| // SPDX-License-Identifier: GPL-2.0-only | 
 |  | 
 | #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/clk.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuhotplug.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/printk.h> | 
 | #include <linux/sched_clock.h> | 
 | #include "timer-of.h" | 
 |  | 
 | #define RTTM_DATA		0x0 | 
 | #define RTTM_CNT		0x4 | 
 | #define RTTM_CTRL		0x8 | 
 | #define RTTM_INT		0xc | 
 |  | 
 | #define RTTM_CTRL_ENABLE	BIT(28) | 
 | #define RTTM_INT_PENDING	BIT(16) | 
 | #define RTTM_INT_ENABLE		BIT(20) | 
 |  | 
 | /* | 
 |  * The Otto platform provides multiple 28 bit timers/counters with the following | 
 |  * operating logic. If enabled the timer counts up. Per timer one can set a | 
 |  * maximum counter value as an end marker. If end marker is reached the timer | 
 |  * fires an interrupt. If the timer "overflows" by reaching the end marker or | 
 |  * by adding 1 to 0x0fffffff the counter is reset to 0. When this happens and | 
 |  * the timer is in operating mode COUNTER it stops. In mode TIMER it will | 
 |  * continue to count up. | 
 |  */ | 
 | #define RTTM_CTRL_COUNTER	0 | 
 | #define RTTM_CTRL_TIMER		BIT(24) | 
 |  | 
 | #define RTTM_BIT_COUNT		28 | 
 | #define RTTM_MIN_DELTA		8 | 
 | #define RTTM_MAX_DELTA		CLOCKSOURCE_MASK(28) | 
 |  | 
 | /* | 
 |  * Timers are derived from the LXB clock frequency. Usually this is a fixed | 
 |  * multiple of the 25 MHz oscillator. The 930X SOC is an exception from that. | 
 |  * Its LXB clock has only dividers and uses the switch PLL of 2.45 GHz as its | 
 |  * base. The only meaningful frequencies we can achieve from that are 175.000 | 
 |  * MHz and 153.125 MHz. The greatest common divisor of all explained possible | 
 |  * speeds is 3125000. Pin the timers to this 3.125 MHz reference frequency. | 
 |  */ | 
 | #define RTTM_TICKS_PER_SEC	3125000 | 
 |  | 
 | struct rttm_cs { | 
 | 	struct timer_of		to; | 
 | 	struct clocksource	cs; | 
 | }; | 
 |  | 
 | /* Simple internal register functions */ | 
 | static inline void rttm_set_counter(void __iomem *base, unsigned int counter) | 
 | { | 
 | 	iowrite32(counter, base + RTTM_CNT); | 
 | } | 
 |  | 
 | static inline unsigned int rttm_get_counter(void __iomem *base) | 
 | { | 
 | 	return ioread32(base + RTTM_CNT); | 
 | } | 
 |  | 
 | static inline void rttm_set_period(void __iomem *base, unsigned int period) | 
 | { | 
 | 	iowrite32(period, base + RTTM_DATA); | 
 | } | 
 |  | 
 | static inline void rttm_disable_timer(void __iomem *base) | 
 | { | 
 | 	iowrite32(0, base + RTTM_CTRL); | 
 | } | 
 |  | 
 | static inline void rttm_enable_timer(void __iomem *base, u32 mode, u32 divisor) | 
 | { | 
 | 	iowrite32(RTTM_CTRL_ENABLE | mode | divisor, base + RTTM_CTRL); | 
 | } | 
 |  | 
 | static inline void rttm_ack_irq(void __iomem *base) | 
 | { | 
 | 	iowrite32(ioread32(base + RTTM_INT) | RTTM_INT_PENDING, base + RTTM_INT); | 
 | } | 
 |  | 
 | static inline void rttm_enable_irq(void __iomem *base) | 
 | { | 
 | 	iowrite32(RTTM_INT_ENABLE, base + RTTM_INT); | 
 | } | 
 |  | 
 | static inline void rttm_disable_irq(void __iomem *base) | 
 | { | 
 | 	iowrite32(0, base + RTTM_INT); | 
 | } | 
 |  | 
 | /* Aggregated control functions for kernel clock framework */ | 
 | #define RTTM_DEBUG(base)			\ | 
 | 	pr_debug("------------- %d %p\n",	\ | 
 | 		 smp_processor_id(), base) | 
 |  | 
 | static irqreturn_t rttm_timer_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct clock_event_device *clkevt = dev_id; | 
 | 	struct timer_of *to = to_timer_of(clkevt); | 
 |  | 
 | 	rttm_ack_irq(to->of_base.base); | 
 | 	RTTM_DEBUG(to->of_base.base); | 
 | 	clkevt->event_handler(clkevt); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void rttm_stop_timer(void __iomem *base) | 
 | { | 
 | 	rttm_disable_timer(base); | 
 | 	rttm_ack_irq(base); | 
 | } | 
 |  | 
 | static void rttm_start_timer(struct timer_of *to, u32 mode) | 
 | { | 
 | 	rttm_set_counter(to->of_base.base, 0); | 
 | 	rttm_enable_timer(to->of_base.base, mode, to->of_clk.rate / RTTM_TICKS_PER_SEC); | 
 | } | 
 |  | 
 | static int rttm_next_event(unsigned long delta, struct clock_event_device *clkevt) | 
 | { | 
 | 	struct timer_of *to = to_timer_of(clkevt); | 
 |  | 
 | 	RTTM_DEBUG(to->of_base.base); | 
 | 	rttm_stop_timer(to->of_base.base); | 
 | 	rttm_set_period(to->of_base.base, delta); | 
 | 	rttm_start_timer(to, RTTM_CTRL_COUNTER); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rttm_state_oneshot(struct clock_event_device *clkevt) | 
 | { | 
 | 	struct timer_of *to = to_timer_of(clkevt); | 
 |  | 
 | 	RTTM_DEBUG(to->of_base.base); | 
 | 	rttm_stop_timer(to->of_base.base); | 
 | 	rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ); | 
 | 	rttm_start_timer(to, RTTM_CTRL_COUNTER); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rttm_state_periodic(struct clock_event_device *clkevt) | 
 | { | 
 | 	struct timer_of *to = to_timer_of(clkevt); | 
 |  | 
 | 	RTTM_DEBUG(to->of_base.base); | 
 | 	rttm_stop_timer(to->of_base.base); | 
 | 	rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ); | 
 | 	rttm_start_timer(to, RTTM_CTRL_TIMER); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rttm_state_shutdown(struct clock_event_device *clkevt) | 
 | { | 
 | 	struct timer_of *to = to_timer_of(clkevt); | 
 |  | 
 | 	RTTM_DEBUG(to->of_base.base); | 
 | 	rttm_stop_timer(to->of_base.base); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void rttm_setup_timer(void __iomem *base) | 
 | { | 
 | 	RTTM_DEBUG(base); | 
 | 	rttm_stop_timer(base); | 
 | 	rttm_set_period(base, 0); | 
 | } | 
 |  | 
 | static u64 rttm_read_clocksource(struct clocksource *cs) | 
 | { | 
 | 	struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs); | 
 |  | 
 | 	return rttm_get_counter(rcs->to.of_base.base); | 
 | } | 
 |  | 
 | /* Module initialization part. */ | 
 | static DEFINE_PER_CPU(struct timer_of, rttm_to) = { | 
 | 	.flags				= TIMER_OF_BASE | TIMER_OF_CLOCK | TIMER_OF_IRQ, | 
 | 	.of_irq = { | 
 | 		.flags			= IRQF_PERCPU | IRQF_TIMER, | 
 | 		.handler		= rttm_timer_interrupt, | 
 | 	}, | 
 | 	.clkevt = { | 
 | 		.rating			= 400, | 
 | 		.features		= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | 
 | 		.set_state_periodic	= rttm_state_periodic, | 
 | 		.set_state_shutdown	= rttm_state_shutdown, | 
 | 		.set_state_oneshot	= rttm_state_oneshot, | 
 | 		.set_next_event		= rttm_next_event | 
 | 	}, | 
 | }; | 
 |  | 
 | static int rttm_enable_clocksource(struct clocksource *cs) | 
 | { | 
 | 	struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs); | 
 |  | 
 | 	rttm_disable_irq(rcs->to.of_base.base); | 
 | 	rttm_setup_timer(rcs->to.of_base.base); | 
 | 	rttm_enable_timer(rcs->to.of_base.base, RTTM_CTRL_TIMER, | 
 | 			  rcs->to.of_clk.rate / RTTM_TICKS_PER_SEC); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct rttm_cs rttm_cs = { | 
 | 	.to = { | 
 | 		.flags	= TIMER_OF_BASE | TIMER_OF_CLOCK, | 
 | 	}, | 
 | 	.cs = { | 
 | 		.name	= "realtek_otto_timer", | 
 | 		.rating	= 400, | 
 | 		.mask	= CLOCKSOURCE_MASK(RTTM_BIT_COUNT), | 
 | 		.flags	= CLOCK_SOURCE_IS_CONTINUOUS, | 
 | 		.read	= rttm_read_clocksource, | 
 | 	} | 
 | }; | 
 |  | 
 | static u64 notrace rttm_read_clock(void) | 
 | { | 
 | 	return rttm_get_counter(rttm_cs.to.of_base.base); | 
 | } | 
 |  | 
 | static int rttm_cpu_starting(unsigned int cpu) | 
 | { | 
 | 	struct timer_of *to = per_cpu_ptr(&rttm_to, cpu); | 
 |  | 
 | 	RTTM_DEBUG(to->of_base.base); | 
 | 	to->clkevt.cpumask = cpumask_of(cpu); | 
 | 	irq_force_affinity(to->of_irq.irq, to->clkevt.cpumask); | 
 | 	clockevents_config_and_register(&to->clkevt, RTTM_TICKS_PER_SEC, | 
 | 					RTTM_MIN_DELTA, RTTM_MAX_DELTA); | 
 | 	rttm_enable_irq(to->of_base.base); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init rttm_probe(struct device_node *np) | 
 | { | 
 | 	unsigned int cpu, cpu_rollback; | 
 | 	struct timer_of *to; | 
 | 	unsigned int clkidx = num_possible_cpus(); | 
 |  | 
 | 	/* Use the first n timers as per CPU clock event generators */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		to = per_cpu_ptr(&rttm_to, cpu); | 
 | 		to->of_irq.index = to->of_base.index = cpu; | 
 | 		if (timer_of_init(np, to)) { | 
 | 			pr_err("setup of timer %d failed\n", cpu); | 
 | 			goto rollback; | 
 | 		} | 
 | 		rttm_setup_timer(to->of_base.base); | 
 | 	} | 
 |  | 
 | 	/* Activate the n'th + 1 timer as a stable CPU clocksource. */ | 
 | 	to = &rttm_cs.to; | 
 | 	to->of_base.index = clkidx; | 
 | 	timer_of_init(np, to); | 
 | 	if (rttm_cs.to.of_base.base && rttm_cs.to.of_clk.rate) { | 
 | 		rttm_enable_clocksource(&rttm_cs.cs); | 
 | 		clocksource_register_hz(&rttm_cs.cs, RTTM_TICKS_PER_SEC); | 
 | 		sched_clock_register(rttm_read_clock, RTTM_BIT_COUNT, RTTM_TICKS_PER_SEC); | 
 | 	} else | 
 | 		pr_err(" setup of timer %d as clocksource failed", clkidx); | 
 |  | 
 | 	return cpuhp_setup_state(CPUHP_AP_REALTEK_TIMER_STARTING, | 
 | 				"timer/realtek:online", | 
 | 				rttm_cpu_starting, NULL); | 
 | rollback: | 
 | 	pr_err("timer registration failed\n"); | 
 | 	for_each_possible_cpu(cpu_rollback) { | 
 | 		if (cpu_rollback == cpu) | 
 | 			break; | 
 | 		to = per_cpu_ptr(&rttm_to, cpu_rollback); | 
 | 		timer_of_cleanup(to); | 
 | 	} | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | TIMER_OF_DECLARE(otto_timer, "realtek,otto-timer", rttm_probe); |