|  | // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause | 
|  | /* | 
|  | * Copyright (c) 2014-2020, Oracle and/or its affiliates. | 
|  | * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the BSD-type | 
|  | * license below: | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | *      Redistributions of source code must retain the above copyright | 
|  | *      notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | *      Redistributions in binary form must reproduce the above | 
|  | *      copyright notice, this list of conditions and the following | 
|  | *      disclaimer in the documentation and/or other materials provided | 
|  | *      with the distribution. | 
|  | * | 
|  | *      Neither the name of the Network Appliance, Inc. nor the names of | 
|  | *      its contributors may be used to endorse or promote products | 
|  | *      derived from this software without specific prior written | 
|  | *      permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * rpc_rdma.c | 
|  | * | 
|  | * This file contains the guts of the RPC RDMA protocol, and | 
|  | * does marshaling/unmarshaling, etc. It is also where interfacing | 
|  | * to the Linux RPC framework lives. | 
|  | */ | 
|  |  | 
|  | #include <linux/highmem.h> | 
|  |  | 
|  | #include <linux/sunrpc/svc_rdma.h> | 
|  |  | 
|  | #include "xprt_rdma.h" | 
|  | #include <trace/events/rpcrdma.h> | 
|  |  | 
|  | /* Returns size of largest RPC-over-RDMA header in a Call message | 
|  | * | 
|  | * The largest Call header contains a full-size Read list and a | 
|  | * minimal Reply chunk. | 
|  | */ | 
|  | static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) | 
|  | { | 
|  | unsigned int size; | 
|  |  | 
|  | /* Fixed header fields and list discriminators */ | 
|  | size = RPCRDMA_HDRLEN_MIN; | 
|  |  | 
|  | /* Maximum Read list size */ | 
|  | size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32); | 
|  |  | 
|  | /* Minimal Read chunk size */ | 
|  | size += sizeof(__be32);	/* segment count */ | 
|  | size += rpcrdma_segment_maxsz * sizeof(__be32); | 
|  | size += sizeof(__be32);	/* list discriminator */ | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /* Returns size of largest RPC-over-RDMA header in a Reply message | 
|  | * | 
|  | * There is only one Write list or one Reply chunk per Reply | 
|  | * message.  The larger list is the Write list. | 
|  | */ | 
|  | static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) | 
|  | { | 
|  | unsigned int size; | 
|  |  | 
|  | /* Fixed header fields and list discriminators */ | 
|  | size = RPCRDMA_HDRLEN_MIN; | 
|  |  | 
|  | /* Maximum Write list size */ | 
|  | size += sizeof(__be32);		/* segment count */ | 
|  | size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32); | 
|  | size += sizeof(__be32);	/* list discriminator */ | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_set_max_header_sizes - Initialize inline payload sizes | 
|  | * @ep: endpoint to initialize | 
|  | * | 
|  | * The max_inline fields contain the maximum size of an RPC message | 
|  | * so the marshaling code doesn't have to repeat this calculation | 
|  | * for every RPC. | 
|  | */ | 
|  | void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep) | 
|  | { | 
|  | unsigned int maxsegs = ep->re_max_rdma_segs; | 
|  |  | 
|  | ep->re_max_inline_send = | 
|  | ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs); | 
|  | ep->re_max_inline_recv = | 
|  | ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs); | 
|  | } | 
|  |  | 
|  | /* The client can send a request inline as long as the RPCRDMA header | 
|  | * plus the RPC call fit under the transport's inline limit. If the | 
|  | * combined call message size exceeds that limit, the client must use | 
|  | * a Read chunk for this operation. | 
|  | * | 
|  | * A Read chunk is also required if sending the RPC call inline would | 
|  | * exceed this device's max_sge limit. | 
|  | */ | 
|  | static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpc_rqst *rqst) | 
|  | { | 
|  | struct xdr_buf *xdr = &rqst->rq_snd_buf; | 
|  | struct rpcrdma_ep *ep = r_xprt->rx_ep; | 
|  | unsigned int count, remaining, offset; | 
|  |  | 
|  | if (xdr->len > ep->re_max_inline_send) | 
|  | return false; | 
|  |  | 
|  | if (xdr->page_len) { | 
|  | remaining = xdr->page_len; | 
|  | offset = offset_in_page(xdr->page_base); | 
|  | count = RPCRDMA_MIN_SEND_SGES; | 
|  | while (remaining) { | 
|  | remaining -= min_t(unsigned int, | 
|  | PAGE_SIZE - offset, remaining); | 
|  | offset = 0; | 
|  | if (++count > ep->re_attr.cap.max_send_sge) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* The client can't know how large the actual reply will be. Thus it | 
|  | * plans for the largest possible reply for that particular ULP | 
|  | * operation. If the maximum combined reply message size exceeds that | 
|  | * limit, the client must provide a write list or a reply chunk for | 
|  | * this request. | 
|  | */ | 
|  | static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpc_rqst *rqst) | 
|  | { | 
|  | return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv; | 
|  | } | 
|  |  | 
|  | /* The client is required to provide a Reply chunk if the maximum | 
|  | * size of the non-payload part of the RPC Reply is larger than | 
|  | * the inline threshold. | 
|  | */ | 
|  | static bool | 
|  | rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt, | 
|  | const struct rpc_rqst *rqst) | 
|  | { | 
|  | const struct xdr_buf *buf = &rqst->rq_rcv_buf; | 
|  |  | 
|  | return (buf->head[0].iov_len + buf->tail[0].iov_len) < | 
|  | r_xprt->rx_ep->re_max_inline_recv; | 
|  | } | 
|  |  | 
|  | /* ACL likes to be lazy in allocating pages. For TCP, these | 
|  | * pages can be allocated during receive processing. Not true | 
|  | * for RDMA, which must always provision receive buffers | 
|  | * up front. | 
|  | */ | 
|  | static noinline int | 
|  | rpcrdma_alloc_sparse_pages(struct xdr_buf *buf) | 
|  | { | 
|  | struct page **ppages; | 
|  | int len; | 
|  |  | 
|  | len = buf->page_len; | 
|  | ppages = buf->pages + (buf->page_base >> PAGE_SHIFT); | 
|  | while (len > 0) { | 
|  | if (!*ppages) | 
|  | *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN); | 
|  | if (!*ppages) | 
|  | return -ENOBUFS; | 
|  | ppages++; | 
|  | len -= PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Convert @vec to a single SGL element. | 
|  | * | 
|  | * Returns pointer to next available SGE, and bumps the total number | 
|  | * of SGEs consumed. | 
|  | */ | 
|  | static struct rpcrdma_mr_seg * | 
|  | rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, | 
|  | unsigned int *n) | 
|  | { | 
|  | seg->mr_page = virt_to_page(vec->iov_base); | 
|  | seg->mr_offset = offset_in_page(vec->iov_base); | 
|  | seg->mr_len = vec->iov_len; | 
|  | ++seg; | 
|  | ++(*n); | 
|  | return seg; | 
|  | } | 
|  |  | 
|  | /* Convert @xdrbuf into SGEs no larger than a page each. As they | 
|  | * are registered, these SGEs are then coalesced into RDMA segments | 
|  | * when the selected memreg mode supports it. | 
|  | * | 
|  | * Returns positive number of SGEs consumed, or a negative errno. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, | 
|  | unsigned int pos, enum rpcrdma_chunktype type, | 
|  | struct rpcrdma_mr_seg *seg) | 
|  | { | 
|  | unsigned long page_base; | 
|  | unsigned int len, n; | 
|  | struct page **ppages; | 
|  |  | 
|  | n = 0; | 
|  | if (pos == 0) | 
|  | seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n); | 
|  |  | 
|  | len = xdrbuf->page_len; | 
|  | ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); | 
|  | page_base = offset_in_page(xdrbuf->page_base); | 
|  | while (len) { | 
|  | seg->mr_page = *ppages; | 
|  | seg->mr_offset = page_base; | 
|  | seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len); | 
|  | len -= seg->mr_len; | 
|  | ++ppages; | 
|  | ++seg; | 
|  | ++n; | 
|  | page_base = 0; | 
|  | } | 
|  |  | 
|  | if (type == rpcrdma_readch || type == rpcrdma_writech) | 
|  | goto out; | 
|  |  | 
|  | if (xdrbuf->tail[0].iov_len) | 
|  | rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n); | 
|  |  | 
|  | out: | 
|  | if (unlikely(n > RPCRDMA_MAX_SEGS)) | 
|  | return -EIO; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static int | 
|  | encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr) | 
|  | { | 
|  | __be32 *p; | 
|  |  | 
|  | p = xdr_reserve_space(xdr, 4 * sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr, | 
|  | u32 position) | 
|  | { | 
|  | __be32 *p; | 
|  |  | 
|  | p = xdr_reserve_space(xdr, 6 * sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | *p++ = xdr_one;			/* Item present */ | 
|  | xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length, | 
|  | mr->mr_offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct rpcrdma_mr_seg *seg, | 
|  | int nsegs, bool writing, | 
|  | struct rpcrdma_mr **mr) | 
|  | { | 
|  | *mr = rpcrdma_mr_pop(&req->rl_free_mrs); | 
|  | if (!*mr) { | 
|  | *mr = rpcrdma_mr_get(r_xprt); | 
|  | if (!*mr) | 
|  | goto out_getmr_err; | 
|  | (*mr)->mr_req = req; | 
|  | } | 
|  |  | 
|  | rpcrdma_mr_push(*mr, &req->rl_registered); | 
|  | return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr); | 
|  |  | 
|  | out_getmr_err: | 
|  | trace_xprtrdma_nomrs_err(r_xprt, req); | 
|  | xprt_wait_for_buffer_space(&r_xprt->rx_xprt); | 
|  | rpcrdma_mrs_refresh(r_xprt); | 
|  | return ERR_PTR(-EAGAIN); | 
|  | } | 
|  |  | 
|  | /* Register and XDR encode the Read list. Supports encoding a list of read | 
|  | * segments that belong to a single read chunk. | 
|  | * | 
|  | * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): | 
|  | * | 
|  | *  Read chunklist (a linked list): | 
|  | *   N elements, position P (same P for all chunks of same arg!): | 
|  | *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 | 
|  | * | 
|  | * Returns zero on success, or a negative errno if a failure occurred. | 
|  | * @xdr is advanced to the next position in the stream. | 
|  | * | 
|  | * Only a single @pos value is currently supported. | 
|  | */ | 
|  | static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct rpc_rqst *rqst, | 
|  | enum rpcrdma_chunktype rtype) | 
|  | { | 
|  | struct xdr_stream *xdr = &req->rl_stream; | 
|  | struct rpcrdma_mr_seg *seg; | 
|  | struct rpcrdma_mr *mr; | 
|  | unsigned int pos; | 
|  | int nsegs; | 
|  |  | 
|  | if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped) | 
|  | goto done; | 
|  |  | 
|  | pos = rqst->rq_snd_buf.head[0].iov_len; | 
|  | if (rtype == rpcrdma_areadch) | 
|  | pos = 0; | 
|  | seg = req->rl_segments; | 
|  | nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, | 
|  | rtype, seg); | 
|  | if (nsegs < 0) | 
|  | return nsegs; | 
|  |  | 
|  | do { | 
|  | seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr); | 
|  | if (IS_ERR(seg)) | 
|  | return PTR_ERR(seg); | 
|  |  | 
|  | if (encode_read_segment(xdr, mr, pos) < 0) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs); | 
|  | r_xprt->rx_stats.read_chunk_count++; | 
|  | nsegs -= mr->mr_nents; | 
|  | } while (nsegs); | 
|  |  | 
|  | done: | 
|  | if (xdr_stream_encode_item_absent(xdr) < 0) | 
|  | return -EMSGSIZE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Register and XDR encode the Write list. Supports encoding a list | 
|  | * containing one array of plain segments that belong to a single | 
|  | * write chunk. | 
|  | * | 
|  | * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): | 
|  | * | 
|  | *  Write chunklist (a list of (one) counted array): | 
|  | *   N elements: | 
|  | *    1 - N - HLOO - HLOO - ... - HLOO - 0 | 
|  | * | 
|  | * Returns zero on success, or a negative errno if a failure occurred. | 
|  | * @xdr is advanced to the next position in the stream. | 
|  | * | 
|  | * Only a single Write chunk is currently supported. | 
|  | */ | 
|  | static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct rpc_rqst *rqst, | 
|  | enum rpcrdma_chunktype wtype) | 
|  | { | 
|  | struct xdr_stream *xdr = &req->rl_stream; | 
|  | struct rpcrdma_ep *ep = r_xprt->rx_ep; | 
|  | struct rpcrdma_mr_seg *seg; | 
|  | struct rpcrdma_mr *mr; | 
|  | int nsegs, nchunks; | 
|  | __be32 *segcount; | 
|  |  | 
|  | if (wtype != rpcrdma_writech) | 
|  | goto done; | 
|  |  | 
|  | seg = req->rl_segments; | 
|  | nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, | 
|  | rqst->rq_rcv_buf.head[0].iov_len, | 
|  | wtype, seg); | 
|  | if (nsegs < 0) | 
|  | return nsegs; | 
|  |  | 
|  | if (xdr_stream_encode_item_present(xdr) < 0) | 
|  | return -EMSGSIZE; | 
|  | segcount = xdr_reserve_space(xdr, sizeof(*segcount)); | 
|  | if (unlikely(!segcount)) | 
|  | return -EMSGSIZE; | 
|  | /* Actual value encoded below */ | 
|  |  | 
|  | nchunks = 0; | 
|  | do { | 
|  | seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr); | 
|  | if (IS_ERR(seg)) | 
|  | return PTR_ERR(seg); | 
|  |  | 
|  | if (encode_rdma_segment(xdr, mr) < 0) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs); | 
|  | r_xprt->rx_stats.write_chunk_count++; | 
|  | r_xprt->rx_stats.total_rdma_request += mr->mr_length; | 
|  | nchunks++; | 
|  | nsegs -= mr->mr_nents; | 
|  | } while (nsegs); | 
|  |  | 
|  | if (xdr_pad_size(rqst->rq_rcv_buf.page_len)) { | 
|  | if (encode_rdma_segment(xdr, ep->re_write_pad_mr) < 0) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | trace_xprtrdma_chunk_wp(rqst->rq_task, ep->re_write_pad_mr, | 
|  | nsegs); | 
|  | r_xprt->rx_stats.write_chunk_count++; | 
|  | r_xprt->rx_stats.total_rdma_request += mr->mr_length; | 
|  | nchunks++; | 
|  | nsegs -= mr->mr_nents; | 
|  | } | 
|  |  | 
|  | /* Update count of segments in this Write chunk */ | 
|  | *segcount = cpu_to_be32(nchunks); | 
|  |  | 
|  | done: | 
|  | if (xdr_stream_encode_item_absent(xdr) < 0) | 
|  | return -EMSGSIZE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Register and XDR encode the Reply chunk. Supports encoding an array | 
|  | * of plain segments that belong to a single write (reply) chunk. | 
|  | * | 
|  | * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): | 
|  | * | 
|  | *  Reply chunk (a counted array): | 
|  | *   N elements: | 
|  | *    1 - N - HLOO - HLOO - ... - HLOO | 
|  | * | 
|  | * Returns zero on success, or a negative errno if a failure occurred. | 
|  | * @xdr is advanced to the next position in the stream. | 
|  | */ | 
|  | static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct rpc_rqst *rqst, | 
|  | enum rpcrdma_chunktype wtype) | 
|  | { | 
|  | struct xdr_stream *xdr = &req->rl_stream; | 
|  | struct rpcrdma_mr_seg *seg; | 
|  | struct rpcrdma_mr *mr; | 
|  | int nsegs, nchunks; | 
|  | __be32 *segcount; | 
|  |  | 
|  | if (wtype != rpcrdma_replych) { | 
|  | if (xdr_stream_encode_item_absent(xdr) < 0) | 
|  | return -EMSGSIZE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | seg = req->rl_segments; | 
|  | nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); | 
|  | if (nsegs < 0) | 
|  | return nsegs; | 
|  |  | 
|  | if (xdr_stream_encode_item_present(xdr) < 0) | 
|  | return -EMSGSIZE; | 
|  | segcount = xdr_reserve_space(xdr, sizeof(*segcount)); | 
|  | if (unlikely(!segcount)) | 
|  | return -EMSGSIZE; | 
|  | /* Actual value encoded below */ | 
|  |  | 
|  | nchunks = 0; | 
|  | do { | 
|  | seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr); | 
|  | if (IS_ERR(seg)) | 
|  | return PTR_ERR(seg); | 
|  |  | 
|  | if (encode_rdma_segment(xdr, mr) < 0) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs); | 
|  | r_xprt->rx_stats.reply_chunk_count++; | 
|  | r_xprt->rx_stats.total_rdma_request += mr->mr_length; | 
|  | nchunks++; | 
|  | nsegs -= mr->mr_nents; | 
|  | } while (nsegs); | 
|  |  | 
|  | /* Update count of segments in the Reply chunk */ | 
|  | *segcount = cpu_to_be32(nchunks); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rpcrdma_sendctx_done(struct kref *kref) | 
|  | { | 
|  | struct rpcrdma_req *req = | 
|  | container_of(kref, struct rpcrdma_req, rl_kref); | 
|  | struct rpcrdma_rep *rep = req->rl_reply; | 
|  |  | 
|  | rpcrdma_complete_rqst(rep); | 
|  | rep->rr_rxprt->rx_stats.reply_waits_for_send++; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_sendctx_unmap - DMA-unmap Send buffer | 
|  | * @sc: sendctx containing SGEs to unmap | 
|  | * | 
|  | */ | 
|  | void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc) | 
|  | { | 
|  | struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf; | 
|  | struct ib_sge *sge; | 
|  |  | 
|  | if (!sc->sc_unmap_count) | 
|  | return; | 
|  |  | 
|  | /* The first two SGEs contain the transport header and | 
|  | * the inline buffer. These are always left mapped so | 
|  | * they can be cheaply re-used. | 
|  | */ | 
|  | for (sge = &sc->sc_sges[2]; sc->sc_unmap_count; | 
|  | ++sge, --sc->sc_unmap_count) | 
|  | ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length, | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done); | 
|  | } | 
|  |  | 
|  | /* Prepare an SGE for the RPC-over-RDMA transport header. | 
|  | */ | 
|  | static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, u32 len) | 
|  | { | 
|  | struct rpcrdma_sendctx *sc = req->rl_sendctx; | 
|  | struct rpcrdma_regbuf *rb = req->rl_rdmabuf; | 
|  | struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; | 
|  |  | 
|  | sge->addr = rdmab_addr(rb); | 
|  | sge->length = len; | 
|  | sge->lkey = rdmab_lkey(rb); | 
|  |  | 
|  | ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length, | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | /* The head iovec is straightforward, as it is usually already | 
|  | * DMA-mapped. Sync the content that has changed. | 
|  | */ | 
|  | static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, unsigned int len) | 
|  | { | 
|  | struct rpcrdma_sendctx *sc = req->rl_sendctx; | 
|  | struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; | 
|  | struct rpcrdma_regbuf *rb = req->rl_sendbuf; | 
|  |  | 
|  | if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) | 
|  | return false; | 
|  |  | 
|  | sge->addr = rdmab_addr(rb); | 
|  | sge->length = len; | 
|  | sge->lkey = rdmab_lkey(rb); | 
|  |  | 
|  | ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length, | 
|  | DMA_TO_DEVICE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If there is a page list present, DMA map and prepare an | 
|  | * SGE for each page to be sent. | 
|  | */ | 
|  | static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req, | 
|  | struct xdr_buf *xdr) | 
|  | { | 
|  | struct rpcrdma_sendctx *sc = req->rl_sendctx; | 
|  | struct rpcrdma_regbuf *rb = req->rl_sendbuf; | 
|  | unsigned int page_base, len, remaining; | 
|  | struct page **ppages; | 
|  | struct ib_sge *sge; | 
|  |  | 
|  | ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); | 
|  | page_base = offset_in_page(xdr->page_base); | 
|  | remaining = xdr->page_len; | 
|  | while (remaining) { | 
|  | sge = &sc->sc_sges[req->rl_wr.num_sge++]; | 
|  | len = min_t(unsigned int, PAGE_SIZE - page_base, remaining); | 
|  | sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages, | 
|  | page_base, len, DMA_TO_DEVICE); | 
|  | if (ib_dma_mapping_error(rdmab_device(rb), sge->addr)) | 
|  | goto out_mapping_err; | 
|  |  | 
|  | sge->length = len; | 
|  | sge->lkey = rdmab_lkey(rb); | 
|  |  | 
|  | sc->sc_unmap_count++; | 
|  | ppages++; | 
|  | remaining -= len; | 
|  | page_base = 0; | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | out_mapping_err: | 
|  | trace_xprtrdma_dma_maperr(sge->addr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* The tail iovec may include an XDR pad for the page list, | 
|  | * as well as additional content, and may not reside in the | 
|  | * same page as the head iovec. | 
|  | */ | 
|  | static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req, | 
|  | struct xdr_buf *xdr, | 
|  | unsigned int page_base, unsigned int len) | 
|  | { | 
|  | struct rpcrdma_sendctx *sc = req->rl_sendctx; | 
|  | struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++]; | 
|  | struct rpcrdma_regbuf *rb = req->rl_sendbuf; | 
|  | struct page *page = virt_to_page(xdr->tail[0].iov_base); | 
|  |  | 
|  | sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len, | 
|  | DMA_TO_DEVICE); | 
|  | if (ib_dma_mapping_error(rdmab_device(rb), sge->addr)) | 
|  | goto out_mapping_err; | 
|  |  | 
|  | sge->length = len; | 
|  | sge->lkey = rdmab_lkey(rb); | 
|  | ++sc->sc_unmap_count; | 
|  | return true; | 
|  |  | 
|  | out_mapping_err: | 
|  | trace_xprtrdma_dma_maperr(sge->addr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Copy the tail to the end of the head buffer. | 
|  | */ | 
|  | static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct xdr_buf *xdr) | 
|  | { | 
|  | unsigned char *dst; | 
|  |  | 
|  | dst = (unsigned char *)xdr->head[0].iov_base; | 
|  | dst += xdr->head[0].iov_len + xdr->page_len; | 
|  | memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len); | 
|  | r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len; | 
|  | } | 
|  |  | 
|  | /* Copy pagelist content into the head buffer. | 
|  | */ | 
|  | static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct xdr_buf *xdr) | 
|  | { | 
|  | unsigned int len, page_base, remaining; | 
|  | struct page **ppages; | 
|  | unsigned char *src, *dst; | 
|  |  | 
|  | dst = (unsigned char *)xdr->head[0].iov_base; | 
|  | dst += xdr->head[0].iov_len; | 
|  | ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); | 
|  | page_base = offset_in_page(xdr->page_base); | 
|  | remaining = xdr->page_len; | 
|  | while (remaining) { | 
|  | src = page_address(*ppages); | 
|  | src += page_base; | 
|  | len = min_t(unsigned int, PAGE_SIZE - page_base, remaining); | 
|  | memcpy(dst, src, len); | 
|  | r_xprt->rx_stats.pullup_copy_count += len; | 
|  |  | 
|  | ppages++; | 
|  | dst += len; | 
|  | remaining -= len; | 
|  | page_base = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it. | 
|  | * When the head, pagelist, and tail are small, a pull-up copy | 
|  | * is considerably less costly than DMA mapping the components | 
|  | * of @xdr. | 
|  | * | 
|  | * Assumptions: | 
|  | *  - the caller has already verified that the total length | 
|  | *    of the RPC Call body will fit into @rl_sendbuf. | 
|  | */ | 
|  | static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct xdr_buf *xdr) | 
|  | { | 
|  | if (unlikely(xdr->tail[0].iov_len)) | 
|  | rpcrdma_pullup_tail_iov(r_xprt, req, xdr); | 
|  |  | 
|  | if (unlikely(xdr->page_len)) | 
|  | rpcrdma_pullup_pagelist(r_xprt, req, xdr); | 
|  |  | 
|  | /* The whole RPC message resides in the head iovec now */ | 
|  | return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len); | 
|  | } | 
|  |  | 
|  | static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct xdr_buf *xdr) | 
|  | { | 
|  | struct kvec *tail = &xdr->tail[0]; | 
|  |  | 
|  | if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len)) | 
|  | return false; | 
|  | if (xdr->page_len) | 
|  | if (!rpcrdma_prepare_pagelist(req, xdr)) | 
|  | return false; | 
|  | if (tail->iov_len) | 
|  | if (!rpcrdma_prepare_tail_iov(req, xdr, | 
|  | offset_in_page(tail->iov_base), | 
|  | tail->iov_len)) | 
|  | return false; | 
|  |  | 
|  | if (req->rl_sendctx->sc_unmap_count) | 
|  | kref_get(&req->rl_kref); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, | 
|  | struct xdr_buf *xdr) | 
|  | { | 
|  | if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len)) | 
|  | return false; | 
|  |  | 
|  | /* If there is a Read chunk, the page list is being handled | 
|  | * via explicit RDMA, and thus is skipped here. | 
|  | */ | 
|  |  | 
|  | /* Do not include the tail if it is only an XDR pad */ | 
|  | if (xdr->tail[0].iov_len > 3) { | 
|  | unsigned int page_base, len; | 
|  |  | 
|  | /* If the content in the page list is an odd length, | 
|  | * xdr_write_pages() adds a pad at the beginning of | 
|  | * the tail iovec. Force the tail's non-pad content to | 
|  | * land at the next XDR position in the Send message. | 
|  | */ | 
|  | page_base = offset_in_page(xdr->tail[0].iov_base); | 
|  | len = xdr->tail[0].iov_len; | 
|  | page_base += len & 3; | 
|  | len -= len & 3; | 
|  | if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len)) | 
|  | return false; | 
|  | kref_get(&req->rl_kref); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR | 
|  | * @r_xprt: controlling transport | 
|  | * @req: context of RPC Call being marshalled | 
|  | * @hdrlen: size of transport header, in bytes | 
|  | * @xdr: xdr_buf containing RPC Call | 
|  | * @rtype: chunk type being encoded | 
|  | * | 
|  | * Returns 0 on success; otherwise a negative errno is returned. | 
|  | */ | 
|  | inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt, | 
|  | struct rpcrdma_req *req, u32 hdrlen, | 
|  | struct xdr_buf *xdr, | 
|  | enum rpcrdma_chunktype rtype) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt); | 
|  | if (!req->rl_sendctx) | 
|  | goto out_nosc; | 
|  | req->rl_sendctx->sc_unmap_count = 0; | 
|  | req->rl_sendctx->sc_req = req; | 
|  | kref_init(&req->rl_kref); | 
|  | req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe; | 
|  | req->rl_wr.sg_list = req->rl_sendctx->sc_sges; | 
|  | req->rl_wr.num_sge = 0; | 
|  | req->rl_wr.opcode = IB_WR_SEND; | 
|  |  | 
|  | rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen); | 
|  |  | 
|  | ret = -EIO; | 
|  | switch (rtype) { | 
|  | case rpcrdma_noch_pullup: | 
|  | if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr)) | 
|  | goto out_unmap; | 
|  | break; | 
|  | case rpcrdma_noch_mapped: | 
|  | if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr)) | 
|  | goto out_unmap; | 
|  | break; | 
|  | case rpcrdma_readch: | 
|  | if (!rpcrdma_prepare_readch(r_xprt, req, xdr)) | 
|  | goto out_unmap; | 
|  | break; | 
|  | case rpcrdma_areadch: | 
|  | break; | 
|  | default: | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unmap: | 
|  | rpcrdma_sendctx_unmap(req->rl_sendctx); | 
|  | out_nosc: | 
|  | trace_xprtrdma_prepsend_failed(&req->rl_slot, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_marshal_req - Marshal and send one RPC request | 
|  | * @r_xprt: controlling transport | 
|  | * @rqst: RPC request to be marshaled | 
|  | * | 
|  | * For the RPC in "rqst", this function: | 
|  | *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG) | 
|  | *  - Registers Read, Write, and Reply chunks | 
|  | *  - Constructs the transport header | 
|  | *  - Posts a Send WR to send the transport header and request | 
|  | * | 
|  | * Returns: | 
|  | *	%0 if the RPC was sent successfully, | 
|  | *	%-ENOTCONN if the connection was lost, | 
|  | *	%-EAGAIN if the caller should call again with the same arguments, | 
|  | *	%-ENOBUFS if the caller should call again after a delay, | 
|  | *	%-EMSGSIZE if the transport header is too small, | 
|  | *	%-EIO if a permanent problem occurred while marshaling. | 
|  | */ | 
|  | int | 
|  | rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst) | 
|  | { | 
|  | struct rpcrdma_req *req = rpcr_to_rdmar(rqst); | 
|  | struct xdr_stream *xdr = &req->rl_stream; | 
|  | enum rpcrdma_chunktype rtype, wtype; | 
|  | struct xdr_buf *buf = &rqst->rq_snd_buf; | 
|  | bool ddp_allowed; | 
|  | __be32 *p; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) { | 
|  | ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0); | 
|  | xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf), | 
|  | rqst); | 
|  |  | 
|  | /* Fixed header fields */ | 
|  | ret = -EMSGSIZE; | 
|  | p = xdr_reserve_space(xdr, 4 * sizeof(*p)); | 
|  | if (!p) | 
|  | goto out_err; | 
|  | *p++ = rqst->rq_xid; | 
|  | *p++ = rpcrdma_version; | 
|  | *p++ = r_xprt->rx_buf.rb_max_requests; | 
|  |  | 
|  | /* When the ULP employs a GSS flavor that guarantees integrity | 
|  | * or privacy, direct data placement of individual data items | 
|  | * is not allowed. | 
|  | */ | 
|  | ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH, | 
|  | &rqst->rq_cred->cr_auth->au_flags); | 
|  |  | 
|  | /* | 
|  | * Chunks needed for results? | 
|  | * | 
|  | * o If the expected result is under the inline threshold, all ops | 
|  | *   return as inline. | 
|  | * o Large read ops return data as write chunk(s), header as | 
|  | *   inline. | 
|  | * o Large non-read ops return as a single reply chunk. | 
|  | */ | 
|  | if (rpcrdma_results_inline(r_xprt, rqst)) | 
|  | wtype = rpcrdma_noch; | 
|  | else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) && | 
|  | rpcrdma_nonpayload_inline(r_xprt, rqst)) | 
|  | wtype = rpcrdma_writech; | 
|  | else | 
|  | wtype = rpcrdma_replych; | 
|  |  | 
|  | /* | 
|  | * Chunks needed for arguments? | 
|  | * | 
|  | * o If the total request is under the inline threshold, all ops | 
|  | *   are sent as inline. | 
|  | * o Large write ops transmit data as read chunk(s), header as | 
|  | *   inline. | 
|  | * o Large non-write ops are sent with the entire message as a | 
|  | *   single read chunk (protocol 0-position special case). | 
|  | * | 
|  | * This assumes that the upper layer does not present a request | 
|  | * that both has a data payload, and whose non-data arguments | 
|  | * by themselves are larger than the inline threshold. | 
|  | */ | 
|  | if (rpcrdma_args_inline(r_xprt, rqst)) { | 
|  | *p++ = rdma_msg; | 
|  | rtype = buf->len < rdmab_length(req->rl_sendbuf) ? | 
|  | rpcrdma_noch_pullup : rpcrdma_noch_mapped; | 
|  | } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) { | 
|  | *p++ = rdma_msg; | 
|  | rtype = rpcrdma_readch; | 
|  | } else { | 
|  | r_xprt->rx_stats.nomsg_call_count++; | 
|  | *p++ = rdma_nomsg; | 
|  | rtype = rpcrdma_areadch; | 
|  | } | 
|  |  | 
|  | /* This implementation supports the following combinations | 
|  | * of chunk lists in one RPC-over-RDMA Call message: | 
|  | * | 
|  | *   - Read list | 
|  | *   - Write list | 
|  | *   - Reply chunk | 
|  | *   - Read list + Reply chunk | 
|  | * | 
|  | * It might not yet support the following combinations: | 
|  | * | 
|  | *   - Read list + Write list | 
|  | * | 
|  | * It does not support the following combinations: | 
|  | * | 
|  | *   - Write list + Reply chunk | 
|  | *   - Read list + Write list + Reply chunk | 
|  | * | 
|  | * This implementation supports only a single chunk in each | 
|  | * Read or Write list. Thus for example the client cannot | 
|  | * send a Call message with a Position Zero Read chunk and a | 
|  | * regular Read chunk at the same time. | 
|  | */ | 
|  | ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype); | 
|  | if (ret) | 
|  | goto out_err; | 
|  | ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype); | 
|  | if (ret) | 
|  | goto out_err; | 
|  | ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len, | 
|  | buf, rtype); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | trace_xprtrdma_marshal(req, rtype, wtype); | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | trace_xprtrdma_marshal_failed(rqst, ret); | 
|  | r_xprt->rx_stats.failed_marshal_count++; | 
|  | frwr_reset(req); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt, | 
|  | struct rpcrdma_buffer *buf, | 
|  | u32 grant) | 
|  | { | 
|  | buf->rb_credits = grant; | 
|  | xprt->cwnd = grant << RPC_CWNDSHIFT; | 
|  | } | 
|  |  | 
|  | static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant) | 
|  | { | 
|  | struct rpc_xprt *xprt = &r_xprt->rx_xprt; | 
|  |  | 
|  | spin_lock(&xprt->transport_lock); | 
|  | __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant); | 
|  | spin_unlock(&xprt->transport_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_reset_cwnd - Reset the xprt's congestion window | 
|  | * @r_xprt: controlling transport instance | 
|  | * | 
|  | * Prepare @r_xprt for the next connection by reinitializing | 
|  | * its credit grant to one (see RFC 8166, Section 3.3.3). | 
|  | */ | 
|  | void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt) | 
|  | { | 
|  | struct rpc_xprt *xprt = &r_xprt->rx_xprt; | 
|  |  | 
|  | spin_lock(&xprt->transport_lock); | 
|  | xprt->cong = 0; | 
|  | __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1); | 
|  | spin_unlock(&xprt->transport_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs | 
|  | * @rqst: controlling RPC request | 
|  | * @srcp: points to RPC message payload in receive buffer | 
|  | * @copy_len: remaining length of receive buffer content | 
|  | * @pad: Write chunk pad bytes needed (zero for pure inline) | 
|  | * | 
|  | * The upper layer has set the maximum number of bytes it can | 
|  | * receive in each component of rq_rcv_buf. These values are set in | 
|  | * the head.iov_len, page_len, tail.iov_len, and buflen fields. | 
|  | * | 
|  | * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in | 
|  | * many cases this function simply updates iov_base pointers in | 
|  | * rq_rcv_buf to point directly to the received reply data, to | 
|  | * avoid copying reply data. | 
|  | * | 
|  | * Returns the count of bytes which had to be memcopied. | 
|  | */ | 
|  | static unsigned long | 
|  | rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) | 
|  | { | 
|  | unsigned long fixup_copy_count; | 
|  | int i, npages, curlen; | 
|  | char *destp; | 
|  | struct page **ppages; | 
|  | int page_base; | 
|  |  | 
|  | /* The head iovec is redirected to the RPC reply message | 
|  | * in the receive buffer, to avoid a memcopy. | 
|  | */ | 
|  | rqst->rq_rcv_buf.head[0].iov_base = srcp; | 
|  | rqst->rq_private_buf.head[0].iov_base = srcp; | 
|  |  | 
|  | /* The contents of the receive buffer that follow | 
|  | * head.iov_len bytes are copied into the page list. | 
|  | */ | 
|  | curlen = rqst->rq_rcv_buf.head[0].iov_len; | 
|  | if (curlen > copy_len) | 
|  | curlen = copy_len; | 
|  | srcp += curlen; | 
|  | copy_len -= curlen; | 
|  |  | 
|  | ppages = rqst->rq_rcv_buf.pages + | 
|  | (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); | 
|  | page_base = offset_in_page(rqst->rq_rcv_buf.page_base); | 
|  | fixup_copy_count = 0; | 
|  | if (copy_len && rqst->rq_rcv_buf.page_len) { | 
|  | int pagelist_len; | 
|  |  | 
|  | pagelist_len = rqst->rq_rcv_buf.page_len; | 
|  | if (pagelist_len > copy_len) | 
|  | pagelist_len = copy_len; | 
|  | npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; | 
|  | for (i = 0; i < npages; i++) { | 
|  | curlen = PAGE_SIZE - page_base; | 
|  | if (curlen > pagelist_len) | 
|  | curlen = pagelist_len; | 
|  |  | 
|  | destp = kmap_atomic(ppages[i]); | 
|  | memcpy(destp + page_base, srcp, curlen); | 
|  | flush_dcache_page(ppages[i]); | 
|  | kunmap_atomic(destp); | 
|  | srcp += curlen; | 
|  | copy_len -= curlen; | 
|  | fixup_copy_count += curlen; | 
|  | pagelist_len -= curlen; | 
|  | if (!pagelist_len) | 
|  | break; | 
|  | page_base = 0; | 
|  | } | 
|  |  | 
|  | /* Implicit padding for the last segment in a Write | 
|  | * chunk is inserted inline at the front of the tail | 
|  | * iovec. The upper layer ignores the content of | 
|  | * the pad. Simply ensure inline content in the tail | 
|  | * that follows the Write chunk is properly aligned. | 
|  | */ | 
|  | if (pad) | 
|  | srcp -= pad; | 
|  | } | 
|  |  | 
|  | /* The tail iovec is redirected to the remaining data | 
|  | * in the receive buffer, to avoid a memcopy. | 
|  | */ | 
|  | if (copy_len || pad) { | 
|  | rqst->rq_rcv_buf.tail[0].iov_base = srcp; | 
|  | rqst->rq_private_buf.tail[0].iov_base = srcp; | 
|  | } | 
|  |  | 
|  | if (fixup_copy_count) | 
|  | trace_xprtrdma_fixup(rqst, fixup_copy_count); | 
|  | return fixup_copy_count; | 
|  | } | 
|  |  | 
|  | /* By convention, backchannel calls arrive via rdma_msg type | 
|  | * messages, and never populate the chunk lists. This makes | 
|  | * the RPC/RDMA header small and fixed in size, so it is | 
|  | * straightforward to check the RPC header's direction field. | 
|  | */ | 
|  | static bool | 
|  | rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) | 
|  | #if defined(CONFIG_SUNRPC_BACKCHANNEL) | 
|  | { | 
|  | struct rpc_xprt *xprt = &r_xprt->rx_xprt; | 
|  | struct xdr_stream *xdr = &rep->rr_stream; | 
|  | __be32 *p; | 
|  |  | 
|  | if (rep->rr_proc != rdma_msg) | 
|  | return false; | 
|  |  | 
|  | /* Peek at stream contents without advancing. */ | 
|  | p = xdr_inline_decode(xdr, 0); | 
|  |  | 
|  | /* Chunk lists */ | 
|  | if (xdr_item_is_present(p++)) | 
|  | return false; | 
|  | if (xdr_item_is_present(p++)) | 
|  | return false; | 
|  | if (xdr_item_is_present(p++)) | 
|  | return false; | 
|  |  | 
|  | /* RPC header */ | 
|  | if (*p++ != rep->rr_xid) | 
|  | return false; | 
|  | if (*p != cpu_to_be32(RPC_CALL)) | 
|  | return false; | 
|  |  | 
|  | /* No bc service. */ | 
|  | if (xprt->bc_serv == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Now that we are sure this is a backchannel call, | 
|  | * advance to the RPC header. | 
|  | */ | 
|  | p = xdr_inline_decode(xdr, 3 * sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return true; | 
|  |  | 
|  | rpcrdma_bc_receive_call(r_xprt, rep); | 
|  | return true; | 
|  | } | 
|  | #else	/* CONFIG_SUNRPC_BACKCHANNEL */ | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif	/* CONFIG_SUNRPC_BACKCHANNEL */ | 
|  |  | 
|  | static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length) | 
|  | { | 
|  | u32 handle; | 
|  | u64 offset; | 
|  | __be32 *p; | 
|  |  | 
|  | p = xdr_inline_decode(xdr, 4 * sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EIO; | 
|  |  | 
|  | xdr_decode_rdma_segment(p, &handle, length, &offset); | 
|  | trace_xprtrdma_decode_seg(handle, *length, offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decode_write_chunk(struct xdr_stream *xdr, u32 *length) | 
|  | { | 
|  | u32 segcount, seglength; | 
|  | __be32 *p; | 
|  |  | 
|  | p = xdr_inline_decode(xdr, sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EIO; | 
|  |  | 
|  | *length = 0; | 
|  | segcount = be32_to_cpup(p); | 
|  | while (segcount--) { | 
|  | if (decode_rdma_segment(xdr, &seglength)) | 
|  | return -EIO; | 
|  | *length += seglength; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* In RPC-over-RDMA Version One replies, a Read list is never | 
|  | * expected. This decoder is a stub that returns an error if | 
|  | * a Read list is present. | 
|  | */ | 
|  | static int decode_read_list(struct xdr_stream *xdr) | 
|  | { | 
|  | __be32 *p; | 
|  |  | 
|  | p = xdr_inline_decode(xdr, sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EIO; | 
|  | if (unlikely(xdr_item_is_present(p))) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Supports only one Write chunk in the Write list | 
|  | */ | 
|  | static int decode_write_list(struct xdr_stream *xdr, u32 *length) | 
|  | { | 
|  | u32 chunklen; | 
|  | bool first; | 
|  | __be32 *p; | 
|  |  | 
|  | *length = 0; | 
|  | first = true; | 
|  | do { | 
|  | p = xdr_inline_decode(xdr, sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EIO; | 
|  | if (xdr_item_is_absent(p)) | 
|  | break; | 
|  | if (!first) | 
|  | return -EIO; | 
|  |  | 
|  | if (decode_write_chunk(xdr, &chunklen)) | 
|  | return -EIO; | 
|  | *length += chunklen; | 
|  | first = false; | 
|  | } while (true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length) | 
|  | { | 
|  | __be32 *p; | 
|  |  | 
|  | p = xdr_inline_decode(xdr, sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EIO; | 
|  |  | 
|  | *length = 0; | 
|  | if (xdr_item_is_present(p)) | 
|  | if (decode_write_chunk(xdr, length)) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, | 
|  | struct rpc_rqst *rqst) | 
|  | { | 
|  | struct xdr_stream *xdr = &rep->rr_stream; | 
|  | u32 writelist, replychunk, rpclen; | 
|  | char *base; | 
|  |  | 
|  | /* Decode the chunk lists */ | 
|  | if (decode_read_list(xdr)) | 
|  | return -EIO; | 
|  | if (decode_write_list(xdr, &writelist)) | 
|  | return -EIO; | 
|  | if (decode_reply_chunk(xdr, &replychunk)) | 
|  | return -EIO; | 
|  |  | 
|  | /* RDMA_MSG sanity checks */ | 
|  | if (unlikely(replychunk)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */ | 
|  | base = (char *)xdr_inline_decode(xdr, 0); | 
|  | rpclen = xdr_stream_remaining(xdr); | 
|  | r_xprt->rx_stats.fixup_copy_count += | 
|  | rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3); | 
|  |  | 
|  | r_xprt->rx_stats.total_rdma_reply += writelist; | 
|  | return rpclen + xdr_align_size(writelist); | 
|  | } | 
|  |  | 
|  | static noinline int | 
|  | rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) | 
|  | { | 
|  | struct xdr_stream *xdr = &rep->rr_stream; | 
|  | u32 writelist, replychunk; | 
|  |  | 
|  | /* Decode the chunk lists */ | 
|  | if (decode_read_list(xdr)) | 
|  | return -EIO; | 
|  | if (decode_write_list(xdr, &writelist)) | 
|  | return -EIO; | 
|  | if (decode_reply_chunk(xdr, &replychunk)) | 
|  | return -EIO; | 
|  |  | 
|  | /* RDMA_NOMSG sanity checks */ | 
|  | if (unlikely(writelist)) | 
|  | return -EIO; | 
|  | if (unlikely(!replychunk)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Reply chunk buffer already is the reply vector */ | 
|  | r_xprt->rx_stats.total_rdma_reply += replychunk; | 
|  | return replychunk; | 
|  | } | 
|  |  | 
|  | static noinline int | 
|  | rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, | 
|  | struct rpc_rqst *rqst) | 
|  | { | 
|  | struct xdr_stream *xdr = &rep->rr_stream; | 
|  | __be32 *p; | 
|  |  | 
|  | p = xdr_inline_decode(xdr, sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | return -EIO; | 
|  |  | 
|  | switch (*p) { | 
|  | case err_vers: | 
|  | p = xdr_inline_decode(xdr, 2 * sizeof(*p)); | 
|  | if (!p) | 
|  | break; | 
|  | trace_xprtrdma_err_vers(rqst, p, p + 1); | 
|  | break; | 
|  | case err_chunk: | 
|  | trace_xprtrdma_err_chunk(rqst); | 
|  | break; | 
|  | default: | 
|  | trace_xprtrdma_err_unrecognized(rqst, p); | 
|  | } | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_unpin_rqst - Release rqst without completing it | 
|  | * @rep: RPC/RDMA Receive context | 
|  | * | 
|  | * This is done when a connection is lost so that a Reply | 
|  | * can be dropped and its matching Call can be subsequently | 
|  | * retransmitted on a new connection. | 
|  | */ | 
|  | void rpcrdma_unpin_rqst(struct rpcrdma_rep *rep) | 
|  | { | 
|  | struct rpc_xprt *xprt = &rep->rr_rxprt->rx_xprt; | 
|  | struct rpc_rqst *rqst = rep->rr_rqst; | 
|  | struct rpcrdma_req *req = rpcr_to_rdmar(rqst); | 
|  |  | 
|  | req->rl_reply = NULL; | 
|  | rep->rr_rqst = NULL; | 
|  |  | 
|  | spin_lock(&xprt->queue_lock); | 
|  | xprt_unpin_rqst(rqst); | 
|  | spin_unlock(&xprt->queue_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_complete_rqst - Pass completed rqst back to RPC | 
|  | * @rep: RPC/RDMA Receive context | 
|  | * | 
|  | * Reconstruct the RPC reply and complete the transaction | 
|  | * while @rqst is still pinned to ensure the rep, rqst, and | 
|  | * rq_task pointers remain stable. | 
|  | */ | 
|  | void rpcrdma_complete_rqst(struct rpcrdma_rep *rep) | 
|  | { | 
|  | struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; | 
|  | struct rpc_xprt *xprt = &r_xprt->rx_xprt; | 
|  | struct rpc_rqst *rqst = rep->rr_rqst; | 
|  | int status; | 
|  |  | 
|  | switch (rep->rr_proc) { | 
|  | case rdma_msg: | 
|  | status = rpcrdma_decode_msg(r_xprt, rep, rqst); | 
|  | break; | 
|  | case rdma_nomsg: | 
|  | status = rpcrdma_decode_nomsg(r_xprt, rep); | 
|  | break; | 
|  | case rdma_error: | 
|  | status = rpcrdma_decode_error(r_xprt, rep, rqst); | 
|  | break; | 
|  | default: | 
|  | status = -EIO; | 
|  | } | 
|  | if (status < 0) | 
|  | goto out_badheader; | 
|  |  | 
|  | out: | 
|  | spin_lock(&xprt->queue_lock); | 
|  | xprt_complete_rqst(rqst->rq_task, status); | 
|  | xprt_unpin_rqst(rqst); | 
|  | spin_unlock(&xprt->queue_lock); | 
|  | return; | 
|  |  | 
|  | out_badheader: | 
|  | trace_xprtrdma_reply_hdr_err(rep); | 
|  | r_xprt->rx_stats.bad_reply_count++; | 
|  | rqst->rq_task->tk_status = status; | 
|  | status = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static void rpcrdma_reply_done(struct kref *kref) | 
|  | { | 
|  | struct rpcrdma_req *req = | 
|  | container_of(kref, struct rpcrdma_req, rl_kref); | 
|  |  | 
|  | rpcrdma_complete_rqst(req->rl_reply); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpcrdma_reply_handler - Process received RPC/RDMA messages | 
|  | * @rep: Incoming rpcrdma_rep object to process | 
|  | * | 
|  | * Errors must result in the RPC task either being awakened, or | 
|  | * allowed to timeout, to discover the errors at that time. | 
|  | */ | 
|  | void rpcrdma_reply_handler(struct rpcrdma_rep *rep) | 
|  | { | 
|  | struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; | 
|  | struct rpc_xprt *xprt = &r_xprt->rx_xprt; | 
|  | struct rpcrdma_buffer *buf = &r_xprt->rx_buf; | 
|  | struct rpcrdma_req *req; | 
|  | struct rpc_rqst *rqst; | 
|  | u32 credits; | 
|  | __be32 *p; | 
|  |  | 
|  | /* Any data means we had a useful conversation, so | 
|  | * then we don't need to delay the next reconnect. | 
|  | */ | 
|  | if (xprt->reestablish_timeout) | 
|  | xprt->reestablish_timeout = 0; | 
|  |  | 
|  | /* Fixed transport header fields */ | 
|  | xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf, | 
|  | rep->rr_hdrbuf.head[0].iov_base, NULL); | 
|  | p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p)); | 
|  | if (unlikely(!p)) | 
|  | goto out_shortreply; | 
|  | rep->rr_xid = *p++; | 
|  | rep->rr_vers = *p++; | 
|  | credits = be32_to_cpu(*p++); | 
|  | rep->rr_proc = *p++; | 
|  |  | 
|  | if (rep->rr_vers != rpcrdma_version) | 
|  | goto out_badversion; | 
|  |  | 
|  | if (rpcrdma_is_bcall(r_xprt, rep)) | 
|  | return; | 
|  |  | 
|  | /* Match incoming rpcrdma_rep to an rpcrdma_req to | 
|  | * get context for handling any incoming chunks. | 
|  | */ | 
|  | spin_lock(&xprt->queue_lock); | 
|  | rqst = xprt_lookup_rqst(xprt, rep->rr_xid); | 
|  | if (!rqst) | 
|  | goto out_norqst; | 
|  | xprt_pin_rqst(rqst); | 
|  | spin_unlock(&xprt->queue_lock); | 
|  |  | 
|  | if (credits == 0) | 
|  | credits = 1;	/* don't deadlock */ | 
|  | else if (credits > r_xprt->rx_ep->re_max_requests) | 
|  | credits = r_xprt->rx_ep->re_max_requests; | 
|  | rpcrdma_post_recvs(r_xprt, credits + (buf->rb_bc_srv_max_requests << 1), | 
|  | false); | 
|  | if (buf->rb_credits != credits) | 
|  | rpcrdma_update_cwnd(r_xprt, credits); | 
|  |  | 
|  | req = rpcr_to_rdmar(rqst); | 
|  | if (unlikely(req->rl_reply)) | 
|  | rpcrdma_rep_put(buf, req->rl_reply); | 
|  | req->rl_reply = rep; | 
|  | rep->rr_rqst = rqst; | 
|  |  | 
|  | trace_xprtrdma_reply(rqst->rq_task, rep, credits); | 
|  |  | 
|  | if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) | 
|  | frwr_reminv(rep, &req->rl_registered); | 
|  | if (!list_empty(&req->rl_registered)) | 
|  | frwr_unmap_async(r_xprt, req); | 
|  | /* LocalInv completion will complete the RPC */ | 
|  | else | 
|  | kref_put(&req->rl_kref, rpcrdma_reply_done); | 
|  | return; | 
|  |  | 
|  | out_badversion: | 
|  | trace_xprtrdma_reply_vers_err(rep); | 
|  | goto out; | 
|  |  | 
|  | out_norqst: | 
|  | spin_unlock(&xprt->queue_lock); | 
|  | trace_xprtrdma_reply_rqst_err(rep); | 
|  | goto out; | 
|  |  | 
|  | out_shortreply: | 
|  | trace_xprtrdma_reply_short_err(rep); | 
|  |  | 
|  | out: | 
|  | rpcrdma_rep_put(buf, rep); | 
|  | } |