 
|  | * @info: Platform specific information | 
|  | * | 
|  | * Probes Intel SPI flash controller and creates the flash chip device. | 
|  | * Returns %0 on success and negative errno in case of failure. | 
|  | */ | 
|  | int intel_spi_probe(struct device *dev, struct resource *mem, | 
|  | const struct intel_spi_boardinfo *info) | 
|  | { | 
|  | struct spi_controller *master; | 
|  | struct intel_spi *ispi; | 
|  | int ret; | 
|  |  | 
|  | master = devm_spi_alloc_master(dev, sizeof(*ispi)); | 
|  | if (!master) | 
|  | return -ENOMEM; | 
|  |  | 
|  | master->mem_ops = &intel_spi_mem_ops; | 
|  |  | 
|  | ispi = spi_master_get_devdata(master); | 
|  |  | 
|  | ispi->base = devm_ioremap_resource(dev, mem); | 
|  | if (IS_ERR(ispi->base)) | 
|  | return PTR_ERR(ispi->base); | 
|  |  | 
|  | ispi->dev = dev; | 
|  | ispi->master = master; | 
|  | ispi->info = info; | 
|  |  | 
|  | ret = intel_spi_init(ispi); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = devm_spi_register_master(dev, master); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return intel_spi_populate_chip(ispi); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(intel_spi_probe); | 
|  |  | 
|  | MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver"); | 
|  | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); | 
|  | MODULE_LICENSE("GPL v2"); |