|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/page_ext.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/page_owner.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/page_table_check.h> | 
|  | #include <linux/rcupdate.h> | 
|  |  | 
|  | /* | 
|  | * struct page extension | 
|  | * | 
|  | * This is the feature to manage memory for extended data per page. | 
|  | * | 
|  | * Until now, we must modify struct page itself to store extra data per page. | 
|  | * This requires rebuilding the kernel and it is really time consuming process. | 
|  | * And, sometimes, rebuild is impossible due to third party module dependency. | 
|  | * At last, enlarging struct page could cause un-wanted system behaviour change. | 
|  | * | 
|  | * This feature is intended to overcome above mentioned problems. This feature | 
|  | * allocates memory for extended data per page in certain place rather than | 
|  | * the struct page itself. This memory can be accessed by the accessor | 
|  | * functions provided by this code. During the boot process, it checks whether | 
|  | * allocation of huge chunk of memory is needed or not. If not, it avoids | 
|  | * allocating memory at all. With this advantage, we can include this feature | 
|  | * into the kernel in default and can avoid rebuild and solve related problems. | 
|  | * | 
|  | * To help these things to work well, there are two callbacks for clients. One | 
|  | * is the need callback which is mandatory if user wants to avoid useless | 
|  | * memory allocation at boot-time. The other is optional, init callback, which | 
|  | * is used to do proper initialization after memory is allocated. | 
|  | * | 
|  | * The need callback is used to decide whether extended memory allocation is | 
|  | * needed or not. Sometimes users want to deactivate some features in this | 
|  | * boot and extra memory would be unnecessary. In this case, to avoid | 
|  | * allocating huge chunk of memory, each clients represent their need of | 
|  | * extra memory through the need callback. If one of the need callbacks | 
|  | * returns true, it means that someone needs extra memory so that | 
|  | * page extension core should allocates memory for page extension. If | 
|  | * none of need callbacks return true, memory isn't needed at all in this boot | 
|  | * and page extension core can skip to allocate memory. As result, | 
|  | * none of memory is wasted. | 
|  | * | 
|  | * When need callback returns true, page_ext checks if there is a request for | 
|  | * extra memory through size in struct page_ext_operations. If it is non-zero, | 
|  | * extra space is allocated for each page_ext entry and offset is returned to | 
|  | * user through offset in struct page_ext_operations. | 
|  | * | 
|  | * The init callback is used to do proper initialization after page extension | 
|  | * is completely initialized. In sparse memory system, extra memory is | 
|  | * allocated some time later than memmap is allocated. In other words, lifetime | 
|  | * of memory for page extension isn't same with memmap for struct page. | 
|  | * Therefore, clients can't store extra data until page extension is | 
|  | * initialized, even if pages are allocated and used freely. This could | 
|  | * cause inadequate state of extra data per page, so, to prevent it, client | 
|  | * can utilize this callback to initialize the state of it correctly. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | #define PAGE_EXT_INVALID       (0x1) | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) | 
|  | static bool need_page_idle(void) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | static struct page_ext_operations page_idle_ops __initdata = { | 
|  | .need = need_page_idle, | 
|  | .need_shared_flags = true, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static struct page_ext_operations *page_ext_ops[] __initdata = { | 
|  | #ifdef CONFIG_PAGE_OWNER | 
|  | &page_owner_ops, | 
|  | #endif | 
|  | #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) | 
|  | &page_idle_ops, | 
|  | #endif | 
|  | #ifdef CONFIG_PAGE_TABLE_CHECK | 
|  | &page_table_check_ops, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | unsigned long page_ext_size; | 
|  |  | 
|  | static unsigned long total_usage; | 
|  | static struct page_ext *lookup_page_ext(const struct page *page); | 
|  |  | 
|  | bool early_page_ext __meminitdata; | 
|  | static int __init setup_early_page_ext(char *str) | 
|  | { | 
|  | early_page_ext = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("early_page_ext", setup_early_page_ext); | 
|  |  | 
|  | static bool __init invoke_need_callbacks(void) | 
|  | { | 
|  | int i; | 
|  | int entries = ARRAY_SIZE(page_ext_ops); | 
|  | bool need = false; | 
|  |  | 
|  | for (i = 0; i < entries; i++) { | 
|  | if (page_ext_ops[i]->need()) { | 
|  | if (page_ext_ops[i]->need_shared_flags) { | 
|  | page_ext_size = sizeof(struct page_ext); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < entries; i++) { | 
|  | if (page_ext_ops[i]->need()) { | 
|  | page_ext_ops[i]->offset = page_ext_size; | 
|  | page_ext_size += page_ext_ops[i]->size; | 
|  | need = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return need; | 
|  | } | 
|  |  | 
|  | static void __init invoke_init_callbacks(void) | 
|  | { | 
|  | int i; | 
|  | int entries = ARRAY_SIZE(page_ext_ops); | 
|  |  | 
|  | for (i = 0; i < entries; i++) { | 
|  | if (page_ext_ops[i]->init) | 
|  | page_ext_ops[i]->init(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SPARSEMEM | 
|  | void __init page_ext_init_flatmem_late(void) | 
|  | { | 
|  | invoke_init_callbacks(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline struct page_ext *get_entry(void *base, unsigned long index) | 
|  | { | 
|  | return base + page_ext_size * index; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_ext_get() - Get the extended information for a page. | 
|  | * @page: The page we're interested in. | 
|  | * | 
|  | * Ensures that the page_ext will remain valid until page_ext_put() | 
|  | * is called. | 
|  | * | 
|  | * Return: NULL if no page_ext exists for this page. | 
|  | * Context: Any context.  Caller may not sleep until they have called | 
|  | * page_ext_put(). | 
|  | */ | 
|  | struct page_ext *page_ext_get(struct page *page) | 
|  | { | 
|  | struct page_ext *page_ext; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | page_ext = lookup_page_ext(page); | 
|  | if (!page_ext) { | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return page_ext; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_ext_put() - Working with page extended information is done. | 
|  | * @page_ext: Page extended information received from page_ext_get(). | 
|  | * | 
|  | * The page extended information of the page may not be valid after this | 
|  | * function is called. | 
|  | * | 
|  | * Return: None. | 
|  | * Context: Any context with corresponding page_ext_get() is called. | 
|  | */ | 
|  | void page_ext_put(struct page_ext *page_ext) | 
|  | { | 
|  | if (unlikely(!page_ext)) | 
|  | return; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | #ifndef CONFIG_SPARSEMEM | 
|  |  | 
|  |  | 
|  | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | 
|  | { | 
|  | pgdat->node_page_ext = NULL; | 
|  | } | 
|  |  | 
|  | static struct page_ext *lookup_page_ext(const struct page *page) | 
|  | { | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | unsigned long index; | 
|  | struct page_ext *base; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | base = NODE_DATA(page_to_nid(page))->node_page_ext; | 
|  | /* | 
|  | * The sanity checks the page allocator does upon freeing a | 
|  | * page can reach here before the page_ext arrays are | 
|  | * allocated when feeding a range of pages to the allocator | 
|  | * for the first time during bootup or memory hotplug. | 
|  | */ | 
|  | if (unlikely(!base)) | 
|  | return NULL; | 
|  | index = pfn - round_down(node_start_pfn(page_to_nid(page)), | 
|  | MAX_ORDER_NR_PAGES); | 
|  | return get_entry(base, index); | 
|  | } | 
|  |  | 
|  | static int __init alloc_node_page_ext(int nid) | 
|  | { | 
|  | struct page_ext *base; | 
|  | unsigned long table_size; | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | nr_pages = NODE_DATA(nid)->node_spanned_pages; | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Need extra space if node range is not aligned with | 
|  | * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm | 
|  | * checks buddy's status, range could be out of exact node range. | 
|  | */ | 
|  | if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || | 
|  | !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) | 
|  | nr_pages += MAX_ORDER_NR_PAGES; | 
|  |  | 
|  | table_size = page_ext_size * nr_pages; | 
|  |  | 
|  | base = memblock_alloc_try_nid( | 
|  | table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), | 
|  | MEMBLOCK_ALLOC_ACCESSIBLE, nid); | 
|  | if (!base) | 
|  | return -ENOMEM; | 
|  | NODE_DATA(nid)->node_page_ext = base; | 
|  | total_usage += table_size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init page_ext_init_flatmem(void) | 
|  | { | 
|  |  | 
|  | int nid, fail; | 
|  |  | 
|  | if (!invoke_need_callbacks()) | 
|  | return; | 
|  |  | 
|  | for_each_online_node(nid)  { | 
|  | fail = alloc_node_page_ext(nid); | 
|  | if (fail) | 
|  | goto fail; | 
|  | } | 
|  | pr_info("allocated %ld bytes of page_ext\n", total_usage); | 
|  | return; | 
|  |  | 
|  | fail: | 
|  | pr_crit("allocation of page_ext failed.\n"); | 
|  | panic("Out of memory"); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SPARSEMEM */ | 
|  | static bool page_ext_invalid(struct page_ext *page_ext) | 
|  | { | 
|  | return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID); | 
|  | } | 
|  |  | 
|  | static struct page_ext *lookup_page_ext(const struct page *page) | 
|  | { | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | struct mem_section *section = __pfn_to_section(pfn); | 
|  | struct page_ext *page_ext = READ_ONCE(section->page_ext); | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | /* | 
|  | * The sanity checks the page allocator does upon freeing a | 
|  | * page can reach here before the page_ext arrays are | 
|  | * allocated when feeding a range of pages to the allocator | 
|  | * for the first time during bootup or memory hotplug. | 
|  | */ | 
|  | if (page_ext_invalid(page_ext)) | 
|  | return NULL; | 
|  | return get_entry(page_ext, pfn); | 
|  | } | 
|  |  | 
|  | static void *__meminit alloc_page_ext(size_t size, int nid) | 
|  | { | 
|  | gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; | 
|  | void *addr = NULL; | 
|  |  | 
|  | addr = alloc_pages_exact_nid(nid, size, flags); | 
|  | if (addr) { | 
|  | kmemleak_alloc(addr, size, 1, flags); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | addr = vzalloc_node(size, nid); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static int __meminit init_section_page_ext(unsigned long pfn, int nid) | 
|  | { | 
|  | struct mem_section *section; | 
|  | struct page_ext *base; | 
|  | unsigned long table_size; | 
|  |  | 
|  | section = __pfn_to_section(pfn); | 
|  |  | 
|  | if (section->page_ext) | 
|  | return 0; | 
|  |  | 
|  | table_size = page_ext_size * PAGES_PER_SECTION; | 
|  | base = alloc_page_ext(table_size, nid); | 
|  |  | 
|  | /* | 
|  | * The value stored in section->page_ext is (base - pfn) | 
|  | * and it does not point to the memory block allocated above, | 
|  | * causing kmemleak false positives. | 
|  | */ | 
|  | kmemleak_not_leak(base); | 
|  |  | 
|  | if (!base) { | 
|  | pr_err("page ext allocation failure\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The passed "pfn" may not be aligned to SECTION.  For the calculation | 
|  | * we need to apply a mask. | 
|  | */ | 
|  | pfn &= PAGE_SECTION_MASK; | 
|  | section->page_ext = (void *)base - page_ext_size * pfn; | 
|  | total_usage += table_size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_page_ext(void *addr) | 
|  | { | 
|  | if (is_vmalloc_addr(addr)) { | 
|  | vfree(addr); | 
|  | } else { | 
|  | struct page *page = virt_to_page(addr); | 
|  | size_t table_size; | 
|  |  | 
|  | table_size = page_ext_size * PAGES_PER_SECTION; | 
|  |  | 
|  | BUG_ON(PageReserved(page)); | 
|  | kmemleak_free(addr); | 
|  | free_pages_exact(addr, table_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __free_page_ext(unsigned long pfn) | 
|  | { | 
|  | struct mem_section *ms; | 
|  | struct page_ext *base; | 
|  |  | 
|  | ms = __pfn_to_section(pfn); | 
|  | if (!ms || !ms->page_ext) | 
|  | return; | 
|  |  | 
|  | base = READ_ONCE(ms->page_ext); | 
|  | /* | 
|  | * page_ext here can be valid while doing the roll back | 
|  | * operation in online_page_ext(). | 
|  | */ | 
|  | if (page_ext_invalid(base)) | 
|  | base = (void *)base - PAGE_EXT_INVALID; | 
|  | WRITE_ONCE(ms->page_ext, NULL); | 
|  |  | 
|  | base = get_entry(base, pfn); | 
|  | free_page_ext(base); | 
|  | } | 
|  |  | 
|  | static void __invalidate_page_ext(unsigned long pfn) | 
|  | { | 
|  | struct mem_section *ms; | 
|  | void *val; | 
|  |  | 
|  | ms = __pfn_to_section(pfn); | 
|  | if (!ms || !ms->page_ext) | 
|  | return; | 
|  | val = (void *)ms->page_ext + PAGE_EXT_INVALID; | 
|  | WRITE_ONCE(ms->page_ext, val); | 
|  | } | 
|  |  | 
|  | static int __meminit online_page_ext(unsigned long start_pfn, | 
|  | unsigned long nr_pages, | 
|  | int nid) | 
|  | { | 
|  | unsigned long start, end, pfn; | 
|  | int fail = 0; | 
|  |  | 
|  | start = SECTION_ALIGN_DOWN(start_pfn); | 
|  | end = SECTION_ALIGN_UP(start_pfn + nr_pages); | 
|  |  | 
|  | if (nid == NUMA_NO_NODE) { | 
|  | /* | 
|  | * In this case, "nid" already exists and contains valid memory. | 
|  | * "start_pfn" passed to us is a pfn which is an arg for | 
|  | * online__pages(), and start_pfn should exist. | 
|  | */ | 
|  | nid = pfn_to_nid(start_pfn); | 
|  | VM_BUG_ON(!node_online(nid)); | 
|  | } | 
|  |  | 
|  | for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) | 
|  | fail = init_section_page_ext(pfn, nid); | 
|  | if (!fail) | 
|  | return 0; | 
|  |  | 
|  | /* rollback */ | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | 
|  | __free_page_ext(pfn); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int __meminit offline_page_ext(unsigned long start_pfn, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | unsigned long start, end, pfn; | 
|  |  | 
|  | start = SECTION_ALIGN_DOWN(start_pfn); | 
|  | end = SECTION_ALIGN_UP(start_pfn + nr_pages); | 
|  |  | 
|  | /* | 
|  | * Freeing of page_ext is done in 3 steps to avoid | 
|  | * use-after-free of it: | 
|  | * 1) Traverse all the sections and mark their page_ext | 
|  | *    as invalid. | 
|  | * 2) Wait for all the existing users of page_ext who | 
|  | *    started before invalidation to finish. | 
|  | * 3) Free the page_ext. | 
|  | */ | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | 
|  | __invalidate_page_ext(pfn); | 
|  |  | 
|  | synchronize_rcu(); | 
|  |  | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | 
|  | __free_page_ext(pfn); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int __meminit page_ext_callback(struct notifier_block *self, | 
|  | unsigned long action, void *arg) | 
|  | { | 
|  | struct memory_notify *mn = arg; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (action) { | 
|  | case MEM_GOING_ONLINE: | 
|  | ret = online_page_ext(mn->start_pfn, | 
|  | mn->nr_pages, mn->status_change_nid); | 
|  | break; | 
|  | case MEM_OFFLINE: | 
|  | offline_page_ext(mn->start_pfn, | 
|  | mn->nr_pages); | 
|  | break; | 
|  | case MEM_CANCEL_ONLINE: | 
|  | offline_page_ext(mn->start_pfn, | 
|  | mn->nr_pages); | 
|  | break; | 
|  | case MEM_GOING_OFFLINE: | 
|  | break; | 
|  | case MEM_ONLINE: | 
|  | case MEM_CANCEL_OFFLINE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return notifier_from_errno(ret); | 
|  | } | 
|  |  | 
|  | void __init page_ext_init(void) | 
|  | { | 
|  | unsigned long pfn; | 
|  | int nid; | 
|  |  | 
|  | if (!invoke_need_callbacks()) | 
|  | return; | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | unsigned long start_pfn, end_pfn; | 
|  |  | 
|  | start_pfn = node_start_pfn(nid); | 
|  | end_pfn = node_end_pfn(nid); | 
|  | /* | 
|  | * start_pfn and end_pfn may not be aligned to SECTION and the | 
|  | * page->flags of out of node pages are not initialized.  So we | 
|  | * scan [start_pfn, the biggest section's pfn < end_pfn) here. | 
|  | */ | 
|  | for (pfn = start_pfn; pfn < end_pfn; | 
|  | pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { | 
|  |  | 
|  | if (!pfn_valid(pfn)) | 
|  | continue; | 
|  | /* | 
|  | * Nodes's pfns can be overlapping. | 
|  | * We know some arch can have a nodes layout such as | 
|  | * -------------pfn--------------> | 
|  | * N0 | N1 | N2 | N0 | N1 | N2|.... | 
|  | */ | 
|  | if (pfn_to_nid(pfn) != nid) | 
|  | continue; | 
|  | if (init_section_page_ext(pfn, nid)) | 
|  | goto oom; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI); | 
|  | pr_info("allocated %ld bytes of page_ext\n", total_usage); | 
|  | invoke_init_callbacks(); | 
|  | return; | 
|  |  | 
|  | oom: | 
|  | panic("Out of memory"); | 
|  | } | 
|  |  | 
|  | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif |