|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | // | 
|  | // Cryptographic API. | 
|  | // | 
|  | // Support for Samsung S5PV210 and Exynos HW acceleration. | 
|  | // | 
|  | // Copyright (C) 2011 NetUP Inc. All rights reserved. | 
|  | // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. | 
|  | // | 
|  | // Hash part based on omap-sham.c driver. | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/scatterlist.h> | 
|  |  | 
|  | #include <crypto/ctr.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/algapi.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  |  | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/md5.h> | 
|  | #include <crypto/sha1.h> | 
|  | #include <crypto/sha2.h> | 
|  | #include <crypto/internal/hash.h> | 
|  |  | 
|  | #define _SBF(s, v)			((v) << (s)) | 
|  |  | 
|  | /* Feed control registers */ | 
|  | #define SSS_REG_FCINTSTAT		0x0000 | 
|  | #define SSS_FCINTSTAT_HPARTINT		BIT(7) | 
|  | #define SSS_FCINTSTAT_HDONEINT		BIT(5) | 
|  | #define SSS_FCINTSTAT_BRDMAINT		BIT(3) | 
|  | #define SSS_FCINTSTAT_BTDMAINT		BIT(2) | 
|  | #define SSS_FCINTSTAT_HRDMAINT		BIT(1) | 
|  | #define SSS_FCINTSTAT_PKDMAINT		BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCINTENSET		0x0004 | 
|  | #define SSS_FCINTENSET_HPARTINTENSET	BIT(7) | 
|  | #define SSS_FCINTENSET_HDONEINTENSET	BIT(5) | 
|  | #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3) | 
|  | #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2) | 
|  | #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1) | 
|  | #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCINTENCLR		0x0008 | 
|  | #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7) | 
|  | #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5) | 
|  | #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3) | 
|  | #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2) | 
|  | #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1) | 
|  | #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCINTPEND		0x000C | 
|  | #define SSS_FCINTPEND_HPARTINTP		BIT(7) | 
|  | #define SSS_FCINTPEND_HDONEINTP		BIT(5) | 
|  | #define SSS_FCINTPEND_BRDMAINTP		BIT(3) | 
|  | #define SSS_FCINTPEND_BTDMAINTP		BIT(2) | 
|  | #define SSS_FCINTPEND_HRDMAINTP		BIT(1) | 
|  | #define SSS_FCINTPEND_PKDMAINTP		BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCFIFOSTAT		0x0010 | 
|  | #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7) | 
|  | #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6) | 
|  | #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5) | 
|  | #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4) | 
|  | #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3) | 
|  | #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2) | 
|  | #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1) | 
|  | #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCFIFOCTRL		0x0014 | 
|  | #define SSS_FCFIFOCTRL_DESSEL		BIT(2) | 
|  | #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00) | 
|  | #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01) | 
|  | #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02) | 
|  | #define SSS_HASHIN_MASK			_SBF(0, 0x03) | 
|  |  | 
|  | #define SSS_REG_FCBRDMAS		0x0020 | 
|  | #define SSS_REG_FCBRDMAL		0x0024 | 
|  | #define SSS_REG_FCBRDMAC		0x0028 | 
|  | #define SSS_FCBRDMAC_BYTESWAP		BIT(1) | 
|  | #define SSS_FCBRDMAC_FLUSH		BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCBTDMAS		0x0030 | 
|  | #define SSS_REG_FCBTDMAL		0x0034 | 
|  | #define SSS_REG_FCBTDMAC		0x0038 | 
|  | #define SSS_FCBTDMAC_BYTESWAP		BIT(1) | 
|  | #define SSS_FCBTDMAC_FLUSH		BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCHRDMAS		0x0040 | 
|  | #define SSS_REG_FCHRDMAL		0x0044 | 
|  | #define SSS_REG_FCHRDMAC		0x0048 | 
|  | #define SSS_FCHRDMAC_BYTESWAP		BIT(1) | 
|  | #define SSS_FCHRDMAC_FLUSH		BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCPKDMAS		0x0050 | 
|  | #define SSS_REG_FCPKDMAL		0x0054 | 
|  | #define SSS_REG_FCPKDMAC		0x0058 | 
|  | #define SSS_FCPKDMAC_BYTESWAP		BIT(3) | 
|  | #define SSS_FCPKDMAC_DESCEND		BIT(2) | 
|  | #define SSS_FCPKDMAC_TRANSMIT		BIT(1) | 
|  | #define SSS_FCPKDMAC_FLUSH		BIT(0) | 
|  |  | 
|  | #define SSS_REG_FCPKDMAO		0x005C | 
|  |  | 
|  | /* AES registers */ | 
|  | #define SSS_REG_AES_CONTROL		0x00 | 
|  | #define SSS_AES_BYTESWAP_DI		BIT(11) | 
|  | #define SSS_AES_BYTESWAP_DO		BIT(10) | 
|  | #define SSS_AES_BYTESWAP_IV		BIT(9) | 
|  | #define SSS_AES_BYTESWAP_CNT		BIT(8) | 
|  | #define SSS_AES_BYTESWAP_KEY		BIT(7) | 
|  | #define SSS_AES_KEY_CHANGE_MODE		BIT(6) | 
|  | #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00) | 
|  | #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01) | 
|  | #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02) | 
|  | #define SSS_AES_FIFO_MODE		BIT(3) | 
|  | #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00) | 
|  | #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01) | 
|  | #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02) | 
|  | #define SSS_AES_MODE_DECRYPT		BIT(0) | 
|  |  | 
|  | #define SSS_REG_AES_STATUS		0x04 | 
|  | #define SSS_AES_BUSY			BIT(2) | 
|  | #define SSS_AES_INPUT_READY		BIT(1) | 
|  | #define SSS_AES_OUTPUT_READY		BIT(0) | 
|  |  | 
|  | #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2)) | 
|  | #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2)) | 
|  | #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2)) | 
|  | #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2)) | 
|  | #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2)) | 
|  |  | 
|  | #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg)) | 
|  | #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg)) | 
|  | #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg)) | 
|  |  | 
|  | #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg) | 
|  | #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \ | 
|  | SSS_AES_REG(dev, reg)) | 
|  |  | 
|  | /* HW engine modes */ | 
|  | #define FLAGS_AES_DECRYPT		BIT(0) | 
|  | #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03) | 
|  | #define FLAGS_AES_CBC			_SBF(1, 0x01) | 
|  | #define FLAGS_AES_CTR			_SBF(1, 0x02) | 
|  |  | 
|  | #define AES_KEY_LEN			16 | 
|  | #define CRYPTO_QUEUE_LEN		1 | 
|  |  | 
|  | /* HASH registers */ | 
|  | #define SSS_REG_HASH_CTRL		0x00 | 
|  |  | 
|  | #define SSS_HASH_USER_IV_EN		BIT(5) | 
|  | #define SSS_HASH_INIT_BIT		BIT(4) | 
|  | #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00) | 
|  | #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01) | 
|  | #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02) | 
|  |  | 
|  | #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03) | 
|  |  | 
|  | #define SSS_REG_HASH_CTRL_PAUSE		0x04 | 
|  |  | 
|  | #define SSS_HASH_PAUSE			BIT(0) | 
|  |  | 
|  | #define SSS_REG_HASH_CTRL_FIFO		0x08 | 
|  |  | 
|  | #define SSS_HASH_FIFO_MODE_DMA		BIT(0) | 
|  | #define SSS_HASH_FIFO_MODE_CPU          0 | 
|  |  | 
|  | #define SSS_REG_HASH_CTRL_SWAP		0x0C | 
|  |  | 
|  | #define SSS_HASH_BYTESWAP_DI		BIT(3) | 
|  | #define SSS_HASH_BYTESWAP_DO		BIT(2) | 
|  | #define SSS_HASH_BYTESWAP_IV		BIT(1) | 
|  | #define SSS_HASH_BYTESWAP_KEY		BIT(0) | 
|  |  | 
|  | #define SSS_REG_HASH_STATUS		0x10 | 
|  |  | 
|  | #define SSS_HASH_STATUS_MSG_DONE	BIT(6) | 
|  | #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4) | 
|  | #define SSS_HASH_STATUS_BUFFER_READY	BIT(0) | 
|  |  | 
|  | #define SSS_REG_HASH_MSG_SIZE_LOW	0x20 | 
|  | #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24 | 
|  |  | 
|  | #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28 | 
|  | #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C | 
|  |  | 
|  | #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2)) | 
|  | #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2)) | 
|  |  | 
|  | #define HASH_BLOCK_SIZE			64 | 
|  | #define HASH_REG_SIZEOF			4 | 
|  | #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF) | 
|  | #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) | 
|  | #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) | 
|  |  | 
|  | /* | 
|  | * HASH bit numbers, used by device, setting in dev->hash_flags with | 
|  | * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), | 
|  | * to keep HASH state BUSY or FREE, or to signal state from irq_handler | 
|  | * to hash_tasklet. SGS keep track of allocated memory for scatterlist | 
|  | */ | 
|  | #define HASH_FLAGS_BUSY		0 | 
|  | #define HASH_FLAGS_FINAL	1 | 
|  | #define HASH_FLAGS_DMA_ACTIVE	2 | 
|  | #define HASH_FLAGS_OUTPUT_READY	3 | 
|  | #define HASH_FLAGS_DMA_READY	4 | 
|  | #define HASH_FLAGS_SGS_COPIED	5 | 
|  | #define HASH_FLAGS_SGS_ALLOCED	6 | 
|  |  | 
|  | /* HASH HW constants */ | 
|  | #define BUFLEN			HASH_BLOCK_SIZE | 
|  |  | 
|  | #define SSS_HASH_QUEUE_LENGTH	10 | 
|  |  | 
|  | /** | 
|  | * struct samsung_aes_variant - platform specific SSS driver data | 
|  | * @aes_offset: AES register offset from SSS module's base. | 
|  | * @hash_offset: HASH register offset from SSS module's base. | 
|  | * @clk_names: names of clocks needed to run SSS IP | 
|  | * | 
|  | * Specifies platform specific configuration of SSS module. | 
|  | * Note: A structure for driver specific platform data is used for future | 
|  | * expansion of its usage. | 
|  | */ | 
|  | struct samsung_aes_variant { | 
|  | unsigned int			aes_offset; | 
|  | unsigned int			hash_offset; | 
|  | const char			*clk_names[2]; | 
|  | }; | 
|  |  | 
|  | struct s5p_aes_reqctx { | 
|  | unsigned long			mode; | 
|  | }; | 
|  |  | 
|  | struct s5p_aes_ctx { | 
|  | struct s5p_aes_dev		*dev; | 
|  |  | 
|  | u8				aes_key[AES_MAX_KEY_SIZE]; | 
|  | u8				nonce[CTR_RFC3686_NONCE_SIZE]; | 
|  | int				keylen; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct s5p_aes_dev - Crypto device state container | 
|  | * @dev:	Associated device | 
|  | * @clk:	Clock for accessing hardware | 
|  | * @pclk:	APB bus clock necessary to access the hardware | 
|  | * @ioaddr:	Mapped IO memory region | 
|  | * @aes_ioaddr:	Per-varian offset for AES block IO memory | 
|  | * @irq_fc:	Feed control interrupt line | 
|  | * @req:	Crypto request currently handled by the device | 
|  | * @ctx:	Configuration for currently handled crypto request | 
|  | * @sg_src:	Scatter list with source data for currently handled block | 
|  | *		in device.  This is DMA-mapped into device. | 
|  | * @sg_dst:	Scatter list with destination data for currently handled block | 
|  | *		in device. This is DMA-mapped into device. | 
|  | * @sg_src_cpy:	In case of unaligned access, copied scatter list | 
|  | *		with source data. | 
|  | * @sg_dst_cpy:	In case of unaligned access, copied scatter list | 
|  | *		with destination data. | 
|  | * @tasklet:	New request scheduling jib | 
|  | * @queue:	Crypto queue | 
|  | * @busy:	Indicates whether the device is currently handling some request | 
|  | *		thus it uses some of the fields from this state, like: | 
|  | *		req, ctx, sg_src/dst (and copies).  This essentially | 
|  | *		protects against concurrent access to these fields. | 
|  | * @lock:	Lock for protecting both access to device hardware registers | 
|  | *		and fields related to current request (including the busy field). | 
|  | * @res:	Resources for hash. | 
|  | * @io_hash_base: Per-variant offset for HASH block IO memory. | 
|  | * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags | 
|  | *		variable. | 
|  | * @hash_flags:	Flags for current HASH op. | 
|  | * @hash_queue:	Async hash queue. | 
|  | * @hash_tasklet: New HASH request scheduling job. | 
|  | * @xmit_buf:	Buffer for current HASH request transfer into SSS block. | 
|  | * @hash_req:	Current request sending to SSS HASH block. | 
|  | * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. | 
|  | * @hash_sg_cnt: Counter for hash_sg_iter. | 
|  | * | 
|  | * @use_hash:	true if HASH algs enabled | 
|  | */ | 
|  | struct s5p_aes_dev { | 
|  | struct device			*dev; | 
|  | struct clk			*clk; | 
|  | struct clk			*pclk; | 
|  | void __iomem			*ioaddr; | 
|  | void __iomem			*aes_ioaddr; | 
|  | int				irq_fc; | 
|  |  | 
|  | struct skcipher_request		*req; | 
|  | struct s5p_aes_ctx		*ctx; | 
|  | struct scatterlist		*sg_src; | 
|  | struct scatterlist		*sg_dst; | 
|  |  | 
|  | struct scatterlist		*sg_src_cpy; | 
|  | struct scatterlist		*sg_dst_cpy; | 
|  |  | 
|  | struct tasklet_struct		tasklet; | 
|  | struct crypto_queue		queue; | 
|  | bool				busy; | 
|  | spinlock_t			lock; | 
|  |  | 
|  | struct resource			*res; | 
|  | void __iomem			*io_hash_base; | 
|  |  | 
|  | spinlock_t			hash_lock; /* protect hash_ vars */ | 
|  | unsigned long			hash_flags; | 
|  | struct crypto_queue		hash_queue; | 
|  | struct tasklet_struct		hash_tasklet; | 
|  |  | 
|  | u8				xmit_buf[BUFLEN]; | 
|  | struct ahash_request		*hash_req; | 
|  | struct scatterlist		*hash_sg_iter; | 
|  | unsigned int			hash_sg_cnt; | 
|  |  | 
|  | bool				use_hash; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct s5p_hash_reqctx - HASH request context | 
|  | * @dd:		Associated device | 
|  | * @op_update:	Current request operation (OP_UPDATE or OP_FINAL) | 
|  | * @digcnt:	Number of bytes processed by HW (without buffer[] ones) | 
|  | * @digest:	Digest message or IV for partial result | 
|  | * @nregs:	Number of HW registers for digest or IV read/write | 
|  | * @engine:	Bits for selecting type of HASH in SSS block | 
|  | * @sg:		sg for DMA transfer | 
|  | * @sg_len:	Length of sg for DMA transfer | 
|  | * @sgl:	sg for joining buffer and req->src scatterlist | 
|  | * @skip:	Skip offset in req->src for current op | 
|  | * @total:	Total number of bytes for current request | 
|  | * @finup:	Keep state for finup or final. | 
|  | * @error:	Keep track of error. | 
|  | * @bufcnt:	Number of bytes holded in buffer[] | 
|  | * @buffer:	For byte(s) from end of req->src in UPDATE op | 
|  | */ | 
|  | struct s5p_hash_reqctx { | 
|  | struct s5p_aes_dev	*dd; | 
|  | bool			op_update; | 
|  |  | 
|  | u64			digcnt; | 
|  | u8			digest[SHA256_DIGEST_SIZE]; | 
|  |  | 
|  | unsigned int		nregs; /* digest_size / sizeof(reg) */ | 
|  | u32			engine; | 
|  |  | 
|  | struct scatterlist	*sg; | 
|  | unsigned int		sg_len; | 
|  | struct scatterlist	sgl[2]; | 
|  | unsigned int		skip; | 
|  | unsigned int		total; | 
|  | bool			finup; | 
|  | bool			error; | 
|  |  | 
|  | u32			bufcnt; | 
|  | u8			buffer[]; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct s5p_hash_ctx - HASH transformation context | 
|  | * @dd:		Associated device | 
|  | * @flags:	Bits for algorithm HASH. | 
|  | * @fallback:	Software transformation for zero message or size < BUFLEN. | 
|  | */ | 
|  | struct s5p_hash_ctx { | 
|  | struct s5p_aes_dev	*dd; | 
|  | unsigned long		flags; | 
|  | struct crypto_shash	*fallback; | 
|  | }; | 
|  |  | 
|  | static const struct samsung_aes_variant s5p_aes_data = { | 
|  | .aes_offset	= 0x4000, | 
|  | .hash_offset	= 0x6000, | 
|  | .clk_names	= { "secss", }, | 
|  | }; | 
|  |  | 
|  | static const struct samsung_aes_variant exynos_aes_data = { | 
|  | .aes_offset	= 0x200, | 
|  | .hash_offset	= 0x400, | 
|  | .clk_names	= { "secss", }, | 
|  | }; | 
|  |  | 
|  | static const struct samsung_aes_variant exynos5433_slim_aes_data = { | 
|  | .aes_offset	= 0x400, | 
|  | .hash_offset	= 0x800, | 
|  | .clk_names	= { "aclk", "pclk", }, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id s5p_sss_dt_match[] = { | 
|  | { | 
|  | .compatible = "samsung,s5pv210-secss", | 
|  | .data = &s5p_aes_data, | 
|  | }, | 
|  | { | 
|  | .compatible = "samsung,exynos4210-secss", | 
|  | .data = &exynos_aes_data, | 
|  | }, | 
|  | { | 
|  | .compatible = "samsung,exynos5433-slim-sss", | 
|  | .data = &exynos5433_slim_aes_data, | 
|  | }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); | 
|  |  | 
|  | static inline const struct samsung_aes_variant *find_s5p_sss_version | 
|  | (const struct platform_device *pdev) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) | 
|  | return of_device_get_match_data(&pdev->dev); | 
|  |  | 
|  | return (const struct samsung_aes_variant *) | 
|  | platform_get_device_id(pdev)->driver_data; | 
|  | } | 
|  |  | 
|  | static struct s5p_aes_dev *s5p_dev; | 
|  |  | 
|  | static void s5p_set_dma_indata(struct s5p_aes_dev *dev, | 
|  | const struct scatterlist *sg) | 
|  | { | 
|  | SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); | 
|  | SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); | 
|  | } | 
|  |  | 
|  | static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, | 
|  | const struct scatterlist *sg) | 
|  | { | 
|  | SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); | 
|  | SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); | 
|  | } | 
|  |  | 
|  | static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) | 
|  | { | 
|  | int len; | 
|  |  | 
|  | if (!*sg) | 
|  | return; | 
|  |  | 
|  | len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); | 
|  | free_pages((unsigned long)sg_virt(*sg), get_order(len)); | 
|  |  | 
|  | kfree(*sg); | 
|  | *sg = NULL; | 
|  | } | 
|  |  | 
|  | static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg, | 
|  | unsigned int nbytes, int out) | 
|  | { | 
|  | struct scatter_walk walk; | 
|  |  | 
|  | if (!nbytes) | 
|  | return; | 
|  |  | 
|  | scatterwalk_start(&walk, sg); | 
|  | scatterwalk_copychunks(buf, &walk, nbytes, out); | 
|  | scatterwalk_done(&walk, out, 0); | 
|  | } | 
|  |  | 
|  | static void s5p_sg_done(struct s5p_aes_dev *dev) | 
|  | { | 
|  | struct skcipher_request *req = dev->req; | 
|  | struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); | 
|  |  | 
|  | if (dev->sg_dst_cpy) { | 
|  | dev_dbg(dev->dev, | 
|  | "Copying %d bytes of output data back to original place\n", | 
|  | dev->req->cryptlen); | 
|  | s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst, | 
|  | dev->req->cryptlen, 1); | 
|  | } | 
|  | s5p_free_sg_cpy(dev, &dev->sg_src_cpy); | 
|  | s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); | 
|  | if (reqctx->mode & FLAGS_AES_CBC) | 
|  | memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE); | 
|  |  | 
|  | else if (reqctx->mode & FLAGS_AES_CTR) | 
|  | memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | /* Calls the completion. Cannot be called with dev->lock hold. */ | 
|  | static void s5p_aes_complete(struct skcipher_request *req, int err) | 
|  | { | 
|  | skcipher_request_complete(req, err); | 
|  | } | 
|  |  | 
|  | static void s5p_unset_outdata(struct s5p_aes_dev *dev) | 
|  | { | 
|  | dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | static void s5p_unset_indata(struct s5p_aes_dev *dev) | 
|  | { | 
|  | dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, | 
|  | struct scatterlist **dst) | 
|  | { | 
|  | void *pages; | 
|  | int len; | 
|  |  | 
|  | *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); | 
|  | if (!*dst) | 
|  | return -ENOMEM; | 
|  |  | 
|  | len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); | 
|  | pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); | 
|  | if (!pages) { | 
|  | kfree(*dst); | 
|  | *dst = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0); | 
|  |  | 
|  | sg_init_table(*dst, 1); | 
|  | sg_set_buf(*dst, pages, len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) | 
|  | { | 
|  | if (!sg->length) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev->sg_dst = sg; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) | 
|  | { | 
|  | if (!sg->length) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev->sg_src = sg; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns -ERRNO on error (mapping of new data failed). | 
|  | * On success returns: | 
|  | *  - 0 if there is no more data, | 
|  | *  - 1 if new transmitting (output) data is ready and its address+length | 
|  | *     have to be written to device (by calling s5p_set_dma_outdata()). | 
|  | */ | 
|  | static int s5p_aes_tx(struct s5p_aes_dev *dev) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | s5p_unset_outdata(dev); | 
|  |  | 
|  | if (!sg_is_last(dev->sg_dst)) { | 
|  | ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); | 
|  | if (!ret) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns -ERRNO on error (mapping of new data failed). | 
|  | * On success returns: | 
|  | *  - 0 if there is no more data, | 
|  | *  - 1 if new receiving (input) data is ready and its address+length | 
|  | *     have to be written to device (by calling s5p_set_dma_indata()). | 
|  | */ | 
|  | static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | s5p_unset_indata(dev); | 
|  |  | 
|  | if (!sg_is_last(dev->sg_src)) { | 
|  | ret = s5p_set_indata(dev, sg_next(dev->sg_src)); | 
|  | if (!ret) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) | 
|  | { | 
|  | return __raw_readl(dd->io_hash_base + offset); | 
|  | } | 
|  |  | 
|  | static inline void s5p_hash_write(struct s5p_aes_dev *dd, | 
|  | u32 offset, u32 value) | 
|  | { | 
|  | __raw_writel(value, dd->io_hash_base + offset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_set_dma_hashdata() - start DMA with sg | 
|  | * @dev:	device | 
|  | * @sg:		scatterlist ready to DMA transmit | 
|  | */ | 
|  | static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, | 
|  | const struct scatterlist *sg) | 
|  | { | 
|  | dev->hash_sg_cnt--; | 
|  | SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); | 
|  | SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_rx() - get next hash_sg_iter | 
|  | * @dev:	device | 
|  | * | 
|  | * Return: | 
|  | * 2	if there is no more data and it is UPDATE op | 
|  | * 1	if new receiving (input) data is ready and can be written to device | 
|  | * 0	if there is no more data and it is FINAL op | 
|  | */ | 
|  | static int s5p_hash_rx(struct s5p_aes_dev *dev) | 
|  | { | 
|  | if (dev->hash_sg_cnt > 0) { | 
|  | dev->hash_sg_iter = sg_next(dev->hash_sg_iter); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); | 
|  | if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) | 
|  | return 0; | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct platform_device *pdev = dev_id; | 
|  | struct s5p_aes_dev *dev = platform_get_drvdata(pdev); | 
|  | struct skcipher_request *req; | 
|  | int err_dma_tx = 0; | 
|  | int err_dma_rx = 0; | 
|  | int err_dma_hx = 0; | 
|  | bool tx_end = false; | 
|  | bool hx_end = false; | 
|  | unsigned long flags; | 
|  | u32 status, st_bits; | 
|  | int err; | 
|  |  | 
|  | spin_lock_irqsave(&dev->lock, flags); | 
|  |  | 
|  | /* | 
|  | * Handle rx or tx interrupt. If there is still data (scatterlist did not | 
|  | * reach end), then map next scatterlist entry. | 
|  | * In case of such mapping error, s5p_aes_complete() should be called. | 
|  | * | 
|  | * If there is no more data in tx scatter list, call s5p_aes_complete() | 
|  | * and schedule new tasklet. | 
|  | * | 
|  | * Handle hx interrupt. If there is still data map next entry. | 
|  | */ | 
|  | status = SSS_READ(dev, FCINTSTAT); | 
|  | if (status & SSS_FCINTSTAT_BRDMAINT) | 
|  | err_dma_rx = s5p_aes_rx(dev); | 
|  |  | 
|  | if (status & SSS_FCINTSTAT_BTDMAINT) { | 
|  | if (sg_is_last(dev->sg_dst)) | 
|  | tx_end = true; | 
|  | err_dma_tx = s5p_aes_tx(dev); | 
|  | } | 
|  |  | 
|  | if (status & SSS_FCINTSTAT_HRDMAINT) | 
|  | err_dma_hx = s5p_hash_rx(dev); | 
|  |  | 
|  | st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | | 
|  | SSS_FCINTSTAT_HRDMAINT); | 
|  | /* clear DMA bits */ | 
|  | SSS_WRITE(dev, FCINTPEND, st_bits); | 
|  |  | 
|  | /* clear HASH irq bits */ | 
|  | if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { | 
|  | /* cannot have both HPART and HDONE */ | 
|  | if (status & SSS_FCINTSTAT_HPARTINT) | 
|  | st_bits = SSS_HASH_STATUS_PARTIAL_DONE; | 
|  |  | 
|  | if (status & SSS_FCINTSTAT_HDONEINT) | 
|  | st_bits = SSS_HASH_STATUS_MSG_DONE; | 
|  |  | 
|  | set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); | 
|  | s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); | 
|  | hx_end = true; | 
|  | /* when DONE or PART, do not handle HASH DMA */ | 
|  | err_dma_hx = 0; | 
|  | } | 
|  |  | 
|  | if (err_dma_rx < 0) { | 
|  | err = err_dma_rx; | 
|  | goto error; | 
|  | } | 
|  | if (err_dma_tx < 0) { | 
|  | err = err_dma_tx; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (tx_end) { | 
|  | s5p_sg_done(dev); | 
|  | if (err_dma_hx == 1) | 
|  | s5p_set_dma_hashdata(dev, dev->hash_sg_iter); | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  |  | 
|  | s5p_aes_complete(dev->req, 0); | 
|  | /* Device is still busy */ | 
|  | tasklet_schedule(&dev->tasklet); | 
|  | } else { | 
|  | /* | 
|  | * Writing length of DMA block (either receiving or | 
|  | * transmitting) will start the operation immediately, so this | 
|  | * should be done at the end (even after clearing pending | 
|  | * interrupts to not miss the interrupt). | 
|  | */ | 
|  | if (err_dma_tx == 1) | 
|  | s5p_set_dma_outdata(dev, dev->sg_dst); | 
|  | if (err_dma_rx == 1) | 
|  | s5p_set_dma_indata(dev, dev->sg_src); | 
|  | if (err_dma_hx == 1) | 
|  | s5p_set_dma_hashdata(dev, dev->hash_sg_iter); | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  | } | 
|  |  | 
|  | goto hash_irq_end; | 
|  |  | 
|  | error: | 
|  | s5p_sg_done(dev); | 
|  | dev->busy = false; | 
|  | req = dev->req; | 
|  | if (err_dma_hx == 1) | 
|  | s5p_set_dma_hashdata(dev, dev->hash_sg_iter); | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  | s5p_aes_complete(req, err); | 
|  |  | 
|  | hash_irq_end: | 
|  | /* | 
|  | * Note about else if: | 
|  | *   when hash_sg_iter reaches end and its UPDATE op, | 
|  | *   issue SSS_HASH_PAUSE and wait for HPART irq | 
|  | */ | 
|  | if (hx_end) | 
|  | tasklet_schedule(&dev->hash_tasklet); | 
|  | else if (err_dma_hx == 2) | 
|  | s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, | 
|  | SSS_HASH_PAUSE); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_read_msg() - read message or IV from HW | 
|  | * @req:	AHASH request | 
|  | */ | 
|  | static void s5p_hash_read_msg(struct ahash_request *req) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | struct s5p_aes_dev *dd = ctx->dd; | 
|  | u32 *hash = (u32 *)ctx->digest; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ctx->nregs; i++) | 
|  | hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. | 
|  | * @dd:		device | 
|  | * @ctx:	request context | 
|  | */ | 
|  | static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, | 
|  | const struct s5p_hash_reqctx *ctx) | 
|  | { | 
|  | const u32 *hash = (const u32 *)ctx->digest; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ctx->nregs; i++) | 
|  | s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_write_iv() - write IV for next partial/finup op. | 
|  | * @req:	AHASH request | 
|  | */ | 
|  | static void s5p_hash_write_iv(struct ahash_request *req) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  |  | 
|  | s5p_hash_write_ctx_iv(ctx->dd, ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_copy_result() - copy digest into req->result | 
|  | * @req:	AHASH request | 
|  | */ | 
|  | static void s5p_hash_copy_result(struct ahash_request *req) | 
|  | { | 
|  | const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  |  | 
|  | if (!req->result) | 
|  | return; | 
|  |  | 
|  | memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_dma_flush() - flush HASH DMA | 
|  | * @dev:	secss device | 
|  | */ | 
|  | static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) | 
|  | { | 
|  | SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_dma_enable() - enable DMA mode for HASH | 
|  | * @dev:	secss device | 
|  | * | 
|  | * enable DMA mode for HASH | 
|  | */ | 
|  | static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) | 
|  | { | 
|  | s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_irq_disable() - disable irq HASH signals | 
|  | * @dev:	secss device | 
|  | * @flags:	bitfield with irq's to be disabled | 
|  | */ | 
|  | static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) | 
|  | { | 
|  | SSS_WRITE(dev, FCINTENCLR, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_irq_enable() - enable irq signals | 
|  | * @dev:	secss device | 
|  | * @flags:	bitfield with irq's to be enabled | 
|  | */ | 
|  | static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) | 
|  | { | 
|  | SSS_WRITE(dev, FCINTENSET, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH | 
|  | * @dev:	secss device | 
|  | * @hashflow:	HASH stream flow with/without crypto AES/DES | 
|  | */ | 
|  | static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 flow; | 
|  |  | 
|  | spin_lock_irqsave(&dev->lock, flags); | 
|  |  | 
|  | flow = SSS_READ(dev, FCFIFOCTRL); | 
|  | flow &= ~SSS_HASHIN_MASK; | 
|  | flow |= hashflow; | 
|  | SSS_WRITE(dev, FCFIFOCTRL, flow); | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS | 
|  | * @dev:	secss device | 
|  | * @hashflow:	HASH stream flow with/without AES/DES | 
|  | * | 
|  | * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, | 
|  | * enable HASH irq's HRDMA, HDONE, HPART | 
|  | */ | 
|  | static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) | 
|  | { | 
|  | s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | | 
|  | SSS_FCINTENCLR_HDONEINTENCLR | | 
|  | SSS_FCINTENCLR_HPARTINTENCLR); | 
|  | s5p_hash_dma_flush(dev); | 
|  |  | 
|  | s5p_hash_dma_enable(dev); | 
|  | s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); | 
|  | s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | | 
|  | SSS_FCINTENSET_HDONEINTENSET | | 
|  | SSS_FCINTENSET_HPARTINTENSET); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing | 
|  | * @dd:		secss device | 
|  | * @length:	length for request | 
|  | * @final:	true if final op | 
|  | * | 
|  | * Prepare SSS HASH block for processing bytes in DMA mode. If it is called | 
|  | * after previous updates, fill up IV words. For final, calculate and set | 
|  | * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH | 
|  | * length as 2^63 so it will be never reached and set to zero prelow and | 
|  | * prehigh. | 
|  | * | 
|  | * This function does not start DMA transfer. | 
|  | */ | 
|  | static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, | 
|  | bool final) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); | 
|  | u32 prelow, prehigh, low, high; | 
|  | u32 configflags, swapflags; | 
|  | u64 tmplen; | 
|  |  | 
|  | configflags = ctx->engine | SSS_HASH_INIT_BIT; | 
|  |  | 
|  | if (likely(ctx->digcnt)) { | 
|  | s5p_hash_write_ctx_iv(dd, ctx); | 
|  | configflags |= SSS_HASH_USER_IV_EN; | 
|  | } | 
|  |  | 
|  | if (final) { | 
|  | /* number of bytes for last part */ | 
|  | low = length; | 
|  | high = 0; | 
|  | /* total number of bits prev hashed */ | 
|  | tmplen = ctx->digcnt * 8; | 
|  | prelow = (u32)tmplen; | 
|  | prehigh = (u32)(tmplen >> 32); | 
|  | } else { | 
|  | prelow = 0; | 
|  | prehigh = 0; | 
|  | low = 0; | 
|  | high = BIT(31); | 
|  | } | 
|  |  | 
|  | swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | | 
|  | SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; | 
|  |  | 
|  | s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); | 
|  | s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); | 
|  | s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); | 
|  | s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); | 
|  |  | 
|  | s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); | 
|  | s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_xmit_dma() - start DMA hash processing | 
|  | * @dd:		secss device | 
|  | * @length:	length for request | 
|  | * @final:	true if final op | 
|  | * | 
|  | * Update digcnt here, as it is needed for finup/final op. | 
|  | */ | 
|  | static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, | 
|  | bool final) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); | 
|  | unsigned int cnt; | 
|  |  | 
|  | cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); | 
|  | if (!cnt) { | 
|  | dev_err(dd->dev, "dma_map_sg error\n"); | 
|  | ctx->error = true; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); | 
|  | dd->hash_sg_iter = ctx->sg; | 
|  | dd->hash_sg_cnt = cnt; | 
|  | s5p_hash_write_ctrl(dd, length, final); | 
|  | ctx->digcnt += length; | 
|  | ctx->total -= length; | 
|  |  | 
|  | /* catch last interrupt */ | 
|  | if (final) | 
|  | set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); | 
|  |  | 
|  | s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ | 
|  |  | 
|  | return -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_copy_sgs() - copy request's bytes into new buffer | 
|  | * @ctx:	request context | 
|  | * @sg:		source scatterlist request | 
|  | * @new_len:	number of bytes to process from sg | 
|  | * | 
|  | * Allocate new buffer, copy data for HASH into it. If there was xmit_buf | 
|  | * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] | 
|  | * with allocated buffer. | 
|  | * | 
|  | * Set bit in dd->hash_flag so we can free it after irq ends processing. | 
|  | */ | 
|  | static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, | 
|  | struct scatterlist *sg, unsigned int new_len) | 
|  | { | 
|  | unsigned int pages, len; | 
|  | void *buf; | 
|  |  | 
|  | len = new_len + ctx->bufcnt; | 
|  | pages = get_order(len); | 
|  |  | 
|  | buf = (void *)__get_free_pages(GFP_ATOMIC, pages); | 
|  | if (!buf) { | 
|  | dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); | 
|  | ctx->error = true; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (ctx->bufcnt) | 
|  | memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); | 
|  |  | 
|  | scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip, | 
|  | new_len, 0); | 
|  | sg_init_table(ctx->sgl, 1); | 
|  | sg_set_buf(ctx->sgl, buf, len); | 
|  | ctx->sg = ctx->sgl; | 
|  | ctx->sg_len = 1; | 
|  | ctx->bufcnt = 0; | 
|  | ctx->skip = 0; | 
|  | set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy | 
|  | * @ctx:	request context | 
|  | * @sg:		source scatterlist request | 
|  | * @new_len:	number of bytes to process from sg | 
|  | * | 
|  | * Allocate new scatterlist table, copy data for HASH into it. If there was | 
|  | * xmit_buf filled, prepare it first, then copy page, length and offset from | 
|  | * source sg into it, adjusting begin and/or end for skip offset and | 
|  | * hash_later value. | 
|  | * | 
|  | * Resulting sg table will be assigned to ctx->sg. Set flag so we can free | 
|  | * it after irq ends processing. | 
|  | */ | 
|  | static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, | 
|  | struct scatterlist *sg, unsigned int new_len) | 
|  | { | 
|  | unsigned int skip = ctx->skip, n = sg_nents(sg); | 
|  | struct scatterlist *tmp; | 
|  | unsigned int len; | 
|  |  | 
|  | if (ctx->bufcnt) | 
|  | n++; | 
|  |  | 
|  | ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); | 
|  | if (!ctx->sg) { | 
|  | ctx->error = true; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sg_init_table(ctx->sg, n); | 
|  |  | 
|  | tmp = ctx->sg; | 
|  |  | 
|  | ctx->sg_len = 0; | 
|  |  | 
|  | if (ctx->bufcnt) { | 
|  | sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); | 
|  | tmp = sg_next(tmp); | 
|  | ctx->sg_len++; | 
|  | } | 
|  |  | 
|  | while (sg && skip >= sg->length) { | 
|  | skip -= sg->length; | 
|  | sg = sg_next(sg); | 
|  | } | 
|  |  | 
|  | while (sg && new_len) { | 
|  | len = sg->length - skip; | 
|  | if (new_len < len) | 
|  | len = new_len; | 
|  |  | 
|  | new_len -= len; | 
|  | sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); | 
|  | skip = 0; | 
|  | if (new_len <= 0) | 
|  | sg_mark_end(tmp); | 
|  |  | 
|  | tmp = sg_next(tmp); | 
|  | ctx->sg_len++; | 
|  | sg = sg_next(sg); | 
|  | } | 
|  |  | 
|  | set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_prepare_sgs() - prepare sg for processing | 
|  | * @ctx:	request context | 
|  | * @sg:		source scatterlist request | 
|  | * @new_len:	number of bytes to process from sg | 
|  | * @final:	final flag | 
|  | * | 
|  | * Check two conditions: (1) if buffers in sg have len aligned data, and (2) | 
|  | * sg table have good aligned elements (list_ok). If one of this checks fails, | 
|  | * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy | 
|  | * data into this buffer and prepare request in sgl, or (2) allocates new sg | 
|  | * table and prepare sg elements. | 
|  | * | 
|  | * For digest or finup all conditions can be good, and we may not need any | 
|  | * fixes. | 
|  | */ | 
|  | static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, | 
|  | struct scatterlist *sg, | 
|  | unsigned int new_len, bool final) | 
|  | { | 
|  | unsigned int skip = ctx->skip, nbytes = new_len, n = 0; | 
|  | bool aligned = true, list_ok = true; | 
|  | struct scatterlist *sg_tmp = sg; | 
|  |  | 
|  | if (!sg || !sg->length || !new_len) | 
|  | return 0; | 
|  |  | 
|  | if (skip || !final) | 
|  | list_ok = false; | 
|  |  | 
|  | while (nbytes > 0 && sg_tmp) { | 
|  | n++; | 
|  | if (skip >= sg_tmp->length) { | 
|  | skip -= sg_tmp->length; | 
|  | if (!sg_tmp->length) { | 
|  | aligned = false; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { | 
|  | aligned = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (nbytes < sg_tmp->length - skip) { | 
|  | list_ok = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | nbytes -= sg_tmp->length - skip; | 
|  | skip = 0; | 
|  | } | 
|  |  | 
|  | sg_tmp = sg_next(sg_tmp); | 
|  | } | 
|  |  | 
|  | if (!aligned) | 
|  | return s5p_hash_copy_sgs(ctx, sg, new_len); | 
|  | else if (!list_ok) | 
|  | return s5p_hash_copy_sg_lists(ctx, sg, new_len); | 
|  |  | 
|  | /* | 
|  | * Have aligned data from previous operation and/or current | 
|  | * Note: will enter here only if (digest or finup) and aligned | 
|  | */ | 
|  | if (ctx->bufcnt) { | 
|  | ctx->sg_len = n; | 
|  | sg_init_table(ctx->sgl, 2); | 
|  | sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); | 
|  | sg_chain(ctx->sgl, 2, sg); | 
|  | ctx->sg = ctx->sgl; | 
|  | ctx->sg_len++; | 
|  | } else { | 
|  | ctx->sg = sg; | 
|  | ctx->sg_len = n; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_prepare_request() - prepare request for processing | 
|  | * @req:	AHASH request | 
|  | * @update:	true if UPDATE op | 
|  | * | 
|  | * Note 1: we can have update flag _and_ final flag at the same time. | 
|  | * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or | 
|  | *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or | 
|  | *	   we have final op | 
|  | */ | 
|  | static int s5p_hash_prepare_request(struct ahash_request *req, bool update) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | bool final = ctx->finup; | 
|  | int xmit_len, hash_later, nbytes; | 
|  | int ret; | 
|  |  | 
|  | if (update) | 
|  | nbytes = req->nbytes; | 
|  | else | 
|  | nbytes = 0; | 
|  |  | 
|  | ctx->total = nbytes + ctx->bufcnt; | 
|  | if (!ctx->total) | 
|  | return 0; | 
|  |  | 
|  | if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { | 
|  | /* bytes left from previous request, so fill up to BUFLEN */ | 
|  | int len = BUFLEN - ctx->bufcnt % BUFLEN; | 
|  |  | 
|  | if (len > nbytes) | 
|  | len = nbytes; | 
|  |  | 
|  | scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, | 
|  | 0, len, 0); | 
|  | ctx->bufcnt += len; | 
|  | nbytes -= len; | 
|  | ctx->skip = len; | 
|  | } else { | 
|  | ctx->skip = 0; | 
|  | } | 
|  |  | 
|  | if (ctx->bufcnt) | 
|  | memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); | 
|  |  | 
|  | xmit_len = ctx->total; | 
|  | if (final) { | 
|  | hash_later = 0; | 
|  | } else { | 
|  | if (IS_ALIGNED(xmit_len, BUFLEN)) | 
|  | xmit_len -= BUFLEN; | 
|  | else | 
|  | xmit_len -= xmit_len & (BUFLEN - 1); | 
|  |  | 
|  | hash_later = ctx->total - xmit_len; | 
|  | /* copy hash_later bytes from end of req->src */ | 
|  | /* previous bytes are in xmit_buf, so no overwrite */ | 
|  | scatterwalk_map_and_copy(ctx->buffer, req->src, | 
|  | req->nbytes - hash_later, | 
|  | hash_later, 0); | 
|  | } | 
|  |  | 
|  | if (xmit_len > BUFLEN) { | 
|  | ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, | 
|  | final); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | /* have buffered data only */ | 
|  | if (unlikely(!ctx->bufcnt)) { | 
|  | /* first update didn't fill up buffer */ | 
|  | scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src, | 
|  | 0, xmit_len, 0); | 
|  | } | 
|  |  | 
|  | sg_init_table(ctx->sgl, 1); | 
|  | sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); | 
|  |  | 
|  | ctx->sg = ctx->sgl; | 
|  | ctx->sg_len = 1; | 
|  | } | 
|  |  | 
|  | ctx->bufcnt = hash_later; | 
|  | if (!final) | 
|  | ctx->total = xmit_len; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_update_dma_stop() - unmap DMA | 
|  | * @dd:		secss device | 
|  | * | 
|  | * Unmap scatterlist ctx->sg. | 
|  | */ | 
|  | static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) | 
|  | { | 
|  | const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); | 
|  |  | 
|  | dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); | 
|  | clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_finish() - copy calculated digest to crypto layer | 
|  | * @req:	AHASH request | 
|  | */ | 
|  | static void s5p_hash_finish(struct ahash_request *req) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | struct s5p_aes_dev *dd = ctx->dd; | 
|  |  | 
|  | if (ctx->digcnt) | 
|  | s5p_hash_copy_result(req); | 
|  |  | 
|  | dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_finish_req() - finish request | 
|  | * @req:	AHASH request | 
|  | * @err:	error | 
|  | */ | 
|  | static void s5p_hash_finish_req(struct ahash_request *req, int err) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | struct s5p_aes_dev *dd = ctx->dd; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) | 
|  | free_pages((unsigned long)sg_virt(ctx->sg), | 
|  | get_order(ctx->sg->length)); | 
|  |  | 
|  | if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) | 
|  | kfree(ctx->sg); | 
|  |  | 
|  | ctx->sg = NULL; | 
|  | dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | | 
|  | BIT(HASH_FLAGS_SGS_COPIED)); | 
|  |  | 
|  | if (!err && !ctx->error) { | 
|  | s5p_hash_read_msg(req); | 
|  | if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) | 
|  | s5p_hash_finish(req); | 
|  | } else { | 
|  | ctx->error = true; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&dd->hash_lock, flags); | 
|  | dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | | 
|  | BIT(HASH_FLAGS_DMA_READY) | | 
|  | BIT(HASH_FLAGS_OUTPUT_READY)); | 
|  | spin_unlock_irqrestore(&dd->hash_lock, flags); | 
|  |  | 
|  | if (req->base.complete) | 
|  | ahash_request_complete(req, err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_handle_queue() - handle hash queue | 
|  | * @dd:		device s5p_aes_dev | 
|  | * @req:	AHASH request | 
|  | * | 
|  | * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the | 
|  | * device then processes the first request from the dd->queue | 
|  | * | 
|  | * Returns: see s5p_hash_final below. | 
|  | */ | 
|  | static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, | 
|  | struct ahash_request *req) | 
|  | { | 
|  | struct crypto_async_request *async_req, *backlog; | 
|  | struct s5p_hash_reqctx *ctx; | 
|  | unsigned long flags; | 
|  | int err = 0, ret = 0; | 
|  |  | 
|  | retry: | 
|  | spin_lock_irqsave(&dd->hash_lock, flags); | 
|  | if (req) | 
|  | ret = ahash_enqueue_request(&dd->hash_queue, req); | 
|  |  | 
|  | if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { | 
|  | spin_unlock_irqrestore(&dd->hash_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | backlog = crypto_get_backlog(&dd->hash_queue); | 
|  | async_req = crypto_dequeue_request(&dd->hash_queue); | 
|  | if (async_req) | 
|  | set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); | 
|  |  | 
|  | spin_unlock_irqrestore(&dd->hash_lock, flags); | 
|  |  | 
|  | if (!async_req) | 
|  | return ret; | 
|  |  | 
|  | if (backlog) | 
|  | crypto_request_complete(backlog, -EINPROGRESS); | 
|  |  | 
|  | req = ahash_request_cast(async_req); | 
|  | dd->hash_req = req; | 
|  | ctx = ahash_request_ctx(req); | 
|  |  | 
|  | err = s5p_hash_prepare_request(req, ctx->op_update); | 
|  | if (err || !ctx->total) | 
|  | goto out; | 
|  |  | 
|  | dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", | 
|  | ctx->op_update, req->nbytes); | 
|  |  | 
|  | s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); | 
|  | if (ctx->digcnt) | 
|  | s5p_hash_write_iv(req); /* restore hash IV */ | 
|  |  | 
|  | if (ctx->op_update) { /* HASH_OP_UPDATE */ | 
|  | err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); | 
|  | if (err != -EINPROGRESS && ctx->finup && !ctx->error) | 
|  | /* no final() after finup() */ | 
|  | err = s5p_hash_xmit_dma(dd, ctx->total, true); | 
|  | } else { /* HASH_OP_FINAL */ | 
|  | err = s5p_hash_xmit_dma(dd, ctx->total, true); | 
|  | } | 
|  | out: | 
|  | if (err != -EINPROGRESS) { | 
|  | /* hash_tasklet_cb will not finish it, so do it here */ | 
|  | s5p_hash_finish_req(req, err); | 
|  | req = NULL; | 
|  |  | 
|  | /* | 
|  | * Execute next request immediately if there is anything | 
|  | * in queue. | 
|  | */ | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_tasklet_cb() - hash tasklet | 
|  | * @data:	ptr to s5p_aes_dev | 
|  | */ | 
|  | static void s5p_hash_tasklet_cb(unsigned long data) | 
|  | { | 
|  | struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; | 
|  |  | 
|  | if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { | 
|  | s5p_hash_handle_queue(dd, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { | 
|  | if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, | 
|  | &dd->hash_flags)) { | 
|  | s5p_hash_update_dma_stop(dd); | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, | 
|  | &dd->hash_flags)) { | 
|  | /* hash or semi-hash ready */ | 
|  | clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); | 
|  | goto finish; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | finish: | 
|  | /* finish curent request */ | 
|  | s5p_hash_finish_req(dd->hash_req, 0); | 
|  |  | 
|  | /* If we are not busy, process next req */ | 
|  | if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) | 
|  | s5p_hash_handle_queue(dd, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_enqueue() - enqueue request | 
|  | * @req:	AHASH request | 
|  | * @op:		operation UPDATE (true) or FINAL (false) | 
|  | * | 
|  | * Returns: see s5p_hash_final below. | 
|  | */ | 
|  | static int s5p_hash_enqueue(struct ahash_request *req, bool op) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); | 
|  |  | 
|  | ctx->op_update = op; | 
|  |  | 
|  | return s5p_hash_handle_queue(tctx->dd, req); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_update() - process the hash input data | 
|  | * @req:	AHASH request | 
|  | * | 
|  | * If request will fit in buffer, copy it and return immediately | 
|  | * else enqueue it with OP_UPDATE. | 
|  | * | 
|  | * Returns: see s5p_hash_final below. | 
|  | */ | 
|  | static int s5p_hash_update(struct ahash_request *req) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  |  | 
|  | if (!req->nbytes) | 
|  | return 0; | 
|  |  | 
|  | if (ctx->bufcnt + req->nbytes <= BUFLEN) { | 
|  | scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, | 
|  | 0, req->nbytes, 0); | 
|  | ctx->bufcnt += req->nbytes; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_final() - close up hash and calculate digest | 
|  | * @req:	AHASH request | 
|  | * | 
|  | * Note: in final req->src do not have any data, and req->nbytes can be | 
|  | * non-zero. | 
|  | * | 
|  | * If there were no input data processed yet and the buffered hash data is | 
|  | * less than BUFLEN (64) then calculate the final hash immediately by using | 
|  | * SW algorithm fallback. | 
|  | * | 
|  | * Otherwise enqueues the current AHASH request with OP_FINAL operation op | 
|  | * and finalize hash message in HW. Note that if digcnt!=0 then there were | 
|  | * previous update op, so there are always some buffered bytes in ctx->buffer, | 
|  | * which means that ctx->bufcnt!=0 | 
|  | * | 
|  | * Returns: | 
|  | * 0 if the request has been processed immediately, | 
|  | * -EINPROGRESS if the operation has been queued for later execution or is set | 
|  | *		to processing by HW, | 
|  | * -EBUSY if queue is full and request should be resubmitted later, | 
|  | * other negative values denotes an error. | 
|  | */ | 
|  | static int s5p_hash_final(struct ahash_request *req) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  |  | 
|  | ctx->finup = true; | 
|  | if (ctx->error) | 
|  | return -EINVAL; /* uncompleted hash is not needed */ | 
|  |  | 
|  | if (!ctx->digcnt && ctx->bufcnt < BUFLEN) { | 
|  | struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); | 
|  |  | 
|  | return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer, | 
|  | ctx->bufcnt, req->result); | 
|  | } | 
|  |  | 
|  | return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_finup() - process last req->src and calculate digest | 
|  | * @req:	AHASH request containing the last update data | 
|  | * | 
|  | * Return values: see s5p_hash_final above. | 
|  | */ | 
|  | static int s5p_hash_finup(struct ahash_request *req) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | int err1, err2; | 
|  |  | 
|  | ctx->finup = true; | 
|  |  | 
|  | err1 = s5p_hash_update(req); | 
|  | if (err1 == -EINPROGRESS || err1 == -EBUSY) | 
|  | return err1; | 
|  |  | 
|  | /* | 
|  | * final() has to be always called to cleanup resources even if | 
|  | * update() failed, except EINPROGRESS or calculate digest for small | 
|  | * size | 
|  | */ | 
|  | err2 = s5p_hash_final(req); | 
|  |  | 
|  | return err1 ?: err2; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_init() - initialize AHASH request contex | 
|  | * @req:	AHASH request | 
|  | * | 
|  | * Init async hash request context. | 
|  | */ | 
|  | static int s5p_hash_init(struct ahash_request *req) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ctx->dd = tctx->dd; | 
|  | ctx->error = false; | 
|  | ctx->finup = false; | 
|  | ctx->bufcnt = 0; | 
|  | ctx->digcnt = 0; | 
|  | ctx->total = 0; | 
|  | ctx->skip = 0; | 
|  |  | 
|  | dev_dbg(tctx->dd->dev, "init: digest size: %d\n", | 
|  | crypto_ahash_digestsize(tfm)); | 
|  |  | 
|  | switch (crypto_ahash_digestsize(tfm)) { | 
|  | case MD5_DIGEST_SIZE: | 
|  | ctx->engine = SSS_HASH_ENGINE_MD5; | 
|  | ctx->nregs = HASH_MD5_MAX_REG; | 
|  | break; | 
|  | case SHA1_DIGEST_SIZE: | 
|  | ctx->engine = SSS_HASH_ENGINE_SHA1; | 
|  | ctx->nregs = HASH_SHA1_MAX_REG; | 
|  | break; | 
|  | case SHA256_DIGEST_SIZE: | 
|  | ctx->engine = SSS_HASH_ENGINE_SHA256; | 
|  | ctx->nregs = HASH_SHA256_MAX_REG; | 
|  | break; | 
|  | default: | 
|  | ctx->error = true; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_digest - calculate digest from req->src | 
|  | * @req:	AHASH request | 
|  | * | 
|  | * Return values: see s5p_hash_final above. | 
|  | */ | 
|  | static int s5p_hash_digest(struct ahash_request *req) | 
|  | { | 
|  | return s5p_hash_init(req) ?: s5p_hash_finup(req); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_cra_init_alg - init crypto alg transformation | 
|  | * @tfm:	crypto transformation | 
|  | */ | 
|  | static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); | 
|  | const char *alg_name = crypto_tfm_alg_name(tfm); | 
|  |  | 
|  | tctx->dd = s5p_dev; | 
|  | /* Allocate a fallback and abort if it failed. */ | 
|  | tctx->fallback = crypto_alloc_shash(alg_name, 0, | 
|  | CRYPTO_ALG_NEED_FALLBACK); | 
|  | if (IS_ERR(tctx->fallback)) { | 
|  | pr_err("fallback alloc fails for '%s'\n", alg_name); | 
|  | return PTR_ERR(tctx->fallback); | 
|  | } | 
|  |  | 
|  | crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), | 
|  | sizeof(struct s5p_hash_reqctx) + BUFLEN); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_cra_init - init crypto tfm | 
|  | * @tfm:	crypto transformation | 
|  | */ | 
|  | static int s5p_hash_cra_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | return s5p_hash_cra_init_alg(tfm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_cra_exit - exit crypto tfm | 
|  | * @tfm:	crypto transformation | 
|  | * | 
|  | * free allocated fallback | 
|  | */ | 
|  | static void s5p_hash_cra_exit(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | crypto_free_shash(tctx->fallback); | 
|  | tctx->fallback = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_export - export hash state | 
|  | * @req:	AHASH request | 
|  | * @out:	buffer for exported state | 
|  | */ | 
|  | static int s5p_hash_export(struct ahash_request *req, void *out) | 
|  | { | 
|  | const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  |  | 
|  | memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s5p_hash_import - import hash state | 
|  | * @req:	AHASH request | 
|  | * @in:		buffer with state to be imported from | 
|  | */ | 
|  | static int s5p_hash_import(struct ahash_request *req, const void *in) | 
|  | { | 
|  | struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); | 
|  | const struct s5p_hash_reqctx *ctx_in = in; | 
|  |  | 
|  | memcpy(ctx, in, sizeof(*ctx) + BUFLEN); | 
|  | if (ctx_in->bufcnt > BUFLEN) { | 
|  | ctx->error = true; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctx->dd = tctx->dd; | 
|  | ctx->error = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct ahash_alg algs_sha1_md5_sha256[] = { | 
|  | { | 
|  | .init		= s5p_hash_init, | 
|  | .update		= s5p_hash_update, | 
|  | .final		= s5p_hash_final, | 
|  | .finup		= s5p_hash_finup, | 
|  | .digest		= s5p_hash_digest, | 
|  | .export		= s5p_hash_export, | 
|  | .import		= s5p_hash_import, | 
|  | .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, | 
|  | .halg.digestsize	= SHA1_DIGEST_SIZE, | 
|  | .halg.base	= { | 
|  | .cra_name		= "sha1", | 
|  | .cra_driver_name	= "exynos-sha1", | 
|  | .cra_priority		= 100, | 
|  | .cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_blocksize		= HASH_BLOCK_SIZE, | 
|  | .cra_ctxsize		= sizeof(struct s5p_hash_ctx), | 
|  | .cra_module		= THIS_MODULE, | 
|  | .cra_init		= s5p_hash_cra_init, | 
|  | .cra_exit		= s5p_hash_cra_exit, | 
|  | } | 
|  | }, | 
|  | { | 
|  | .init		= s5p_hash_init, | 
|  | .update		= s5p_hash_update, | 
|  | .final		= s5p_hash_final, | 
|  | .finup		= s5p_hash_finup, | 
|  | .digest		= s5p_hash_digest, | 
|  | .export		= s5p_hash_export, | 
|  | .import		= s5p_hash_import, | 
|  | .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, | 
|  | .halg.digestsize	= MD5_DIGEST_SIZE, | 
|  | .halg.base	= { | 
|  | .cra_name		= "md5", | 
|  | .cra_driver_name	= "exynos-md5", | 
|  | .cra_priority		= 100, | 
|  | .cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_blocksize		= HASH_BLOCK_SIZE, | 
|  | .cra_ctxsize		= sizeof(struct s5p_hash_ctx), | 
|  | .cra_module		= THIS_MODULE, | 
|  | .cra_init		= s5p_hash_cra_init, | 
|  | .cra_exit		= s5p_hash_cra_exit, | 
|  | } | 
|  | }, | 
|  | { | 
|  | .init		= s5p_hash_init, | 
|  | .update		= s5p_hash_update, | 
|  | .final		= s5p_hash_final, | 
|  | .finup		= s5p_hash_finup, | 
|  | .digest		= s5p_hash_digest, | 
|  | .export		= s5p_hash_export, | 
|  | .import		= s5p_hash_import, | 
|  | .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, | 
|  | .halg.digestsize	= SHA256_DIGEST_SIZE, | 
|  | .halg.base	= { | 
|  | .cra_name		= "sha256", | 
|  | .cra_driver_name	= "exynos-sha256", | 
|  | .cra_priority		= 100, | 
|  | .cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_blocksize		= HASH_BLOCK_SIZE, | 
|  | .cra_ctxsize		= sizeof(struct s5p_hash_ctx), | 
|  | .cra_module		= THIS_MODULE, | 
|  | .cra_init		= s5p_hash_cra_init, | 
|  | .cra_exit		= s5p_hash_cra_exit, | 
|  | } | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | static void s5p_set_aes(struct s5p_aes_dev *dev, | 
|  | const u8 *key, const u8 *iv, const u8 *ctr, | 
|  | unsigned int keylen) | 
|  | { | 
|  | void __iomem *keystart; | 
|  |  | 
|  | if (iv) | 
|  | memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, | 
|  | AES_BLOCK_SIZE); | 
|  |  | 
|  | if (ctr) | 
|  | memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, | 
|  | AES_BLOCK_SIZE); | 
|  |  | 
|  | if (keylen == AES_KEYSIZE_256) | 
|  | keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); | 
|  | else if (keylen == AES_KEYSIZE_192) | 
|  | keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); | 
|  | else | 
|  | keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); | 
|  |  | 
|  | memcpy_toio(keystart, key, keylen); | 
|  | } | 
|  |  | 
|  | static bool s5p_is_sg_aligned(struct scatterlist *sg) | 
|  | { | 
|  | while (sg) { | 
|  | if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) | 
|  | return false; | 
|  | sg = sg_next(sg); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int s5p_set_indata_start(struct s5p_aes_dev *dev, | 
|  | struct skcipher_request *req) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int err; | 
|  |  | 
|  | dev->sg_src_cpy = NULL; | 
|  | sg = req->src; | 
|  | if (!s5p_is_sg_aligned(sg)) { | 
|  | dev_dbg(dev->dev, | 
|  | "At least one unaligned source scatter list, making a copy\n"); | 
|  | err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | sg = dev->sg_src_cpy; | 
|  | } | 
|  |  | 
|  | err = s5p_set_indata(dev, sg); | 
|  | if (err) { | 
|  | s5p_free_sg_cpy(dev, &dev->sg_src_cpy); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s5p_set_outdata_start(struct s5p_aes_dev *dev, | 
|  | struct skcipher_request *req) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int err; | 
|  |  | 
|  | dev->sg_dst_cpy = NULL; | 
|  | sg = req->dst; | 
|  | if (!s5p_is_sg_aligned(sg)) { | 
|  | dev_dbg(dev->dev, | 
|  | "At least one unaligned dest scatter list, making a copy\n"); | 
|  | err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | sg = dev->sg_dst_cpy; | 
|  | } | 
|  |  | 
|  | err = s5p_set_outdata(dev, sg); | 
|  | if (err) { | 
|  | s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) | 
|  | { | 
|  | struct skcipher_request *req = dev->req; | 
|  | u32 aes_control; | 
|  | unsigned long flags; | 
|  | int err; | 
|  | u8 *iv, *ctr; | 
|  |  | 
|  | /* This sets bit [13:12] to 00, which selects 128-bit counter */ | 
|  | aes_control = SSS_AES_KEY_CHANGE_MODE; | 
|  | if (mode & FLAGS_AES_DECRYPT) | 
|  | aes_control |= SSS_AES_MODE_DECRYPT; | 
|  |  | 
|  | if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { | 
|  | aes_control |= SSS_AES_CHAIN_MODE_CBC; | 
|  | iv = req->iv; | 
|  | ctr = NULL; | 
|  | } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { | 
|  | aes_control |= SSS_AES_CHAIN_MODE_CTR; | 
|  | iv = NULL; | 
|  | ctr = req->iv; | 
|  | } else { | 
|  | iv = NULL; /* AES_ECB */ | 
|  | ctr = NULL; | 
|  | } | 
|  |  | 
|  | if (dev->ctx->keylen == AES_KEYSIZE_192) | 
|  | aes_control |= SSS_AES_KEY_SIZE_192; | 
|  | else if (dev->ctx->keylen == AES_KEYSIZE_256) | 
|  | aes_control |= SSS_AES_KEY_SIZE_256; | 
|  |  | 
|  | aes_control |= SSS_AES_FIFO_MODE; | 
|  |  | 
|  | /* as a variant it is possible to use byte swapping on DMA side */ | 
|  | aes_control |= SSS_AES_BYTESWAP_DI | 
|  | |  SSS_AES_BYTESWAP_DO | 
|  | |  SSS_AES_BYTESWAP_IV | 
|  | |  SSS_AES_BYTESWAP_KEY | 
|  | |  SSS_AES_BYTESWAP_CNT; | 
|  |  | 
|  | spin_lock_irqsave(&dev->lock, flags); | 
|  |  | 
|  | SSS_WRITE(dev, FCINTENCLR, | 
|  | SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); | 
|  | SSS_WRITE(dev, FCFIFOCTRL, 0x00); | 
|  |  | 
|  | err = s5p_set_indata_start(dev, req); | 
|  | if (err) | 
|  | goto indata_error; | 
|  |  | 
|  | err = s5p_set_outdata_start(dev, req); | 
|  | if (err) | 
|  | goto outdata_error; | 
|  |  | 
|  | SSS_AES_WRITE(dev, AES_CONTROL, aes_control); | 
|  | s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen); | 
|  |  | 
|  | s5p_set_dma_indata(dev,  dev->sg_src); | 
|  | s5p_set_dma_outdata(dev, dev->sg_dst); | 
|  |  | 
|  | SSS_WRITE(dev, FCINTENSET, | 
|  | SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  |  | 
|  | return; | 
|  |  | 
|  | outdata_error: | 
|  | s5p_unset_indata(dev); | 
|  |  | 
|  | indata_error: | 
|  | s5p_sg_done(dev); | 
|  | dev->busy = false; | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  | s5p_aes_complete(req, err); | 
|  | } | 
|  |  | 
|  | static void s5p_tasklet_cb(unsigned long data) | 
|  | { | 
|  | struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; | 
|  | struct crypto_async_request *async_req, *backlog; | 
|  | struct s5p_aes_reqctx *reqctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->lock, flags); | 
|  | backlog   = crypto_get_backlog(&dev->queue); | 
|  | async_req = crypto_dequeue_request(&dev->queue); | 
|  |  | 
|  | if (!async_req) { | 
|  | dev->busy = false; | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  |  | 
|  | if (backlog) | 
|  | crypto_request_complete(backlog, -EINPROGRESS); | 
|  |  | 
|  | dev->req = skcipher_request_cast(async_req); | 
|  | dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); | 
|  | reqctx   = skcipher_request_ctx(dev->req); | 
|  |  | 
|  | s5p_aes_crypt_start(dev, reqctx->mode); | 
|  | } | 
|  |  | 
|  | static int s5p_aes_handle_req(struct s5p_aes_dev *dev, | 
|  | struct skcipher_request *req) | 
|  | { | 
|  | unsigned long flags; | 
|  | int err; | 
|  |  | 
|  | spin_lock_irqsave(&dev->lock, flags); | 
|  | err = crypto_enqueue_request(&dev->queue, &req->base); | 
|  | if (dev->busy) { | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  | return err; | 
|  | } | 
|  | dev->busy = true; | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  |  | 
|  | tasklet_schedule(&dev->tasklet); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); | 
|  | struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct s5p_aes_dev *dev = ctx->dev; | 
|  |  | 
|  | if (!req->cryptlen) | 
|  | return 0; | 
|  |  | 
|  | if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) && | 
|  | ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) { | 
|  | dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | reqctx->mode = mode; | 
|  |  | 
|  | return s5p_aes_handle_req(dev, req); | 
|  | } | 
|  |  | 
|  | static int s5p_aes_setkey(struct crypto_skcipher *cipher, | 
|  | const u8 *key, unsigned int keylen) | 
|  | { | 
|  | struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); | 
|  | struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | if (keylen != AES_KEYSIZE_128 && | 
|  | keylen != AES_KEYSIZE_192 && | 
|  | keylen != AES_KEYSIZE_256) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(ctx->aes_key, key, keylen); | 
|  | ctx->keylen = keylen; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s5p_aes_ecb_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | return s5p_aes_crypt(req, 0); | 
|  | } | 
|  |  | 
|  | static int s5p_aes_ecb_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); | 
|  | } | 
|  |  | 
|  | static int s5p_aes_cbc_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | return s5p_aes_crypt(req, FLAGS_AES_CBC); | 
|  | } | 
|  |  | 
|  | static int s5p_aes_cbc_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); | 
|  | } | 
|  |  | 
|  | static int s5p_aes_ctr_crypt(struct skcipher_request *req) | 
|  | { | 
|  | return s5p_aes_crypt(req, FLAGS_AES_CTR); | 
|  | } | 
|  |  | 
|  | static int s5p_aes_init_tfm(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  |  | 
|  | ctx->dev = s5p_dev; | 
|  | crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct skcipher_alg algs[] = { | 
|  | { | 
|  | .base.cra_name		= "ecb(aes)", | 
|  | .base.cra_driver_name	= "ecb-aes-s5p", | 
|  | .base.cra_priority	= 100, | 
|  | .base.cra_flags		= CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY, | 
|  | .base.cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	= sizeof(struct s5p_aes_ctx), | 
|  | .base.cra_alignmask	= 0x0f, | 
|  | .base.cra_module	= THIS_MODULE, | 
|  |  | 
|  | .min_keysize		= AES_MIN_KEY_SIZE, | 
|  | .max_keysize		= AES_MAX_KEY_SIZE, | 
|  | .setkey			= s5p_aes_setkey, | 
|  | .encrypt		= s5p_aes_ecb_encrypt, | 
|  | .decrypt		= s5p_aes_ecb_decrypt, | 
|  | .init			= s5p_aes_init_tfm, | 
|  | }, | 
|  | { | 
|  | .base.cra_name		= "cbc(aes)", | 
|  | .base.cra_driver_name	= "cbc-aes-s5p", | 
|  | .base.cra_priority	= 100, | 
|  | .base.cra_flags		= CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY, | 
|  | .base.cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	= sizeof(struct s5p_aes_ctx), | 
|  | .base.cra_alignmask	= 0x0f, | 
|  | .base.cra_module	= THIS_MODULE, | 
|  |  | 
|  | .min_keysize		= AES_MIN_KEY_SIZE, | 
|  | .max_keysize		= AES_MAX_KEY_SIZE, | 
|  | .ivsize			= AES_BLOCK_SIZE, | 
|  | .setkey			= s5p_aes_setkey, | 
|  | .encrypt		= s5p_aes_cbc_encrypt, | 
|  | .decrypt		= s5p_aes_cbc_decrypt, | 
|  | .init			= s5p_aes_init_tfm, | 
|  | }, | 
|  | { | 
|  | .base.cra_name		= "ctr(aes)", | 
|  | .base.cra_driver_name	= "ctr-aes-s5p", | 
|  | .base.cra_priority	= 100, | 
|  | .base.cra_flags		= CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY, | 
|  | .base.cra_blocksize	= 1, | 
|  | .base.cra_ctxsize	= sizeof(struct s5p_aes_ctx), | 
|  | .base.cra_alignmask	= 0x0f, | 
|  | .base.cra_module	= THIS_MODULE, | 
|  |  | 
|  | .min_keysize		= AES_MIN_KEY_SIZE, | 
|  | .max_keysize		= AES_MAX_KEY_SIZE, | 
|  | .ivsize			= AES_BLOCK_SIZE, | 
|  | .setkey			= s5p_aes_setkey, | 
|  | .encrypt		= s5p_aes_ctr_crypt, | 
|  | .decrypt		= s5p_aes_ctr_crypt, | 
|  | .init			= s5p_aes_init_tfm, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int s5p_aes_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | int i, j, err; | 
|  | const struct samsung_aes_variant *variant; | 
|  | struct s5p_aes_dev *pdata; | 
|  | struct resource *res; | 
|  | unsigned int hash_i; | 
|  |  | 
|  | if (s5p_dev) | 
|  | return -EEXIST; | 
|  |  | 
|  | pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); | 
|  | if (!pdata) | 
|  | return -ENOMEM; | 
|  |  | 
|  | variant = find_s5p_sss_version(pdev); | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!res) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Note: HASH and PRNG uses the same registers in secss, avoid | 
|  | * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG | 
|  | * is enabled in config. We need larger size for HASH registers in | 
|  | * secss, current describe only AES/DES | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { | 
|  | if (variant == &exynos_aes_data) { | 
|  | res->end += 0x300; | 
|  | pdata->use_hash = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | pdata->res = res; | 
|  | pdata->ioaddr = devm_ioremap_resource(dev, res); | 
|  | if (IS_ERR(pdata->ioaddr)) { | 
|  | if (!pdata->use_hash) | 
|  | return PTR_ERR(pdata->ioaddr); | 
|  | /* try AES without HASH */ | 
|  | res->end -= 0x300; | 
|  | pdata->use_hash = false; | 
|  | pdata->ioaddr = devm_ioremap_resource(dev, res); | 
|  | if (IS_ERR(pdata->ioaddr)) | 
|  | return PTR_ERR(pdata->ioaddr); | 
|  | } | 
|  |  | 
|  | pdata->clk = devm_clk_get(dev, variant->clk_names[0]); | 
|  | if (IS_ERR(pdata->clk)) | 
|  | return dev_err_probe(dev, PTR_ERR(pdata->clk), | 
|  | "failed to find secss clock %s\n", | 
|  | variant->clk_names[0]); | 
|  |  | 
|  | err = clk_prepare_enable(pdata->clk); | 
|  | if (err < 0) { | 
|  | dev_err(dev, "Enabling clock %s failed, err %d\n", | 
|  | variant->clk_names[0], err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (variant->clk_names[1]) { | 
|  | pdata->pclk = devm_clk_get(dev, variant->clk_names[1]); | 
|  | if (IS_ERR(pdata->pclk)) { | 
|  | err = dev_err_probe(dev, PTR_ERR(pdata->pclk), | 
|  | "failed to find clock %s\n", | 
|  | variant->clk_names[1]); | 
|  | goto err_clk; | 
|  | } | 
|  |  | 
|  | err = clk_prepare_enable(pdata->pclk); | 
|  | if (err < 0) { | 
|  | dev_err(dev, "Enabling clock %s failed, err %d\n", | 
|  | variant->clk_names[0], err); | 
|  | goto err_clk; | 
|  | } | 
|  | } else { | 
|  | pdata->pclk = NULL; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&pdata->lock); | 
|  | spin_lock_init(&pdata->hash_lock); | 
|  |  | 
|  | pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; | 
|  | pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; | 
|  |  | 
|  | pdata->irq_fc = platform_get_irq(pdev, 0); | 
|  | if (pdata->irq_fc < 0) { | 
|  | err = pdata->irq_fc; | 
|  | dev_warn(dev, "feed control interrupt is not available.\n"); | 
|  | goto err_irq; | 
|  | } | 
|  | err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, | 
|  | s5p_aes_interrupt, IRQF_ONESHOT, | 
|  | pdev->name, pdev); | 
|  | if (err < 0) { | 
|  | dev_warn(dev, "feed control interrupt is not available.\n"); | 
|  | goto err_irq; | 
|  | } | 
|  |  | 
|  | pdata->busy = false; | 
|  | pdata->dev = dev; | 
|  | platform_set_drvdata(pdev, pdata); | 
|  | s5p_dev = pdata; | 
|  |  | 
|  | tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); | 
|  | crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(algs); i++) { | 
|  | err = crypto_register_skcipher(&algs[i]); | 
|  | if (err) | 
|  | goto err_algs; | 
|  | } | 
|  |  | 
|  | if (pdata->use_hash) { | 
|  | tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, | 
|  | (unsigned long)pdata); | 
|  | crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); | 
|  |  | 
|  | for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); | 
|  | hash_i++) { | 
|  | struct ahash_alg *alg; | 
|  |  | 
|  | alg = &algs_sha1_md5_sha256[hash_i]; | 
|  | err = crypto_register_ahash(alg); | 
|  | if (err) { | 
|  | dev_err(dev, "can't register '%s': %d\n", | 
|  | alg->halg.base.cra_driver_name, err); | 
|  | goto err_hash; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | dev_info(dev, "s5p-sss driver registered\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_hash: | 
|  | for (j = hash_i - 1; j >= 0; j--) | 
|  | crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); | 
|  |  | 
|  | tasklet_kill(&pdata->hash_tasklet); | 
|  | res->end -= 0x300; | 
|  |  | 
|  | err_algs: | 
|  | if (i < ARRAY_SIZE(algs)) | 
|  | dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name, | 
|  | err); | 
|  |  | 
|  | for (j = 0; j < i; j++) | 
|  | crypto_unregister_skcipher(&algs[j]); | 
|  |  | 
|  | tasklet_kill(&pdata->tasklet); | 
|  |  | 
|  | err_irq: | 
|  | clk_disable_unprepare(pdata->pclk); | 
|  |  | 
|  | err_clk: | 
|  | clk_disable_unprepare(pdata->clk); | 
|  | s5p_dev = NULL; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void s5p_aes_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(algs); i++) | 
|  | crypto_unregister_skcipher(&algs[i]); | 
|  |  | 
|  | tasklet_kill(&pdata->tasklet); | 
|  | if (pdata->use_hash) { | 
|  | for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) | 
|  | crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); | 
|  |  | 
|  | pdata->res->end -= 0x300; | 
|  | tasklet_kill(&pdata->hash_tasklet); | 
|  | pdata->use_hash = false; | 
|  | } | 
|  |  | 
|  | clk_disable_unprepare(pdata->pclk); | 
|  |  | 
|  | clk_disable_unprepare(pdata->clk); | 
|  | s5p_dev = NULL; | 
|  | } | 
|  |  | 
|  | static struct platform_driver s5p_aes_crypto = { | 
|  | .probe	= s5p_aes_probe, | 
|  | .remove_new = s5p_aes_remove, | 
|  | .driver	= { | 
|  | .name	= "s5p-secss", | 
|  | .of_match_table = s5p_sss_dt_match, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(s5p_aes_crypto); | 
|  |  | 
|  | MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); | 
|  | MODULE_LICENSE("GPL v2"); | 
|  | MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); | 
|  | MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>"); |