|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (c) 2015, 2017-2018, 2022, The Linux Foundation. All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/pm_domain.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/reset-controller.h> | 
|  | #include <linux/slab.h> | 
|  | #include "gdsc.h" | 
|  |  | 
|  | #define PWR_ON_MASK		BIT(31) | 
|  | #define EN_REST_WAIT_MASK	GENMASK_ULL(23, 20) | 
|  | #define EN_FEW_WAIT_MASK	GENMASK_ULL(19, 16) | 
|  | #define CLK_DIS_WAIT_MASK	GENMASK_ULL(15, 12) | 
|  | #define SW_OVERRIDE_MASK	BIT(2) | 
|  | #define HW_CONTROL_MASK		BIT(1) | 
|  | #define SW_COLLAPSE_MASK	BIT(0) | 
|  | #define GMEM_CLAMP_IO_MASK	BIT(0) | 
|  | #define GMEM_RESET_MASK		BIT(4) | 
|  |  | 
|  | /* CFG_GDSCR */ | 
|  | #define GDSC_POWER_UP_COMPLETE		BIT(16) | 
|  | #define GDSC_POWER_DOWN_COMPLETE	BIT(15) | 
|  | #define GDSC_RETAIN_FF_ENABLE		BIT(11) | 
|  | #define CFG_GDSCR_OFFSET		0x4 | 
|  |  | 
|  | /* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */ | 
|  | #define EN_REST_WAIT_VAL	0x2 | 
|  | #define EN_FEW_WAIT_VAL		0x8 | 
|  | #define CLK_DIS_WAIT_VAL	0x2 | 
|  |  | 
|  | /* Transition delay shifts */ | 
|  | #define EN_REST_WAIT_SHIFT	20 | 
|  | #define EN_FEW_WAIT_SHIFT	16 | 
|  | #define CLK_DIS_WAIT_SHIFT	12 | 
|  |  | 
|  | #define RETAIN_MEM		BIT(14) | 
|  | #define RETAIN_PERIPH		BIT(13) | 
|  |  | 
|  | #define STATUS_POLL_TIMEOUT_US	1500 | 
|  | #define TIMEOUT_US		500 | 
|  |  | 
|  | #define domain_to_gdsc(domain) container_of(domain, struct gdsc, pd) | 
|  |  | 
|  | enum gdsc_status { | 
|  | GDSC_OFF, | 
|  | GDSC_ON | 
|  | }; | 
|  |  | 
|  | /* Returns 1 if GDSC status is status, 0 if not, and < 0 on error */ | 
|  | static int gdsc_check_status(struct gdsc *sc, enum gdsc_status status) | 
|  | { | 
|  | unsigned int reg; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | if (sc->flags & POLL_CFG_GDSCR) | 
|  | reg = sc->gdscr + CFG_GDSCR_OFFSET; | 
|  | else if (sc->gds_hw_ctrl) | 
|  | reg = sc->gds_hw_ctrl; | 
|  | else | 
|  | reg = sc->gdscr; | 
|  |  | 
|  | ret = regmap_read(sc->regmap, reg, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (sc->flags & POLL_CFG_GDSCR) { | 
|  | switch (status) { | 
|  | case GDSC_ON: | 
|  | return !!(val & GDSC_POWER_UP_COMPLETE); | 
|  | case GDSC_OFF: | 
|  | return !!(val & GDSC_POWER_DOWN_COMPLETE); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (status) { | 
|  | case GDSC_ON: | 
|  | return !!(val & PWR_ON_MASK); | 
|  | case GDSC_OFF: | 
|  | return !(val & PWR_ON_MASK); | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int gdsc_hwctrl(struct gdsc *sc, bool en) | 
|  | { | 
|  | u32 val = en ? HW_CONTROL_MASK : 0; | 
|  |  | 
|  | return regmap_update_bits(sc->regmap, sc->gdscr, HW_CONTROL_MASK, val); | 
|  | } | 
|  |  | 
|  | static int gdsc_poll_status(struct gdsc *sc, enum gdsc_status status) | 
|  | { | 
|  | ktime_t start; | 
|  |  | 
|  | start = ktime_get(); | 
|  | do { | 
|  | if (gdsc_check_status(sc, status)) | 
|  | return 0; | 
|  | } while (ktime_us_delta(ktime_get(), start) < STATUS_POLL_TIMEOUT_US); | 
|  |  | 
|  | if (gdsc_check_status(sc, status)) | 
|  | return 0; | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int gdsc_update_collapse_bit(struct gdsc *sc, bool val) | 
|  | { | 
|  | u32 reg, mask; | 
|  | int ret; | 
|  |  | 
|  | if (sc->collapse_mask) { | 
|  | reg = sc->collapse_ctrl; | 
|  | mask = sc->collapse_mask; | 
|  | } else { | 
|  | reg = sc->gdscr; | 
|  | mask = SW_COLLAPSE_MASK; | 
|  | } | 
|  |  | 
|  | ret = regmap_update_bits(sc->regmap, reg, mask, val ? mask : 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gdsc_toggle_logic(struct gdsc *sc, enum gdsc_status status, | 
|  | bool wait) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (status == GDSC_ON && sc->rsupply) { | 
|  | ret = regulator_enable(sc->rsupply); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = gdsc_update_collapse_bit(sc, status == GDSC_OFF); | 
|  |  | 
|  | /* If disabling votable gdscs, don't poll on status */ | 
|  | if ((sc->flags & VOTABLE) && status == GDSC_OFF && !wait) { | 
|  | /* | 
|  | * Add a short delay here to ensure that an enable | 
|  | * right after it was disabled does not put it in an | 
|  | * unknown state | 
|  | */ | 
|  | udelay(TIMEOUT_US); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sc->gds_hw_ctrl) { | 
|  | /* | 
|  | * The gds hw controller asserts/de-asserts the status bit soon | 
|  | * after it receives a power on/off request from a master. | 
|  | * The controller then takes around 8 xo cycles to start its | 
|  | * internal state machine and update the status bit. During | 
|  | * this time, the status bit does not reflect the true status | 
|  | * of the core. | 
|  | * Add a delay of 1 us between writing to the SW_COLLAPSE bit | 
|  | * and polling the status bit. | 
|  | */ | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | ret = gdsc_poll_status(sc, status); | 
|  | WARN(ret, "%s status stuck at 'o%s'", sc->pd.name, status ? "ff" : "n"); | 
|  |  | 
|  | if (!ret && status == GDSC_OFF && sc->rsupply) { | 
|  | ret = regulator_disable(sc->rsupply); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int gdsc_deassert_reset(struct gdsc *sc) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sc->reset_count; i++) | 
|  | sc->rcdev->ops->deassert(sc->rcdev, sc->resets[i]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int gdsc_assert_reset(struct gdsc *sc) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sc->reset_count; i++) | 
|  | sc->rcdev->ops->assert(sc->rcdev, sc->resets[i]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void gdsc_force_mem_on(struct gdsc *sc) | 
|  | { | 
|  | int i; | 
|  | u32 mask = RETAIN_MEM; | 
|  |  | 
|  | if (!(sc->flags & NO_RET_PERIPH)) | 
|  | mask |= RETAIN_PERIPH; | 
|  |  | 
|  | for (i = 0; i < sc->cxc_count; i++) | 
|  | regmap_update_bits(sc->regmap, sc->cxcs[i], mask, mask); | 
|  | } | 
|  |  | 
|  | static inline void gdsc_clear_mem_on(struct gdsc *sc) | 
|  | { | 
|  | int i; | 
|  | u32 mask = RETAIN_MEM; | 
|  |  | 
|  | if (!(sc->flags & NO_RET_PERIPH)) | 
|  | mask |= RETAIN_PERIPH; | 
|  |  | 
|  | for (i = 0; i < sc->cxc_count; i++) | 
|  | regmap_update_bits(sc->regmap, sc->cxcs[i], mask, 0); | 
|  | } | 
|  |  | 
|  | static inline void gdsc_deassert_clamp_io(struct gdsc *sc) | 
|  | { | 
|  | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, | 
|  | GMEM_CLAMP_IO_MASK, 0); | 
|  | } | 
|  |  | 
|  | static inline void gdsc_assert_clamp_io(struct gdsc *sc) | 
|  | { | 
|  | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, | 
|  | GMEM_CLAMP_IO_MASK, 1); | 
|  | } | 
|  |  | 
|  | static inline void gdsc_assert_reset_aon(struct gdsc *sc) | 
|  | { | 
|  | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, | 
|  | GMEM_RESET_MASK, 1); | 
|  | udelay(1); | 
|  | regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, | 
|  | GMEM_RESET_MASK, 0); | 
|  | } | 
|  |  | 
|  | static void gdsc_retain_ff_on(struct gdsc *sc) | 
|  | { | 
|  | u32 mask = GDSC_RETAIN_FF_ENABLE; | 
|  |  | 
|  | regmap_update_bits(sc->regmap, sc->gdscr, mask, mask); | 
|  | } | 
|  |  | 
|  | static int gdsc_enable(struct generic_pm_domain *domain) | 
|  | { | 
|  | struct gdsc *sc = domain_to_gdsc(domain); | 
|  | int ret; | 
|  |  | 
|  | if (sc->pwrsts == PWRSTS_ON) | 
|  | return gdsc_deassert_reset(sc); | 
|  |  | 
|  | if (sc->flags & SW_RESET) { | 
|  | gdsc_assert_reset(sc); | 
|  | udelay(1); | 
|  | gdsc_deassert_reset(sc); | 
|  | } | 
|  |  | 
|  | if (sc->flags & CLAMP_IO) { | 
|  | if (sc->flags & AON_RESET) | 
|  | gdsc_assert_reset_aon(sc); | 
|  | gdsc_deassert_clamp_io(sc); | 
|  | } | 
|  |  | 
|  | ret = gdsc_toggle_logic(sc, GDSC_ON, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (sc->pwrsts & PWRSTS_OFF) | 
|  | gdsc_force_mem_on(sc); | 
|  |  | 
|  | /* | 
|  | * If clocks to this power domain were already on, they will take an | 
|  | * additional 4 clock cycles to re-enable after the power domain is | 
|  | * enabled. Delay to account for this. A delay is also needed to ensure | 
|  | * clocks are not enabled within 400ns of enabling power to the | 
|  | * memories. | 
|  | */ | 
|  | udelay(1); | 
|  |  | 
|  | if (sc->flags & RETAIN_FF_ENABLE) | 
|  | gdsc_retain_ff_on(sc); | 
|  |  | 
|  | /* Turn on HW trigger mode if supported */ | 
|  | if (sc->flags & HW_CTRL) { | 
|  | ret = gdsc_hwctrl(sc, true); | 
|  | if (ret) | 
|  | return ret; | 
|  | /* | 
|  | * Wait for the GDSC to go through a power down and | 
|  | * up cycle.  In case a firmware ends up polling status | 
|  | * bits for the gdsc, it might read an 'on' status before | 
|  | * the GDSC can finish the power cycle. | 
|  | * We wait 1us before returning to ensure the firmware | 
|  | * can't immediately poll the status bits. | 
|  | */ | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gdsc_disable(struct generic_pm_domain *domain) | 
|  | { | 
|  | struct gdsc *sc = domain_to_gdsc(domain); | 
|  | int ret; | 
|  |  | 
|  | if (sc->pwrsts == PWRSTS_ON) | 
|  | return gdsc_assert_reset(sc); | 
|  |  | 
|  | /* Turn off HW trigger mode if supported */ | 
|  | if (sc->flags & HW_CTRL) { | 
|  | ret = gdsc_hwctrl(sc, false); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* | 
|  | * Wait for the GDSC to go through a power down and | 
|  | * up cycle.  In case we end up polling status | 
|  | * bits for the gdsc before the power cycle is completed | 
|  | * it might read an 'on' status wrongly. | 
|  | */ | 
|  | udelay(1); | 
|  |  | 
|  | ret = gdsc_poll_status(sc, GDSC_ON); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (sc->pwrsts & PWRSTS_OFF) | 
|  | gdsc_clear_mem_on(sc); | 
|  |  | 
|  | /* | 
|  | * If the GDSC supports only a Retention state, apart from ON, | 
|  | * leave it in ON state. | 
|  | * There is no SW control to transition the GDSC into | 
|  | * Retention state. This happens in HW when the parent | 
|  | * domain goes down to a Low power state | 
|  | */ | 
|  | if (sc->pwrsts == PWRSTS_RET_ON) | 
|  | return 0; | 
|  |  | 
|  | ret = gdsc_toggle_logic(sc, GDSC_OFF, domain->synced_poweroff); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (sc->flags & CLAMP_IO) | 
|  | gdsc_assert_clamp_io(sc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gdsc_set_hwmode(struct generic_pm_domain *domain, struct device *dev, bool mode) | 
|  | { | 
|  | struct gdsc *sc = domain_to_gdsc(domain); | 
|  | int ret; | 
|  |  | 
|  | ret = gdsc_hwctrl(sc, mode); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Wait for the GDSC to go through a power down and | 
|  | * up cycle. If we poll the status register before the | 
|  | * power cycle is finished we might read incorrect values. | 
|  | */ | 
|  | udelay(1); | 
|  |  | 
|  | /* | 
|  | * When the GDSC is switched to HW mode, HW can disable the GDSC. | 
|  | * When the GDSC is switched back to SW mode, the GDSC will be enabled | 
|  | * again, hence we need to poll for GDSC to complete the power up. | 
|  | */ | 
|  | if (!mode) | 
|  | return gdsc_poll_status(sc, GDSC_ON); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool gdsc_get_hwmode(struct generic_pm_domain *domain, struct device *dev) | 
|  | { | 
|  | struct gdsc *sc = domain_to_gdsc(domain); | 
|  | u32 val; | 
|  |  | 
|  | regmap_read(sc->regmap, sc->gdscr, &val); | 
|  |  | 
|  | return !!(val & HW_CONTROL_MASK); | 
|  | } | 
|  |  | 
|  | static int gdsc_init(struct gdsc *sc) | 
|  | { | 
|  | u32 mask, val; | 
|  | int on, ret; | 
|  |  | 
|  | /* | 
|  | * Disable HW trigger: collapse/restore occur based on registers writes. | 
|  | * Disable SW override: Use hardware state-machine for sequencing. | 
|  | * Configure wait time between states. | 
|  | */ | 
|  | mask = HW_CONTROL_MASK | SW_OVERRIDE_MASK | | 
|  | EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK; | 
|  |  | 
|  | if (!sc->en_rest_wait_val) | 
|  | sc->en_rest_wait_val = EN_REST_WAIT_VAL; | 
|  | if (!sc->en_few_wait_val) | 
|  | sc->en_few_wait_val = EN_FEW_WAIT_VAL; | 
|  | if (!sc->clk_dis_wait_val) | 
|  | sc->clk_dis_wait_val = CLK_DIS_WAIT_VAL; | 
|  |  | 
|  | val = sc->en_rest_wait_val << EN_REST_WAIT_SHIFT | | 
|  | sc->en_few_wait_val << EN_FEW_WAIT_SHIFT | | 
|  | sc->clk_dis_wait_val << CLK_DIS_WAIT_SHIFT; | 
|  |  | 
|  | ret = regmap_update_bits(sc->regmap, sc->gdscr, mask, val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Force gdsc ON if only ON state is supported */ | 
|  | if (sc->pwrsts == PWRSTS_ON) { | 
|  | ret = gdsc_toggle_logic(sc, GDSC_ON, false); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | on = gdsc_check_status(sc, GDSC_ON); | 
|  | if (on < 0) | 
|  | return on; | 
|  |  | 
|  | if (on) { | 
|  | /* The regulator must be on, sync the kernel state */ | 
|  | if (sc->rsupply) { | 
|  | ret = regulator_enable(sc->rsupply); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Votable GDSCs can be ON due to Vote from other masters. | 
|  | * If a Votable GDSC is ON, make sure we have a Vote. | 
|  | */ | 
|  | if (sc->flags & VOTABLE) { | 
|  | ret = gdsc_update_collapse_bit(sc, false); | 
|  | if (ret) | 
|  | goto err_disable_supply; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the retain bit is set if the GDSC is already on, | 
|  | * otherwise we end up turning off the GDSC and destroying all | 
|  | * the register contents that we thought we were saving. | 
|  | */ | 
|  | if (sc->flags & RETAIN_FF_ENABLE) | 
|  | gdsc_retain_ff_on(sc); | 
|  |  | 
|  | /* Turn on HW trigger mode if supported */ | 
|  | if (sc->flags & HW_CTRL) { | 
|  | ret = gdsc_hwctrl(sc, true); | 
|  | if (ret < 0) | 
|  | goto err_disable_supply; | 
|  | } | 
|  |  | 
|  | } else if (sc->flags & ALWAYS_ON) { | 
|  | /* If ALWAYS_ON GDSCs are not ON, turn them ON */ | 
|  | gdsc_enable(&sc->pd); | 
|  | on = true; | 
|  | } | 
|  |  | 
|  | if (on || (sc->pwrsts & PWRSTS_RET)) | 
|  | gdsc_force_mem_on(sc); | 
|  | else | 
|  | gdsc_clear_mem_on(sc); | 
|  |  | 
|  | if (sc->flags & ALWAYS_ON) | 
|  | sc->pd.flags |= GENPD_FLAG_ALWAYS_ON; | 
|  | if (!sc->pd.power_off) | 
|  | sc->pd.power_off = gdsc_disable; | 
|  | if (!sc->pd.power_on) | 
|  | sc->pd.power_on = gdsc_enable; | 
|  | if (sc->flags & HW_CTRL_TRIGGER) { | 
|  | sc->pd.set_hwmode_dev = gdsc_set_hwmode; | 
|  | sc->pd.get_hwmode_dev = gdsc_get_hwmode; | 
|  | } | 
|  |  | 
|  | ret = pm_genpd_init(&sc->pd, NULL, !on); | 
|  | if (ret) | 
|  | goto err_disable_supply; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_disable_supply: | 
|  | if (on && sc->rsupply) | 
|  | regulator_disable(sc->rsupply); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void gdsc_pm_subdomain_remove(struct gdsc_desc *desc, size_t num) | 
|  | { | 
|  | struct device *dev = desc->dev; | 
|  | struct gdsc **scs = desc->scs; | 
|  | int i; | 
|  |  | 
|  | /* Remove subdomains */ | 
|  | for (i = num - 1; i >= 0; i--) { | 
|  | if (!scs[i]) | 
|  | continue; | 
|  | if (scs[i]->parent) | 
|  | pm_genpd_remove_subdomain(scs[i]->parent, &scs[i]->pd); | 
|  | else if (!IS_ERR_OR_NULL(dev->pm_domain)) | 
|  | pm_genpd_remove_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd); | 
|  | } | 
|  | } | 
|  |  | 
|  | int gdsc_register(struct gdsc_desc *desc, | 
|  | struct reset_controller_dev *rcdev, struct regmap *regmap) | 
|  | { | 
|  | int i, ret; | 
|  | struct genpd_onecell_data *data; | 
|  | struct device *dev = desc->dev; | 
|  | struct gdsc **scs = desc->scs; | 
|  | size_t num = desc->num; | 
|  |  | 
|  | data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data->domains = devm_kcalloc(dev, num, sizeof(*data->domains), | 
|  | GFP_KERNEL); | 
|  | if (!data->domains) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | if (!scs[i] || !scs[i]->supply) | 
|  | continue; | 
|  |  | 
|  | scs[i]->rsupply = devm_regulator_get_optional(dev, scs[i]->supply); | 
|  | if (IS_ERR(scs[i]->rsupply)) { | 
|  | ret = PTR_ERR(scs[i]->rsupply); | 
|  | if (ret != -ENODEV) | 
|  | return ret; | 
|  |  | 
|  | scs[i]->rsupply = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | data->num_domains = num; | 
|  | for (i = 0; i < num; i++) { | 
|  | if (!scs[i]) | 
|  | continue; | 
|  | scs[i]->regmap = regmap; | 
|  | scs[i]->rcdev = rcdev; | 
|  | ret = gdsc_init(scs[i]); | 
|  | if (ret) | 
|  | return ret; | 
|  | data->domains[i] = &scs[i]->pd; | 
|  | } | 
|  |  | 
|  | /* Add subdomains */ | 
|  | for (i = 0; i < num; i++) { | 
|  | if (!scs[i]) | 
|  | continue; | 
|  | if (scs[i]->parent) | 
|  | ret = pm_genpd_add_subdomain(scs[i]->parent, &scs[i]->pd); | 
|  | else if (!IS_ERR_OR_NULL(dev->pm_domain)) | 
|  | ret = pm_genpd_add_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd); | 
|  | if (ret) | 
|  | goto err_pm_subdomain_remove; | 
|  | } | 
|  |  | 
|  | return of_genpd_add_provider_onecell(dev->of_node, data); | 
|  |  | 
|  | err_pm_subdomain_remove: | 
|  | gdsc_pm_subdomain_remove(desc, i); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void gdsc_unregister(struct gdsc_desc *desc) | 
|  | { | 
|  | struct device *dev = desc->dev; | 
|  | size_t num = desc->num; | 
|  |  | 
|  | gdsc_pm_subdomain_remove(desc, num); | 
|  | of_genpd_del_provider(dev->of_node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On SDM845+ the GPU GX domain is *almost* entirely controlled by the GMU | 
|  | * running in the CX domain so the CPU doesn't need to know anything about the | 
|  | * GX domain EXCEPT.... | 
|  | * | 
|  | * Hardware constraints dictate that the GX be powered down before the CX. If | 
|  | * the GMU crashes it could leave the GX on. In order to successfully bring back | 
|  | * the device the CPU needs to disable the GX headswitch. There being no sane | 
|  | * way to reach in and touch that register from deep inside the GPU driver we | 
|  | * need to set up the infrastructure to be able to ensure that the GPU can | 
|  | * ensure that the GX is off during this super special case. We do this by | 
|  | * defining a GX gdsc with a dummy enable function and a "default" disable | 
|  | * function. | 
|  | * | 
|  | * This allows us to attach with genpd_dev_pm_attach_by_name() in the GPU | 
|  | * driver. During power up, nothing will happen from the CPU (and the GMU will | 
|  | * power up normally but during power down this will ensure that the GX domain | 
|  | * is *really* off - this gives us a semi standard way of doing what we need. | 
|  | */ | 
|  | int gdsc_gx_do_nothing_enable(struct generic_pm_domain *domain) | 
|  | { | 
|  | struct gdsc *sc = domain_to_gdsc(domain); | 
|  | int ret = 0; | 
|  |  | 
|  | /* Enable the parent supply, when controlled through the regulator framework. */ | 
|  | if (sc->rsupply) | 
|  | ret = regulator_enable(sc->rsupply); | 
|  |  | 
|  | /* Do nothing with the GDSC itself */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gdsc_gx_do_nothing_enable); |