| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) 2011-2012 Red Hat UK. | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include "dm-thin-metadata.h" | 
 | #include "dm-bio-prison-v1.h" | 
 | #include "dm.h" | 
 |  | 
 | #include <linux/device-mapper.h> | 
 | #include <linux/dm-io.h> | 
 | #include <linux/dm-kcopyd.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/list.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/rbtree.h> | 
 |  | 
 | #define	DM_MSG_PREFIX	"thin" | 
 |  | 
 | /* | 
 |  * Tunable constants | 
 |  */ | 
 | #define ENDIO_HOOK_POOL_SIZE 1024 | 
 | #define MAPPING_POOL_SIZE 1024 | 
 | #define COMMIT_PERIOD HZ | 
 | #define NO_SPACE_TIMEOUT_SECS 60 | 
 |  | 
 | static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; | 
 |  | 
 | DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, | 
 | 		"A percentage of time allocated for copy on write"); | 
 |  | 
 | /* | 
 |  * The block size of the device holding pool data must be | 
 |  * between 64KB and 1GB. | 
 |  */ | 
 | #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) | 
 | #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) | 
 |  | 
 | /* | 
 |  * Device id is restricted to 24 bits. | 
 |  */ | 
 | #define MAX_DEV_ID ((1 << 24) - 1) | 
 |  | 
 | /* | 
 |  * How do we handle breaking sharing of data blocks? | 
 |  * ================================================= | 
 |  * | 
 |  * We use a standard copy-on-write btree to store the mappings for the | 
 |  * devices (note I'm talking about copy-on-write of the metadata here, not | 
 |  * the data).  When you take an internal snapshot you clone the root node | 
 |  * of the origin btree.  After this there is no concept of an origin or a | 
 |  * snapshot.  They are just two device trees that happen to point to the | 
 |  * same data blocks. | 
 |  * | 
 |  * When we get a write in we decide if it's to a shared data block using | 
 |  * some timestamp magic.  If it is, we have to break sharing. | 
 |  * | 
 |  * Let's say we write to a shared block in what was the origin.  The | 
 |  * steps are: | 
 |  * | 
 |  * i) plug io further to this physical block. (see bio_prison code). | 
 |  * | 
 |  * ii) quiesce any read io to that shared data block.  Obviously | 
 |  * including all devices that share this block.  (see dm_deferred_set code) | 
 |  * | 
 |  * iii) copy the data block to a newly allocate block.  This step can be | 
 |  * missed out if the io covers the block. (schedule_copy). | 
 |  * | 
 |  * iv) insert the new mapping into the origin's btree | 
 |  * (process_prepared_mapping).  This act of inserting breaks some | 
 |  * sharing of btree nodes between the two devices.  Breaking sharing only | 
 |  * effects the btree of that specific device.  Btrees for the other | 
 |  * devices that share the block never change.  The btree for the origin | 
 |  * device as it was after the last commit is untouched, ie. we're using | 
 |  * persistent data structures in the functional programming sense. | 
 |  * | 
 |  * v) unplug io to this physical block, including the io that triggered | 
 |  * the breaking of sharing. | 
 |  * | 
 |  * Steps (ii) and (iii) occur in parallel. | 
 |  * | 
 |  * The metadata _doesn't_ need to be committed before the io continues.  We | 
 |  * get away with this because the io is always written to a _new_ block. | 
 |  * If there's a crash, then: | 
 |  * | 
 |  * - The origin mapping will point to the old origin block (the shared | 
 |  * one).  This will contain the data as it was before the io that triggered | 
 |  * the breaking of sharing came in. | 
 |  * | 
 |  * - The snap mapping still points to the old block.  As it would after | 
 |  * the commit. | 
 |  * | 
 |  * The downside of this scheme is the timestamp magic isn't perfect, and | 
 |  * will continue to think that data block in the snapshot device is shared | 
 |  * even after the write to the origin has broken sharing.  I suspect data | 
 |  * blocks will typically be shared by many different devices, so we're | 
 |  * breaking sharing n + 1 times, rather than n, where n is the number of | 
 |  * devices that reference this data block.  At the moment I think the | 
 |  * benefits far, far outweigh the disadvantages. | 
 |  */ | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Key building. | 
 |  */ | 
 | enum lock_space { | 
 | 	VIRTUAL, | 
 | 	PHYSICAL | 
 | }; | 
 |  | 
 | static bool build_key(struct dm_thin_device *td, enum lock_space ls, | 
 | 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key) | 
 | { | 
 | 	key->virtual = (ls == VIRTUAL); | 
 | 	key->dev = dm_thin_dev_id(td); | 
 | 	key->block_begin = b; | 
 | 	key->block_end = e; | 
 |  | 
 | 	return dm_cell_key_has_valid_range(key); | 
 | } | 
 |  | 
 | static void build_data_key(struct dm_thin_device *td, dm_block_t b, | 
 | 			   struct dm_cell_key *key) | 
 | { | 
 | 	(void) build_key(td, PHYSICAL, b, b + 1llu, key); | 
 | } | 
 |  | 
 | static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, | 
 | 			      struct dm_cell_key *key) | 
 | { | 
 | 	(void) build_key(td, VIRTUAL, b, b + 1llu, key); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | #define THROTTLE_THRESHOLD (1 * HZ) | 
 |  | 
 | struct throttle { | 
 | 	struct rw_semaphore lock; | 
 | 	unsigned long threshold; | 
 | 	bool throttle_applied; | 
 | }; | 
 |  | 
 | static void throttle_init(struct throttle *t) | 
 | { | 
 | 	init_rwsem(&t->lock); | 
 | 	t->throttle_applied = false; | 
 | } | 
 |  | 
 | static void throttle_work_start(struct throttle *t) | 
 | { | 
 | 	t->threshold = jiffies + THROTTLE_THRESHOLD; | 
 | } | 
 |  | 
 | static void throttle_work_update(struct throttle *t) | 
 | { | 
 | 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { | 
 | 		down_write(&t->lock); | 
 | 		t->throttle_applied = true; | 
 | 	} | 
 | } | 
 |  | 
 | static void throttle_work_complete(struct throttle *t) | 
 | { | 
 | 	if (t->throttle_applied) { | 
 | 		t->throttle_applied = false; | 
 | 		up_write(&t->lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void throttle_lock(struct throttle *t) | 
 | { | 
 | 	down_read(&t->lock); | 
 | } | 
 |  | 
 | static void throttle_unlock(struct throttle *t) | 
 | { | 
 | 	up_read(&t->lock); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * A pool device ties together a metadata device and a data device.  It | 
 |  * also provides the interface for creating and destroying internal | 
 |  * devices. | 
 |  */ | 
 | struct dm_thin_new_mapping; | 
 |  | 
 | /* | 
 |  * The pool runs in various modes.  Ordered in degraded order for comparisons. | 
 |  */ | 
 | enum pool_mode { | 
 | 	PM_WRITE,		/* metadata may be changed */ | 
 | 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */ | 
 |  | 
 | 	/* | 
 | 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. | 
 | 	 */ | 
 | 	PM_OUT_OF_METADATA_SPACE, | 
 | 	PM_READ_ONLY,		/* metadata may not be changed */ | 
 |  | 
 | 	PM_FAIL,		/* all I/O fails */ | 
 | }; | 
 |  | 
 | struct pool_features { | 
 | 	enum pool_mode mode; | 
 |  | 
 | 	bool zero_new_blocks:1; | 
 | 	bool discard_enabled:1; | 
 | 	bool discard_passdown:1; | 
 | 	bool error_if_no_space:1; | 
 | }; | 
 |  | 
 | struct thin_c; | 
 | typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); | 
 | typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); | 
 | typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); | 
 |  | 
 | #define CELL_SORT_ARRAY_SIZE 8192 | 
 |  | 
 | struct pool { | 
 | 	struct list_head list; | 
 | 	struct dm_target *ti;	/* Only set if a pool target is bound */ | 
 |  | 
 | 	struct mapped_device *pool_md; | 
 | 	struct block_device *data_dev; | 
 | 	struct block_device *md_dev; | 
 | 	struct dm_pool_metadata *pmd; | 
 |  | 
 | 	dm_block_t low_water_blocks; | 
 | 	uint32_t sectors_per_block; | 
 | 	int sectors_per_block_shift; | 
 |  | 
 | 	struct pool_features pf; | 
 | 	bool low_water_triggered:1;	/* A dm event has been sent */ | 
 | 	bool suspended:1; | 
 | 	bool out_of_data_space:1; | 
 |  | 
 | 	struct dm_bio_prison *prison; | 
 | 	struct dm_kcopyd_client *copier; | 
 |  | 
 | 	struct work_struct worker; | 
 | 	struct workqueue_struct *wq; | 
 | 	struct throttle throttle; | 
 | 	struct delayed_work waker; | 
 | 	struct delayed_work no_space_timeout; | 
 |  | 
 | 	unsigned long last_commit_jiffies; | 
 | 	unsigned int ref_count; | 
 |  | 
 | 	spinlock_t lock; | 
 | 	struct bio_list deferred_flush_bios; | 
 | 	struct bio_list deferred_flush_completions; | 
 | 	struct list_head prepared_mappings; | 
 | 	struct list_head prepared_discards; | 
 | 	struct list_head prepared_discards_pt2; | 
 | 	struct list_head active_thins; | 
 |  | 
 | 	struct dm_deferred_set *shared_read_ds; | 
 | 	struct dm_deferred_set *all_io_ds; | 
 |  | 
 | 	struct dm_thin_new_mapping *next_mapping; | 
 |  | 
 | 	process_bio_fn process_bio; | 
 | 	process_bio_fn process_discard; | 
 |  | 
 | 	process_cell_fn process_cell; | 
 | 	process_cell_fn process_discard_cell; | 
 |  | 
 | 	process_mapping_fn process_prepared_mapping; | 
 | 	process_mapping_fn process_prepared_discard; | 
 | 	process_mapping_fn process_prepared_discard_pt2; | 
 |  | 
 | 	struct dm_bio_prison_cell **cell_sort_array; | 
 |  | 
 | 	mempool_t mapping_pool; | 
 | }; | 
 |  | 
 | static void metadata_operation_failed(struct pool *pool, const char *op, int r); | 
 |  | 
 | static enum pool_mode get_pool_mode(struct pool *pool) | 
 | { | 
 | 	return pool->pf.mode; | 
 | } | 
 |  | 
 | static void notify_of_pool_mode_change(struct pool *pool) | 
 | { | 
 | 	static const char *descs[] = { | 
 | 		"write", | 
 | 		"out-of-data-space", | 
 | 		"read-only", | 
 | 		"read-only", | 
 | 		"fail" | 
 | 	}; | 
 | 	const char *extra_desc = NULL; | 
 | 	enum pool_mode mode = get_pool_mode(pool); | 
 |  | 
 | 	if (mode == PM_OUT_OF_DATA_SPACE) { | 
 | 		if (!pool->pf.error_if_no_space) | 
 | 			extra_desc = " (queue IO)"; | 
 | 		else | 
 | 			extra_desc = " (error IO)"; | 
 | 	} | 
 |  | 
 | 	dm_table_event(pool->ti->table); | 
 | 	DMINFO("%s: switching pool to %s%s mode", | 
 | 	       dm_device_name(pool->pool_md), | 
 | 	       descs[(int)mode], extra_desc ? : ""); | 
 | } | 
 |  | 
 | /* | 
 |  * Target context for a pool. | 
 |  */ | 
 | struct pool_c { | 
 | 	struct dm_target *ti; | 
 | 	struct pool *pool; | 
 | 	struct dm_dev *data_dev; | 
 | 	struct dm_dev *metadata_dev; | 
 |  | 
 | 	dm_block_t low_water_blocks; | 
 | 	struct pool_features requested_pf; /* Features requested during table load */ | 
 | 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Target context for a thin. | 
 |  */ | 
 | struct thin_c { | 
 | 	struct list_head list; | 
 | 	struct dm_dev *pool_dev; | 
 | 	struct dm_dev *origin_dev; | 
 | 	sector_t origin_size; | 
 | 	dm_thin_id dev_id; | 
 |  | 
 | 	struct pool *pool; | 
 | 	struct dm_thin_device *td; | 
 | 	struct mapped_device *thin_md; | 
 |  | 
 | 	bool requeue_mode:1; | 
 | 	spinlock_t lock; | 
 | 	struct list_head deferred_cells; | 
 | 	struct bio_list deferred_bio_list; | 
 | 	struct bio_list retry_on_resume_list; | 
 | 	struct rb_root sort_bio_list; /* sorted list of deferred bios */ | 
 |  | 
 | 	/* | 
 | 	 * Ensures the thin is not destroyed until the worker has finished | 
 | 	 * iterating the active_thins list. | 
 | 	 */ | 
 | 	refcount_t refcount; | 
 | 	struct completion can_destroy; | 
 | }; | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static bool block_size_is_power_of_two(struct pool *pool) | 
 | { | 
 | 	return pool->sectors_per_block_shift >= 0; | 
 | } | 
 |  | 
 | static sector_t block_to_sectors(struct pool *pool, dm_block_t b) | 
 | { | 
 | 	return block_size_is_power_of_two(pool) ? | 
 | 		(b << pool->sectors_per_block_shift) : | 
 | 		(b * pool->sectors_per_block); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | struct discard_op { | 
 | 	struct thin_c *tc; | 
 | 	struct blk_plug plug; | 
 | 	struct bio *parent_bio; | 
 | 	struct bio *bio; | 
 | }; | 
 |  | 
 | static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) | 
 | { | 
 | 	BUG_ON(!parent); | 
 |  | 
 | 	op->tc = tc; | 
 | 	blk_start_plug(&op->plug); | 
 | 	op->parent_bio = parent; | 
 | 	op->bio = NULL; | 
 | } | 
 |  | 
 | static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) | 
 | { | 
 | 	struct thin_c *tc = op->tc; | 
 | 	sector_t s = block_to_sectors(tc->pool, data_b); | 
 | 	sector_t len = block_to_sectors(tc->pool, data_e - data_b); | 
 |  | 
 | 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio); | 
 | } | 
 |  | 
 | static void end_discard(struct discard_op *op, int r) | 
 | { | 
 | 	if (op->bio) { | 
 | 		/* | 
 | 		 * Even if one of the calls to issue_discard failed, we | 
 | 		 * need to wait for the chain to complete. | 
 | 		 */ | 
 | 		bio_chain(op->bio, op->parent_bio); | 
 | 		op->bio->bi_opf = REQ_OP_DISCARD; | 
 | 		submit_bio(op->bio); | 
 | 	} | 
 |  | 
 | 	blk_finish_plug(&op->plug); | 
 |  | 
 | 	/* | 
 | 	 * Even if r is set, there could be sub discards in flight that we | 
 | 	 * need to wait for. | 
 | 	 */ | 
 | 	if (r && !op->parent_bio->bi_status) | 
 | 		op->parent_bio->bi_status = errno_to_blk_status(r); | 
 | 	bio_endio(op->parent_bio); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * wake_worker() is used when new work is queued and when pool_resume is | 
 |  * ready to continue deferred IO processing. | 
 |  */ | 
 | static void wake_worker(struct pool *pool) | 
 | { | 
 | 	queue_work(pool->wq, &pool->worker); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, | 
 | 		      struct dm_bio_prison_cell **cell_result) | 
 | { | 
 | 	int r; | 
 | 	struct dm_bio_prison_cell *cell_prealloc; | 
 |  | 
 | 	/* | 
 | 	 * Allocate a cell from the prison's mempool. | 
 | 	 * This might block but it can't fail. | 
 | 	 */ | 
 | 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); | 
 |  | 
 | 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); | 
 | 	if (r) { | 
 | 		/* | 
 | 		 * We reused an old cell; we can get rid of | 
 | 		 * the new one. | 
 | 		 */ | 
 | 		dm_bio_prison_free_cell(pool->prison, cell_prealloc); | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void cell_release(struct pool *pool, | 
 | 			 struct dm_bio_prison_cell *cell, | 
 | 			 struct bio_list *bios) | 
 | { | 
 | 	dm_cell_release(pool->prison, cell, bios); | 
 | 	dm_bio_prison_free_cell(pool->prison, cell); | 
 | } | 
 |  | 
 | static void cell_visit_release(struct pool *pool, | 
 | 			       void (*fn)(void *, struct dm_bio_prison_cell *), | 
 | 			       void *context, | 
 | 			       struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	dm_cell_visit_release(pool->prison, fn, context, cell); | 
 | 	dm_bio_prison_free_cell(pool->prison, cell); | 
 | } | 
 |  | 
 | static void cell_release_no_holder(struct pool *pool, | 
 | 				   struct dm_bio_prison_cell *cell, | 
 | 				   struct bio_list *bios) | 
 | { | 
 | 	dm_cell_release_no_holder(pool->prison, cell, bios); | 
 | 	dm_bio_prison_free_cell(pool->prison, cell); | 
 | } | 
 |  | 
 | static void cell_error_with_code(struct pool *pool, | 
 | 		struct dm_bio_prison_cell *cell, blk_status_t error_code) | 
 | { | 
 | 	dm_cell_error(pool->prison, cell, error_code); | 
 | 	dm_bio_prison_free_cell(pool->prison, cell); | 
 | } | 
 |  | 
 | static blk_status_t get_pool_io_error_code(struct pool *pool) | 
 | { | 
 | 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; | 
 | } | 
 |  | 
 | static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); | 
 | } | 
 |  | 
 | static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	cell_error_with_code(pool, cell, 0); | 
 | } | 
 |  | 
 | static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * A global list of pools that uses a struct mapped_device as a key. | 
 |  */ | 
 | static struct dm_thin_pool_table { | 
 | 	struct mutex mutex; | 
 | 	struct list_head pools; | 
 | } dm_thin_pool_table; | 
 |  | 
 | static void pool_table_init(void) | 
 | { | 
 | 	mutex_init(&dm_thin_pool_table.mutex); | 
 | 	INIT_LIST_HEAD(&dm_thin_pool_table.pools); | 
 | } | 
 |  | 
 | static void pool_table_exit(void) | 
 | { | 
 | 	mutex_destroy(&dm_thin_pool_table.mutex); | 
 | } | 
 |  | 
 | static void __pool_table_insert(struct pool *pool) | 
 | { | 
 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 	list_add(&pool->list, &dm_thin_pool_table.pools); | 
 | } | 
 |  | 
 | static void __pool_table_remove(struct pool *pool) | 
 | { | 
 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 	list_del(&pool->list); | 
 | } | 
 |  | 
 | static struct pool *__pool_table_lookup(struct mapped_device *md) | 
 | { | 
 | 	struct pool *pool = NULL, *tmp; | 
 |  | 
 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 |  | 
 | 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
 | 		if (tmp->pool_md == md) { | 
 | 			pool = tmp; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return pool; | 
 | } | 
 |  | 
 | static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) | 
 | { | 
 | 	struct pool *pool = NULL, *tmp; | 
 |  | 
 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 |  | 
 | 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
 | 		if (tmp->md_dev == md_dev) { | 
 | 			pool = tmp; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return pool; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | struct dm_thin_endio_hook { | 
 | 	struct thin_c *tc; | 
 | 	struct dm_deferred_entry *shared_read_entry; | 
 | 	struct dm_deferred_entry *all_io_entry; | 
 | 	struct dm_thin_new_mapping *overwrite_mapping; | 
 | 	struct rb_node rb_node; | 
 | 	struct dm_bio_prison_cell *cell; | 
 | }; | 
 |  | 
 | static void error_bio_list(struct bio_list *bios, blk_status_t error) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	while ((bio = bio_list_pop(bios))) { | 
 | 		bio->bi_status = error; | 
 | 		bio_endio(bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, | 
 | 		blk_status_t error) | 
 | { | 
 | 	struct bio_list bios; | 
 |  | 
 | 	bio_list_init(&bios); | 
 |  | 
 | 	spin_lock_irq(&tc->lock); | 
 | 	bio_list_merge_init(&bios, master); | 
 | 	spin_unlock_irq(&tc->lock); | 
 |  | 
 | 	error_bio_list(&bios, error); | 
 | } | 
 |  | 
 | static void requeue_deferred_cells(struct thin_c *tc) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct list_head cells; | 
 | 	struct dm_bio_prison_cell *cell, *tmp; | 
 |  | 
 | 	INIT_LIST_HEAD(&cells); | 
 |  | 
 | 	spin_lock_irq(&tc->lock); | 
 | 	list_splice_init(&tc->deferred_cells, &cells); | 
 | 	spin_unlock_irq(&tc->lock); | 
 |  | 
 | 	list_for_each_entry_safe(cell, tmp, &cells, user_list) | 
 | 		cell_requeue(pool, cell); | 
 | } | 
 |  | 
 | static void requeue_io(struct thin_c *tc) | 
 | { | 
 | 	struct bio_list bios; | 
 |  | 
 | 	bio_list_init(&bios); | 
 |  | 
 | 	spin_lock_irq(&tc->lock); | 
 | 	bio_list_merge_init(&bios, &tc->deferred_bio_list); | 
 | 	bio_list_merge_init(&bios, &tc->retry_on_resume_list); | 
 | 	spin_unlock_irq(&tc->lock); | 
 |  | 
 | 	error_bio_list(&bios, BLK_STS_DM_REQUEUE); | 
 | 	requeue_deferred_cells(tc); | 
 | } | 
 |  | 
 | static void error_retry_list_with_code(struct pool *pool, blk_status_t error) | 
 | { | 
 | 	struct thin_c *tc; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(tc, &pool->active_thins, list) | 
 | 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void error_retry_list(struct pool *pool) | 
 | { | 
 | 	error_retry_list_with_code(pool, get_pool_io_error_code(pool)); | 
 | } | 
 |  | 
 | /* | 
 |  * This section of code contains the logic for processing a thin device's IO. | 
 |  * Much of the code depends on pool object resources (lists, workqueues, etc) | 
 |  * but most is exclusively called from the thin target rather than the thin-pool | 
 |  * target. | 
 |  */ | 
 |  | 
 | static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	sector_t block_nr = bio->bi_iter.bi_sector; | 
 |  | 
 | 	if (block_size_is_power_of_two(pool)) | 
 | 		block_nr >>= pool->sectors_per_block_shift; | 
 | 	else | 
 | 		(void) sector_div(block_nr, pool->sectors_per_block); | 
 |  | 
 | 	return block_nr; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the _complete_ blocks that this bio covers. | 
 |  */ | 
 | static void get_bio_block_range(struct thin_c *tc, struct bio *bio, | 
 | 				dm_block_t *begin, dm_block_t *end) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	sector_t b = bio->bi_iter.bi_sector; | 
 | 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); | 
 |  | 
 | 	b += pool->sectors_per_block - 1ull; /* so we round up */ | 
 |  | 
 | 	if (block_size_is_power_of_two(pool)) { | 
 | 		b >>= pool->sectors_per_block_shift; | 
 | 		e >>= pool->sectors_per_block_shift; | 
 | 	} else { | 
 | 		(void) sector_div(b, pool->sectors_per_block); | 
 | 		(void) sector_div(e, pool->sectors_per_block); | 
 | 	} | 
 |  | 
 | 	if (e < b) { | 
 | 		/* Can happen if the bio is within a single block. */ | 
 | 		e = b; | 
 | 	} | 
 |  | 
 | 	*begin = b; | 
 | 	*end = e; | 
 | } | 
 |  | 
 | static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	sector_t bi_sector = bio->bi_iter.bi_sector; | 
 |  | 
 | 	bio_set_dev(bio, tc->pool_dev->bdev); | 
 | 	if (block_size_is_power_of_two(pool)) { | 
 | 		bio->bi_iter.bi_sector = | 
 | 			(block << pool->sectors_per_block_shift) | | 
 | 			(bi_sector & (pool->sectors_per_block - 1)); | 
 | 	} else { | 
 | 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + | 
 | 				 sector_div(bi_sector, pool->sectors_per_block); | 
 | 	} | 
 | } | 
 |  | 
 | static void remap_to_origin(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	bio_set_dev(bio, tc->origin_dev->bdev); | 
 | } | 
 |  | 
 | static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	return op_is_flush(bio->bi_opf) && | 
 | 		dm_thin_changed_this_transaction(tc->td); | 
 | } | 
 |  | 
 | static void inc_all_io_entry(struct pool *pool, struct bio *bio) | 
 | { | 
 | 	struct dm_thin_endio_hook *h; | 
 |  | 
 | 	if (bio_op(bio) == REQ_OP_DISCARD) | 
 | 		return; | 
 |  | 
 | 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 | 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); | 
 | } | 
 |  | 
 | static void issue(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	if (!bio_triggers_commit(tc, bio)) { | 
 | 		dm_submit_bio_remap(bio, NULL); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Complete bio with an error if earlier I/O caused changes to | 
 | 	 * the metadata that can't be committed e.g, due to I/O errors | 
 | 	 * on the metadata device. | 
 | 	 */ | 
 | 	if (dm_thin_aborted_changes(tc->td)) { | 
 | 		bio_io_error(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Batch together any bios that trigger commits and then issue a | 
 | 	 * single commit for them in process_deferred_bios(). | 
 | 	 */ | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	bio_list_add(&pool->deferred_flush_bios, bio); | 
 | 	spin_unlock_irq(&pool->lock); | 
 | } | 
 |  | 
 | static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	remap_to_origin(tc, bio); | 
 | 	issue(tc, bio); | 
 | } | 
 |  | 
 | static void remap_and_issue(struct thin_c *tc, struct bio *bio, | 
 | 			    dm_block_t block) | 
 | { | 
 | 	remap(tc, bio, block); | 
 | 	issue(tc, bio); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Bio endio functions. | 
 |  */ | 
 | struct dm_thin_new_mapping { | 
 | 	struct list_head list; | 
 |  | 
 | 	bool pass_discard:1; | 
 | 	bool maybe_shared:1; | 
 |  | 
 | 	/* | 
 | 	 * Track quiescing, copying and zeroing preparation actions.  When this | 
 | 	 * counter hits zero the block is prepared and can be inserted into the | 
 | 	 * btree. | 
 | 	 */ | 
 | 	atomic_t prepare_actions; | 
 |  | 
 | 	blk_status_t status; | 
 | 	struct thin_c *tc; | 
 | 	dm_block_t virt_begin, virt_end; | 
 | 	dm_block_t data_block; | 
 | 	struct dm_bio_prison_cell *cell; | 
 |  | 
 | 	/* | 
 | 	 * If the bio covers the whole area of a block then we can avoid | 
 | 	 * zeroing or copying.  Instead this bio is hooked.  The bio will | 
 | 	 * still be in the cell, so care has to be taken to avoid issuing | 
 | 	 * the bio twice. | 
 | 	 */ | 
 | 	struct bio *bio; | 
 | 	bio_end_io_t *saved_bi_end_io; | 
 | }; | 
 |  | 
 | static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	struct pool *pool = m->tc->pool; | 
 |  | 
 | 	if (atomic_dec_and_test(&m->prepare_actions)) { | 
 | 		list_add_tail(&m->list, &pool->prepared_mappings); | 
 | 		wake_worker(pool); | 
 | 	} | 
 | } | 
 |  | 
 | static void complete_mapping_preparation(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct pool *pool = m->tc->pool; | 
 |  | 
 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 	__complete_mapping_preparation(m); | 
 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | } | 
 |  | 
 | static void copy_complete(int read_err, unsigned long write_err, void *context) | 
 | { | 
 | 	struct dm_thin_new_mapping *m = context; | 
 |  | 
 | 	m->status = read_err || write_err ? BLK_STS_IOERR : 0; | 
 | 	complete_mapping_preparation(m); | 
 | } | 
 |  | 
 | static void overwrite_endio(struct bio *bio) | 
 | { | 
 | 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 | 	struct dm_thin_new_mapping *m = h->overwrite_mapping; | 
 |  | 
 | 	bio->bi_end_io = m->saved_bi_end_io; | 
 |  | 
 | 	m->status = bio->bi_status; | 
 | 	complete_mapping_preparation(m); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Workqueue. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Prepared mapping jobs. | 
 |  */ | 
 |  | 
 | /* | 
 |  * This sends the bios in the cell, except the original holder, back | 
 |  * to the deferred_bios list. | 
 |  */ | 
 | static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	unsigned long flags; | 
 | 	struct bio_list bios; | 
 |  | 
 | 	bio_list_init(&bios); | 
 | 	cell_release_no_holder(pool, cell, &bios); | 
 |  | 
 | 	if (!bio_list_empty(&bios)) { | 
 | 		spin_lock_irqsave(&tc->lock, flags); | 
 | 		bio_list_merge(&tc->deferred_bio_list, &bios); | 
 | 		spin_unlock_irqrestore(&tc->lock, flags); | 
 | 		wake_worker(pool); | 
 | 	} | 
 | } | 
 |  | 
 | static void thin_defer_bio(struct thin_c *tc, struct bio *bio); | 
 |  | 
 | struct remap_info { | 
 | 	struct thin_c *tc; | 
 | 	struct bio_list defer_bios; | 
 | 	struct bio_list issue_bios; | 
 | }; | 
 |  | 
 | static void __inc_remap_and_issue_cell(void *context, | 
 | 				       struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	struct remap_info *info = context; | 
 | 	struct bio *bio; | 
 |  | 
 | 	while ((bio = bio_list_pop(&cell->bios))) { | 
 | 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) | 
 | 			bio_list_add(&info->defer_bios, bio); | 
 | 		else { | 
 | 			inc_all_io_entry(info->tc->pool, bio); | 
 |  | 
 | 			/* | 
 | 			 * We can't issue the bios with the bio prison lock | 
 | 			 * held, so we add them to a list to issue on | 
 | 			 * return from this function. | 
 | 			 */ | 
 | 			bio_list_add(&info->issue_bios, bio); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void inc_remap_and_issue_cell(struct thin_c *tc, | 
 | 				     struct dm_bio_prison_cell *cell, | 
 | 				     dm_block_t block) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct remap_info info; | 
 |  | 
 | 	info.tc = tc; | 
 | 	bio_list_init(&info.defer_bios); | 
 | 	bio_list_init(&info.issue_bios); | 
 |  | 
 | 	/* | 
 | 	 * We have to be careful to inc any bios we're about to issue | 
 | 	 * before the cell is released, and avoid a race with new bios | 
 | 	 * being added to the cell. | 
 | 	 */ | 
 | 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell, | 
 | 			   &info, cell); | 
 |  | 
 | 	while ((bio = bio_list_pop(&info.defer_bios))) | 
 | 		thin_defer_bio(tc, bio); | 
 |  | 
 | 	while ((bio = bio_list_pop(&info.issue_bios))) | 
 | 		remap_and_issue(info.tc, bio, block); | 
 | } | 
 |  | 
 | static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	cell_error(m->tc->pool, m->cell); | 
 | 	list_del(&m->list); | 
 | 	mempool_free(m, &m->tc->pool->mapping_pool); | 
 | } | 
 |  | 
 | static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	/* | 
 | 	 * If the bio has the REQ_FUA flag set we must commit the metadata | 
 | 	 * before signaling its completion. | 
 | 	 */ | 
 | 	if (!bio_triggers_commit(tc, bio)) { | 
 | 		bio_endio(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Complete bio with an error if earlier I/O caused changes to the | 
 | 	 * metadata that can't be committed, e.g, due to I/O errors on the | 
 | 	 * metadata device. | 
 | 	 */ | 
 | 	if (dm_thin_aborted_changes(tc->td)) { | 
 | 		bio_io_error(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Batch together any bios that trigger commits and then issue a | 
 | 	 * single commit for them in process_deferred_bios(). | 
 | 	 */ | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	bio_list_add(&pool->deferred_flush_completions, bio); | 
 | 	spin_unlock_irq(&pool->lock); | 
 | } | 
 |  | 
 | static void process_prepared_mapping(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	struct thin_c *tc = m->tc; | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct bio *bio = m->bio; | 
 | 	int r; | 
 |  | 
 | 	if (m->status) { | 
 | 		cell_error(pool, m->cell); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Commit the prepared block into the mapping btree. | 
 | 	 * Any I/O for this block arriving after this point will get | 
 | 	 * remapped to it directly. | 
 | 	 */ | 
 | 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(pool, "dm_thin_insert_block", r); | 
 | 		cell_error(pool, m->cell); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Release any bios held while the block was being provisioned. | 
 | 	 * If we are processing a write bio that completely covers the block, | 
 | 	 * we already processed it so can ignore it now when processing | 
 | 	 * the bios in the cell. | 
 | 	 */ | 
 | 	if (bio) { | 
 | 		inc_remap_and_issue_cell(tc, m->cell, m->data_block); | 
 | 		complete_overwrite_bio(tc, bio); | 
 | 	} else { | 
 | 		inc_all_io_entry(tc->pool, m->cell->holder); | 
 | 		remap_and_issue(tc, m->cell->holder, m->data_block); | 
 | 		inc_remap_and_issue_cell(tc, m->cell, m->data_block); | 
 | 	} | 
 |  | 
 | out: | 
 | 	list_del(&m->list); | 
 | 	mempool_free(m, &pool->mapping_pool); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static void free_discard_mapping(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	struct thin_c *tc = m->tc; | 
 |  | 
 | 	if (m->cell) | 
 | 		cell_defer_no_holder(tc, m->cell); | 
 | 	mempool_free(m, &tc->pool->mapping_pool); | 
 | } | 
 |  | 
 | static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	bio_io_error(m->bio); | 
 | 	free_discard_mapping(m); | 
 | } | 
 |  | 
 | static void process_prepared_discard_success(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	bio_endio(m->bio); | 
 | 	free_discard_mapping(m); | 
 | } | 
 |  | 
 | static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	int r; | 
 | 	struct thin_c *tc = m->tc; | 
 |  | 
 | 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); | 
 | 		bio_io_error(m->bio); | 
 | 	} else | 
 | 		bio_endio(m->bio); | 
 |  | 
 | 	cell_defer_no_holder(tc, m->cell); | 
 | 	mempool_free(m, &tc->pool->mapping_pool); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, | 
 | 						   struct bio *discard_parent) | 
 | { | 
 | 	/* | 
 | 	 * We've already unmapped this range of blocks, but before we | 
 | 	 * passdown we have to check that these blocks are now unused. | 
 | 	 */ | 
 | 	int r = 0; | 
 | 	bool shared = true; | 
 | 	struct thin_c *tc = m->tc; | 
 | 	struct pool *pool = tc->pool; | 
 | 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; | 
 | 	struct discard_op op; | 
 |  | 
 | 	begin_discard(&op, tc, discard_parent); | 
 | 	while (b != end) { | 
 | 		/* find start of unmapped run */ | 
 | 		for (; b < end; b++) { | 
 | 			r = dm_pool_block_is_shared(pool->pmd, b, &shared); | 
 | 			if (r) | 
 | 				goto out; | 
 |  | 
 | 			if (!shared) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (b == end) | 
 | 			break; | 
 |  | 
 | 		/* find end of run */ | 
 | 		for (e = b + 1; e != end; e++) { | 
 | 			r = dm_pool_block_is_shared(pool->pmd, e, &shared); | 
 | 			if (r) | 
 | 				goto out; | 
 |  | 
 | 			if (shared) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		r = issue_discard(&op, b, e); | 
 | 		if (r) | 
 | 			goto out; | 
 |  | 
 | 		b = e; | 
 | 	} | 
 | out: | 
 | 	end_discard(&op, r); | 
 | } | 
 |  | 
 | static void queue_passdown_pt2(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct pool *pool = m->tc->pool; | 
 |  | 
 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 	list_add_tail(&m->list, &pool->prepared_discards_pt2); | 
 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 	wake_worker(pool); | 
 | } | 
 |  | 
 | static void passdown_endio(struct bio *bio) | 
 | { | 
 | 	/* | 
 | 	 * It doesn't matter if the passdown discard failed, we still want | 
 | 	 * to unmap (we ignore err). | 
 | 	 */ | 
 | 	queue_passdown_pt2(bio->bi_private); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	int r; | 
 | 	struct thin_c *tc = m->tc; | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct bio *discard_parent; | 
 | 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); | 
 |  | 
 | 	/* | 
 | 	 * Only this thread allocates blocks, so we can be sure that the | 
 | 	 * newly unmapped blocks will not be allocated before the end of | 
 | 	 * the function. | 
 | 	 */ | 
 | 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(pool, "dm_thin_remove_range", r); | 
 | 		bio_io_error(m->bio); | 
 | 		cell_defer_no_holder(tc, m->cell); | 
 | 		mempool_free(m, &pool->mapping_pool); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Increment the unmapped blocks.  This prevents a race between the | 
 | 	 * passdown io and reallocation of freed blocks. | 
 | 	 */ | 
 | 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r); | 
 | 		bio_io_error(m->bio); | 
 | 		cell_defer_no_holder(tc, m->cell); | 
 | 		mempool_free(m, &pool->mapping_pool); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); | 
 | 	discard_parent->bi_end_io = passdown_endio; | 
 | 	discard_parent->bi_private = m; | 
 | 	if (m->maybe_shared) | 
 | 		passdown_double_checking_shared_status(m, discard_parent); | 
 | 	else { | 
 | 		struct discard_op op; | 
 |  | 
 | 		begin_discard(&op, tc, discard_parent); | 
 | 		r = issue_discard(&op, m->data_block, data_end); | 
 | 		end_discard(&op, r); | 
 | 	} | 
 | } | 
 |  | 
 | static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) | 
 | { | 
 | 	int r; | 
 | 	struct thin_c *tc = m->tc; | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	/* | 
 | 	 * The passdown has completed, so now we can decrement all those | 
 | 	 * unmapped blocks. | 
 | 	 */ | 
 | 	r = dm_pool_dec_data_range(pool->pmd, m->data_block, | 
 | 				   m->data_block + (m->virt_end - m->virt_begin)); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r); | 
 | 		bio_io_error(m->bio); | 
 | 	} else | 
 | 		bio_endio(m->bio); | 
 |  | 
 | 	cell_defer_no_holder(tc, m->cell); | 
 | 	mempool_free(m, &pool->mapping_pool); | 
 | } | 
 |  | 
 | static void process_prepared(struct pool *pool, struct list_head *head, | 
 | 			     process_mapping_fn *fn) | 
 | { | 
 | 	struct list_head maps; | 
 | 	struct dm_thin_new_mapping *m, *tmp; | 
 |  | 
 | 	INIT_LIST_HEAD(&maps); | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	list_splice_init(head, &maps); | 
 | 	spin_unlock_irq(&pool->lock); | 
 |  | 
 | 	list_for_each_entry_safe(m, tmp, &maps, list) | 
 | 		(*fn)(m); | 
 | } | 
 |  | 
 | /* | 
 |  * Deferred bio jobs. | 
 |  */ | 
 | static int io_overlaps_block(struct pool *pool, struct bio *bio) | 
 | { | 
 | 	return bio->bi_iter.bi_size == | 
 | 		(pool->sectors_per_block << SECTOR_SHIFT); | 
 | } | 
 |  | 
 | static int io_overwrites_block(struct pool *pool, struct bio *bio) | 
 | { | 
 | 	return (bio_data_dir(bio) == WRITE) && | 
 | 		io_overlaps_block(pool, bio); | 
 | } | 
 |  | 
 | static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, | 
 | 			       bio_end_io_t *fn) | 
 | { | 
 | 	*save = bio->bi_end_io; | 
 | 	bio->bi_end_io = fn; | 
 | } | 
 |  | 
 | static int ensure_next_mapping(struct pool *pool) | 
 | { | 
 | 	if (pool->next_mapping) | 
 | 		return 0; | 
 |  | 
 | 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); | 
 |  | 
 | 	return pool->next_mapping ? 0 : -ENOMEM; | 
 | } | 
 |  | 
 | static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) | 
 | { | 
 | 	struct dm_thin_new_mapping *m = pool->next_mapping; | 
 |  | 
 | 	BUG_ON(!pool->next_mapping); | 
 |  | 
 | 	memset(m, 0, sizeof(struct dm_thin_new_mapping)); | 
 | 	INIT_LIST_HEAD(&m->list); | 
 | 	m->bio = NULL; | 
 |  | 
 | 	pool->next_mapping = NULL; | 
 |  | 
 | 	return m; | 
 | } | 
 |  | 
 | static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, | 
 | 		    sector_t begin, sector_t end) | 
 | { | 
 | 	struct dm_io_region to; | 
 |  | 
 | 	to.bdev = tc->pool_dev->bdev; | 
 | 	to.sector = begin; | 
 | 	to.count = end - begin; | 
 |  | 
 | 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); | 
 | } | 
 |  | 
 | static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, | 
 | 				      dm_block_t data_begin, | 
 | 				      struct dm_thin_new_mapping *m) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 |  | 
 | 	h->overwrite_mapping = m; | 
 | 	m->bio = bio; | 
 | 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
 | 	inc_all_io_entry(pool, bio); | 
 | 	remap_and_issue(tc, bio, data_begin); | 
 | } | 
 |  | 
 | /* | 
 |  * A partial copy also needs to zero the uncopied region. | 
 |  */ | 
 | static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, | 
 | 			  struct dm_dev *origin, dm_block_t data_origin, | 
 | 			  dm_block_t data_dest, | 
 | 			  struct dm_bio_prison_cell *cell, struct bio *bio, | 
 | 			  sector_t len) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
 |  | 
 | 	m->tc = tc; | 
 | 	m->virt_begin = virt_block; | 
 | 	m->virt_end = virt_block + 1u; | 
 | 	m->data_block = data_dest; | 
 | 	m->cell = cell; | 
 |  | 
 | 	/* | 
 | 	 * quiesce action + copy action + an extra reference held for the | 
 | 	 * duration of this function (we may need to inc later for a | 
 | 	 * partial zero). | 
 | 	 */ | 
 | 	atomic_set(&m->prepare_actions, 3); | 
 |  | 
 | 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) | 
 | 		complete_mapping_preparation(m); /* already quiesced */ | 
 |  | 
 | 	/* | 
 | 	 * IO to pool_dev remaps to the pool target's data_dev. | 
 | 	 * | 
 | 	 * If the whole block of data is being overwritten, we can issue the | 
 | 	 * bio immediately. Otherwise we use kcopyd to clone the data first. | 
 | 	 */ | 
 | 	if (io_overwrites_block(pool, bio)) | 
 | 		remap_and_issue_overwrite(tc, bio, data_dest, m); | 
 | 	else { | 
 | 		struct dm_io_region from, to; | 
 |  | 
 | 		from.bdev = origin->bdev; | 
 | 		from.sector = data_origin * pool->sectors_per_block; | 
 | 		from.count = len; | 
 |  | 
 | 		to.bdev = tc->pool_dev->bdev; | 
 | 		to.sector = data_dest * pool->sectors_per_block; | 
 | 		to.count = len; | 
 |  | 
 | 		dm_kcopyd_copy(pool->copier, &from, 1, &to, | 
 | 			       0, copy_complete, m); | 
 |  | 
 | 		/* | 
 | 		 * Do we need to zero a tail region? | 
 | 		 */ | 
 | 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { | 
 | 			atomic_inc(&m->prepare_actions); | 
 | 			ll_zero(tc, m, | 
 | 				data_dest * pool->sectors_per_block + len, | 
 | 				(data_dest + 1) * pool->sectors_per_block); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	complete_mapping_preparation(m); /* drop our ref */ | 
 | } | 
 |  | 
 | static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, | 
 | 				   dm_block_t data_origin, dm_block_t data_dest, | 
 | 				   struct dm_bio_prison_cell *cell, struct bio *bio) | 
 | { | 
 | 	schedule_copy(tc, virt_block, tc->pool_dev, | 
 | 		      data_origin, data_dest, cell, bio, | 
 | 		      tc->pool->sectors_per_block); | 
 | } | 
 |  | 
 | static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, | 
 | 			  dm_block_t data_block, struct dm_bio_prison_cell *cell, | 
 | 			  struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
 |  | 
 | 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ | 
 | 	m->tc = tc; | 
 | 	m->virt_begin = virt_block; | 
 | 	m->virt_end = virt_block + 1u; | 
 | 	m->data_block = data_block; | 
 | 	m->cell = cell; | 
 |  | 
 | 	/* | 
 | 	 * If the whole block of data is being overwritten or we are not | 
 | 	 * zeroing pre-existing data, we can issue the bio immediately. | 
 | 	 * Otherwise we use kcopyd to zero the data first. | 
 | 	 */ | 
 | 	if (pool->pf.zero_new_blocks) { | 
 | 		if (io_overwrites_block(pool, bio)) | 
 | 			remap_and_issue_overwrite(tc, bio, data_block, m); | 
 | 		else { | 
 | 			ll_zero(tc, m, data_block * pool->sectors_per_block, | 
 | 				(data_block + 1) * pool->sectors_per_block); | 
 | 		} | 
 | 	} else | 
 | 		process_prepared_mapping(m); | 
 | } | 
 |  | 
 | static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, | 
 | 				   dm_block_t data_dest, | 
 | 				   struct dm_bio_prison_cell *cell, struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	sector_t virt_block_begin = virt_block * pool->sectors_per_block; | 
 | 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; | 
 |  | 
 | 	if (virt_block_end <= tc->origin_size) { | 
 | 		schedule_copy(tc, virt_block, tc->origin_dev, | 
 | 			      virt_block, data_dest, cell, bio, | 
 | 			      pool->sectors_per_block); | 
 |  | 
 | 	} else if (virt_block_begin < tc->origin_size) { | 
 | 		schedule_copy(tc, virt_block, tc->origin_dev, | 
 | 			      virt_block, data_dest, cell, bio, | 
 | 			      tc->origin_size - virt_block_begin); | 
 |  | 
 | 	} else | 
 | 		schedule_zero(tc, virt_block, data_dest, cell, bio); | 
 | } | 
 |  | 
 | static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); | 
 |  | 
 | static void requeue_bios(struct pool *pool); | 
 |  | 
 | static bool is_read_only_pool_mode(enum pool_mode mode) | 
 | { | 
 | 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); | 
 | } | 
 |  | 
 | static bool is_read_only(struct pool *pool) | 
 | { | 
 | 	return is_read_only_pool_mode(get_pool_mode(pool)); | 
 | } | 
 |  | 
 | static void check_for_metadata_space(struct pool *pool) | 
 | { | 
 | 	int r; | 
 | 	const char *ooms_reason = NULL; | 
 | 	dm_block_t nr_free; | 
 |  | 
 | 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); | 
 | 	if (r) | 
 | 		ooms_reason = "Could not get free metadata blocks"; | 
 | 	else if (!nr_free) | 
 | 		ooms_reason = "No free metadata blocks"; | 
 |  | 
 | 	if (ooms_reason && !is_read_only(pool)) { | 
 | 		DMERR("%s", ooms_reason); | 
 | 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); | 
 | 	} | 
 | } | 
 |  | 
 | static void check_for_data_space(struct pool *pool) | 
 | { | 
 | 	int r; | 
 | 	dm_block_t nr_free; | 
 |  | 
 | 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) | 
 | 		return; | 
 |  | 
 | 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free); | 
 | 	if (r) | 
 | 		return; | 
 |  | 
 | 	if (nr_free) { | 
 | 		set_pool_mode(pool, PM_WRITE); | 
 | 		requeue_bios(pool); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * A non-zero return indicates read_only or fail_io mode. | 
 |  * Many callers don't care about the return value. | 
 |  */ | 
 | static int commit(struct pool *pool) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_pool_commit_metadata(pool->pmd); | 
 | 	if (r) | 
 | 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r); | 
 | 	else { | 
 | 		check_for_metadata_space(pool); | 
 | 		check_for_data_space(pool); | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) | 
 | { | 
 | 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { | 
 | 		DMWARN("%s: reached low water mark for data device: sending event.", | 
 | 		       dm_device_name(pool->pool_md)); | 
 | 		spin_lock_irq(&pool->lock); | 
 | 		pool->low_water_triggered = true; | 
 | 		spin_unlock_irq(&pool->lock); | 
 | 		dm_table_event(pool->ti->table); | 
 | 	} | 
 | } | 
 |  | 
 | static int alloc_data_block(struct thin_c *tc, dm_block_t *result) | 
 | { | 
 | 	int r; | 
 | 	dm_block_t free_blocks; | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	check_low_water_mark(pool, free_blocks); | 
 |  | 
 | 	if (!free_blocks) { | 
 | 		/* | 
 | 		 * Try to commit to see if that will free up some | 
 | 		 * more space. | 
 | 		 */ | 
 | 		r = commit(pool); | 
 | 		if (r) | 
 | 			return r; | 
 |  | 
 | 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
 | 		if (r) { | 
 | 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		if (!free_blocks) { | 
 | 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); | 
 | 			return -ENOSPC; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = dm_pool_alloc_data_block(pool->pmd, result); | 
 | 	if (r) { | 
 | 		if (r == -ENOSPC) | 
 | 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); | 
 | 		else | 
 | 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if (!free_blocks) { | 
 | 		/* Let's commit before we use up the metadata reserve. */ | 
 | 		r = commit(pool); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If we have run out of space, queue bios until the device is | 
 |  * resumed, presumably after having been reloaded with more space. | 
 |  */ | 
 | static void retry_on_resume(struct bio *bio) | 
 | { | 
 | 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 | 	struct thin_c *tc = h->tc; | 
 |  | 
 | 	spin_lock_irq(&tc->lock); | 
 | 	bio_list_add(&tc->retry_on_resume_list, bio); | 
 | 	spin_unlock_irq(&tc->lock); | 
 | } | 
 |  | 
 | static blk_status_t should_error_unserviceable_bio(struct pool *pool) | 
 | { | 
 | 	enum pool_mode m = get_pool_mode(pool); | 
 |  | 
 | 	switch (m) { | 
 | 	case PM_WRITE: | 
 | 		/* Shouldn't get here */ | 
 | 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); | 
 | 		return BLK_STS_IOERR; | 
 |  | 
 | 	case PM_OUT_OF_DATA_SPACE: | 
 | 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; | 
 |  | 
 | 	case PM_OUT_OF_METADATA_SPACE: | 
 | 	case PM_READ_ONLY: | 
 | 	case PM_FAIL: | 
 | 		return BLK_STS_IOERR; | 
 | 	default: | 
 | 		/* Shouldn't get here */ | 
 | 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); | 
 | 		return BLK_STS_IOERR; | 
 | 	} | 
 | } | 
 |  | 
 | static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) | 
 | { | 
 | 	blk_status_t error = should_error_unserviceable_bio(pool); | 
 |  | 
 | 	if (error) { | 
 | 		bio->bi_status = error; | 
 | 		bio_endio(bio); | 
 | 	} else | 
 | 		retry_on_resume(bio); | 
 | } | 
 |  | 
 | static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct bio_list bios; | 
 | 	blk_status_t error; | 
 |  | 
 | 	error = should_error_unserviceable_bio(pool); | 
 | 	if (error) { | 
 | 		cell_error_with_code(pool, cell, error); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	bio_list_init(&bios); | 
 | 	cell_release(pool, cell, &bios); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bios))) | 
 | 		retry_on_resume(bio); | 
 | } | 
 |  | 
 | static void process_discard_cell_no_passdown(struct thin_c *tc, | 
 | 					     struct dm_bio_prison_cell *virt_cell) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
 |  | 
 | 	/* | 
 | 	 * We don't need to lock the data blocks, since there's no | 
 | 	 * passdown.  We only lock data blocks for allocation and breaking sharing. | 
 | 	 */ | 
 | 	m->tc = tc; | 
 | 	m->virt_begin = virt_cell->key.block_begin; | 
 | 	m->virt_end = virt_cell->key.block_end; | 
 | 	m->cell = virt_cell; | 
 | 	m->bio = virt_cell->holder; | 
 |  | 
 | 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) | 
 | 		pool->process_prepared_discard(m); | 
 | } | 
 |  | 
 | static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, | 
 | 				 struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	int r; | 
 | 	bool maybe_shared; | 
 | 	struct dm_cell_key data_key; | 
 | 	struct dm_bio_prison_cell *data_cell; | 
 | 	struct dm_thin_new_mapping *m; | 
 | 	dm_block_t virt_begin, virt_end, data_begin, data_end; | 
 | 	dm_block_t len, next_boundary; | 
 |  | 
 | 	while (begin != end) { | 
 | 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, | 
 | 					      &data_begin, &maybe_shared); | 
 | 		if (r) { | 
 | 			/* | 
 | 			 * Silently fail, letting any mappings we've | 
 | 			 * created complete. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		data_end = data_begin + (virt_end - virt_begin); | 
 |  | 
 | 		/* | 
 | 		 * Make sure the data region obeys the bio prison restrictions. | 
 | 		 */ | 
 | 		while (data_begin < data_end) { | 
 | 			r = ensure_next_mapping(pool); | 
 | 			if (r) | 
 | 				return; /* we did our best */ | 
 |  | 
 | 			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1) | 
 | 				<< BIO_PRISON_MAX_RANGE_SHIFT; | 
 | 			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin); | 
 |  | 
 | 			/* This key is certainly within range given the above splitting */ | 
 | 			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key); | 
 | 			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { | 
 | 				/* contention, we'll give up with this range */ | 
 | 				data_begin += len; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * IO may still be going to the destination block.  We must | 
 | 			 * quiesce before we can do the removal. | 
 | 			 */ | 
 | 			m = get_next_mapping(pool); | 
 | 			m->tc = tc; | 
 | 			m->maybe_shared = maybe_shared; | 
 | 			m->virt_begin = virt_begin; | 
 | 			m->virt_end = virt_begin + len; | 
 | 			m->data_block = data_begin; | 
 | 			m->cell = data_cell; | 
 | 			m->bio = bio; | 
 |  | 
 | 			/* | 
 | 			 * The parent bio must not complete before sub discard bios are | 
 | 			 * chained to it (see end_discard's bio_chain)! | 
 | 			 * | 
 | 			 * This per-mapping bi_remaining increment is paired with | 
 | 			 * the implicit decrement that occurs via bio_endio() in | 
 | 			 * end_discard(). | 
 | 			 */ | 
 | 			bio_inc_remaining(bio); | 
 | 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) | 
 | 				pool->process_prepared_discard(m); | 
 |  | 
 | 			virt_begin += len; | 
 | 			data_begin += len; | 
 | 		} | 
 |  | 
 | 		begin = virt_end; | 
 | 	} | 
 | } | 
 |  | 
 | static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) | 
 | { | 
 | 	struct bio *bio = virt_cell->holder; | 
 | 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 |  | 
 | 	/* | 
 | 	 * The virt_cell will only get freed once the origin bio completes. | 
 | 	 * This means it will remain locked while all the individual | 
 | 	 * passdown bios are in flight. | 
 | 	 */ | 
 | 	h->cell = virt_cell; | 
 | 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); | 
 |  | 
 | 	/* | 
 | 	 * We complete the bio now, knowing that the bi_remaining field | 
 | 	 * will prevent completion until the sub range discards have | 
 | 	 * completed. | 
 | 	 */ | 
 | 	bio_endio(bio); | 
 | } | 
 |  | 
 | static void process_discard_bio(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	dm_block_t begin, end; | 
 | 	struct dm_cell_key virt_key; | 
 | 	struct dm_bio_prison_cell *virt_cell; | 
 |  | 
 | 	get_bio_block_range(tc, bio, &begin, &end); | 
 | 	if (begin == end) { | 
 | 		/* | 
 | 		 * The discard covers less than a block. | 
 | 		 */ | 
 | 		bio_endio(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) { | 
 | 		DMERR_LIMIT("Discard doesn't respect bio prison limits"); | 
 | 		bio_endio(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) { | 
 | 		/* | 
 | 		 * Potential starvation issue: We're relying on the | 
 | 		 * fs/application being well behaved, and not trying to | 
 | 		 * send IO to a region at the same time as discarding it. | 
 | 		 * If they do this persistently then it's possible this | 
 | 		 * cell will never be granted. | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tc->pool->process_discard_cell(tc, virt_cell); | 
 | } | 
 |  | 
 | static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
 | 			  struct dm_cell_key *key, | 
 | 			  struct dm_thin_lookup_result *lookup_result, | 
 | 			  struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	int r; | 
 | 	dm_block_t data_block; | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	r = alloc_data_block(tc, &data_block); | 
 | 	switch (r) { | 
 | 	case 0: | 
 | 		schedule_internal_copy(tc, block, lookup_result->block, | 
 | 				       data_block, cell, bio); | 
 | 		break; | 
 |  | 
 | 	case -ENOSPC: | 
 | 		retry_bios_on_resume(pool, cell); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", | 
 | 			    __func__, r); | 
 | 		cell_error(pool, cell); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void __remap_and_issue_shared_cell(void *context, | 
 | 					  struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	struct remap_info *info = context; | 
 | 	struct bio *bio; | 
 |  | 
 | 	while ((bio = bio_list_pop(&cell->bios))) { | 
 | 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || | 
 | 		    bio_op(bio) == REQ_OP_DISCARD) | 
 | 			bio_list_add(&info->defer_bios, bio); | 
 | 		else { | 
 | 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 |  | 
 | 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); | 
 | 			inc_all_io_entry(info->tc->pool, bio); | 
 | 			bio_list_add(&info->issue_bios, bio); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void remap_and_issue_shared_cell(struct thin_c *tc, | 
 | 					struct dm_bio_prison_cell *cell, | 
 | 					dm_block_t block) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct remap_info info; | 
 |  | 
 | 	info.tc = tc; | 
 | 	bio_list_init(&info.defer_bios); | 
 | 	bio_list_init(&info.issue_bios); | 
 |  | 
 | 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell, | 
 | 			   &info, cell); | 
 |  | 
 | 	while ((bio = bio_list_pop(&info.defer_bios))) | 
 | 		thin_defer_bio(tc, bio); | 
 |  | 
 | 	while ((bio = bio_list_pop(&info.issue_bios))) | 
 | 		remap_and_issue(tc, bio, block); | 
 | } | 
 |  | 
 | static void process_shared_bio(struct thin_c *tc, struct bio *bio, | 
 | 			       dm_block_t block, | 
 | 			       struct dm_thin_lookup_result *lookup_result, | 
 | 			       struct dm_bio_prison_cell *virt_cell) | 
 | { | 
 | 	struct dm_bio_prison_cell *data_cell; | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct dm_cell_key key; | 
 |  | 
 | 	/* | 
 | 	 * If cell is already occupied, then sharing is already in the process | 
 | 	 * of being broken so we have nothing further to do here. | 
 | 	 */ | 
 | 	build_data_key(tc->td, lookup_result->block, &key); | 
 | 	if (bio_detain(pool, &key, bio, &data_cell)) { | 
 | 		cell_defer_no_holder(tc, virt_cell); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { | 
 | 		break_sharing(tc, bio, block, &key, lookup_result, data_cell); | 
 | 		cell_defer_no_holder(tc, virt_cell); | 
 | 	} else { | 
 | 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 |  | 
 | 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); | 
 | 		inc_all_io_entry(pool, bio); | 
 | 		remap_and_issue(tc, bio, lookup_result->block); | 
 |  | 
 | 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); | 
 | 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); | 
 | 	} | 
 | } | 
 |  | 
 | static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
 | 			    struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	int r; | 
 | 	dm_block_t data_block; | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	/* | 
 | 	 * Remap empty bios (flushes) immediately, without provisioning. | 
 | 	 */ | 
 | 	if (!bio->bi_iter.bi_size) { | 
 | 		inc_all_io_entry(pool, bio); | 
 | 		cell_defer_no_holder(tc, cell); | 
 |  | 
 | 		remap_and_issue(tc, bio, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Fill read bios with zeroes and complete them immediately. | 
 | 	 */ | 
 | 	if (bio_data_dir(bio) == READ) { | 
 | 		zero_fill_bio(bio); | 
 | 		cell_defer_no_holder(tc, cell); | 
 | 		bio_endio(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	r = alloc_data_block(tc, &data_block); | 
 | 	switch (r) { | 
 | 	case 0: | 
 | 		if (tc->origin_dev) | 
 | 			schedule_external_copy(tc, block, data_block, cell, bio); | 
 | 		else | 
 | 			schedule_zero(tc, block, data_block, cell, bio); | 
 | 		break; | 
 |  | 
 | 	case -ENOSPC: | 
 | 		retry_bios_on_resume(pool, cell); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", | 
 | 			    __func__, r); | 
 | 		cell_error(pool, cell); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	int r; | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct bio *bio = cell->holder; | 
 | 	dm_block_t block = get_bio_block(tc, bio); | 
 | 	struct dm_thin_lookup_result lookup_result; | 
 |  | 
 | 	if (tc->requeue_mode) { | 
 | 		cell_requeue(pool, cell); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
 | 	switch (r) { | 
 | 	case 0: | 
 | 		if (lookup_result.shared) | 
 | 			process_shared_bio(tc, bio, block, &lookup_result, cell); | 
 | 		else { | 
 | 			inc_all_io_entry(pool, bio); | 
 | 			remap_and_issue(tc, bio, lookup_result.block); | 
 | 			inc_remap_and_issue_cell(tc, cell, lookup_result.block); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case -ENODATA: | 
 | 		if (bio_data_dir(bio) == READ && tc->origin_dev) { | 
 | 			inc_all_io_entry(pool, bio); | 
 | 			cell_defer_no_holder(tc, cell); | 
 |  | 
 | 			if (bio_end_sector(bio) <= tc->origin_size) | 
 | 				remap_to_origin_and_issue(tc, bio); | 
 |  | 
 | 			else if (bio->bi_iter.bi_sector < tc->origin_size) { | 
 | 				zero_fill_bio(bio); | 
 | 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; | 
 | 				remap_to_origin_and_issue(tc, bio); | 
 |  | 
 | 			} else { | 
 | 				zero_fill_bio(bio); | 
 | 				bio_endio(bio); | 
 | 			} | 
 | 		} else | 
 | 			provision_block(tc, bio, block, cell); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", | 
 | 			    __func__, r); | 
 | 		cell_defer_no_holder(tc, cell); | 
 | 		bio_io_error(bio); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void process_bio(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	dm_block_t block = get_bio_block(tc, bio); | 
 | 	struct dm_bio_prison_cell *cell; | 
 | 	struct dm_cell_key key; | 
 |  | 
 | 	/* | 
 | 	 * If cell is already occupied, then the block is already | 
 | 	 * being provisioned so we have nothing further to do here. | 
 | 	 */ | 
 | 	build_virtual_key(tc->td, block, &key); | 
 | 	if (bio_detain(pool, &key, bio, &cell)) | 
 | 		return; | 
 |  | 
 | 	process_cell(tc, cell); | 
 | } | 
 |  | 
 | static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, | 
 | 				    struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	int r; | 
 | 	int rw = bio_data_dir(bio); | 
 | 	dm_block_t block = get_bio_block(tc, bio); | 
 | 	struct dm_thin_lookup_result lookup_result; | 
 |  | 
 | 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
 | 	switch (r) { | 
 | 	case 0: | 
 | 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { | 
 | 			handle_unserviceable_bio(tc->pool, bio); | 
 | 			if (cell) | 
 | 				cell_defer_no_holder(tc, cell); | 
 | 		} else { | 
 | 			inc_all_io_entry(tc->pool, bio); | 
 | 			remap_and_issue(tc, bio, lookup_result.block); | 
 | 			if (cell) | 
 | 				inc_remap_and_issue_cell(tc, cell, lookup_result.block); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case -ENODATA: | 
 | 		if (cell) | 
 | 			cell_defer_no_holder(tc, cell); | 
 | 		if (rw != READ) { | 
 | 			handle_unserviceable_bio(tc->pool, bio); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (tc->origin_dev) { | 
 | 			inc_all_io_entry(tc->pool, bio); | 
 | 			remap_to_origin_and_issue(tc, bio); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		zero_fill_bio(bio); | 
 | 		bio_endio(bio); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", | 
 | 			    __func__, r); | 
 | 		if (cell) | 
 | 			cell_defer_no_holder(tc, cell); | 
 | 		bio_io_error(bio); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void process_bio_read_only(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	__process_bio_read_only(tc, bio, NULL); | 
 | } | 
 |  | 
 | static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	__process_bio_read_only(tc, cell->holder, cell); | 
 | } | 
 |  | 
 | static void process_bio_success(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	bio_endio(bio); | 
 | } | 
 |  | 
 | static void process_bio_fail(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	bio_io_error(bio); | 
 | } | 
 |  | 
 | static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	cell_success(tc->pool, cell); | 
 | } | 
 |  | 
 | static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	cell_error(tc->pool, cell); | 
 | } | 
 |  | 
 | /* | 
 |  * FIXME: should we also commit due to size of transaction, measured in | 
 |  * metadata blocks? | 
 |  */ | 
 | static int need_commit_due_to_time(struct pool *pool) | 
 | { | 
 | 	return !time_in_range(jiffies, pool->last_commit_jiffies, | 
 | 			      pool->last_commit_jiffies + COMMIT_PERIOD); | 
 | } | 
 |  | 
 | #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) | 
 | #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) | 
 |  | 
 | static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct rb_node **rbp, *parent; | 
 | 	struct dm_thin_endio_hook *pbd; | 
 | 	sector_t bi_sector = bio->bi_iter.bi_sector; | 
 |  | 
 | 	rbp = &tc->sort_bio_list.rb_node; | 
 | 	parent = NULL; | 
 | 	while (*rbp) { | 
 | 		parent = *rbp; | 
 | 		pbd = thin_pbd(parent); | 
 |  | 
 | 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) | 
 | 			rbp = &(*rbp)->rb_left; | 
 | 		else | 
 | 			rbp = &(*rbp)->rb_right; | 
 | 	} | 
 |  | 
 | 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 | 	rb_link_node(&pbd->rb_node, parent, rbp); | 
 | 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); | 
 | } | 
 |  | 
 | static void __extract_sorted_bios(struct thin_c *tc) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct dm_thin_endio_hook *pbd; | 
 | 	struct bio *bio; | 
 |  | 
 | 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { | 
 | 		pbd = thin_pbd(node); | 
 | 		bio = thin_bio(pbd); | 
 |  | 
 | 		bio_list_add(&tc->deferred_bio_list, bio); | 
 | 		rb_erase(&pbd->rb_node, &tc->sort_bio_list); | 
 | 	} | 
 |  | 
 | 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); | 
 | } | 
 |  | 
 | static void __sort_thin_deferred_bios(struct thin_c *tc) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct bio_list bios; | 
 |  | 
 | 	bio_list_init(&bios); | 
 | 	bio_list_merge(&bios, &tc->deferred_bio_list); | 
 | 	bio_list_init(&tc->deferred_bio_list); | 
 |  | 
 | 	/* Sort deferred_bio_list using rb-tree */ | 
 | 	while ((bio = bio_list_pop(&bios))) | 
 | 		__thin_bio_rb_add(tc, bio); | 
 |  | 
 | 	/* | 
 | 	 * Transfer the sorted bios in sort_bio_list back to | 
 | 	 * deferred_bio_list to allow lockless submission of | 
 | 	 * all bios. | 
 | 	 */ | 
 | 	__extract_sorted_bios(tc); | 
 | } | 
 |  | 
 | static void process_thin_deferred_bios(struct thin_c *tc) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct bio *bio; | 
 | 	struct bio_list bios; | 
 | 	struct blk_plug plug; | 
 | 	unsigned int count = 0; | 
 |  | 
 | 	if (tc->requeue_mode) { | 
 | 		error_thin_bio_list(tc, &tc->deferred_bio_list, | 
 | 				BLK_STS_DM_REQUEUE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	bio_list_init(&bios); | 
 |  | 
 | 	spin_lock_irq(&tc->lock); | 
 |  | 
 | 	if (bio_list_empty(&tc->deferred_bio_list)) { | 
 | 		spin_unlock_irq(&tc->lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__sort_thin_deferred_bios(tc); | 
 |  | 
 | 	bio_list_merge(&bios, &tc->deferred_bio_list); | 
 | 	bio_list_init(&tc->deferred_bio_list); | 
 |  | 
 | 	spin_unlock_irq(&tc->lock); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	while ((bio = bio_list_pop(&bios))) { | 
 | 		/* | 
 | 		 * If we've got no free new_mapping structs, and processing | 
 | 		 * this bio might require one, we pause until there are some | 
 | 		 * prepared mappings to process. | 
 | 		 */ | 
 | 		if (ensure_next_mapping(pool)) { | 
 | 			spin_lock_irq(&tc->lock); | 
 | 			bio_list_add(&tc->deferred_bio_list, bio); | 
 | 			bio_list_merge(&tc->deferred_bio_list, &bios); | 
 | 			spin_unlock_irq(&tc->lock); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (bio_op(bio) == REQ_OP_DISCARD) | 
 | 			pool->process_discard(tc, bio); | 
 | 		else | 
 | 			pool->process_bio(tc, bio); | 
 |  | 
 | 		if ((count++ & 127) == 0) { | 
 | 			throttle_work_update(&pool->throttle); | 
 | 			dm_pool_issue_prefetches(pool->pmd); | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 | static int cmp_cells(const void *lhs, const void *rhs) | 
 | { | 
 | 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); | 
 | 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); | 
 |  | 
 | 	BUG_ON(!lhs_cell->holder); | 
 | 	BUG_ON(!rhs_cell->holder); | 
 |  | 
 | 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) | 
 | 		return -1; | 
 |  | 
 | 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int sort_cells(struct pool *pool, struct list_head *cells) | 
 | { | 
 | 	unsigned int count = 0; | 
 | 	struct dm_bio_prison_cell *cell, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(cell, tmp, cells, user_list) { | 
 | 		if (count >= CELL_SORT_ARRAY_SIZE) | 
 | 			break; | 
 |  | 
 | 		pool->cell_sort_array[count++] = cell; | 
 | 		list_del(&cell->user_list); | 
 | 	} | 
 |  | 
 | 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static void process_thin_deferred_cells(struct thin_c *tc) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 | 	struct list_head cells; | 
 | 	struct dm_bio_prison_cell *cell; | 
 | 	unsigned int i, j, count; | 
 |  | 
 | 	INIT_LIST_HEAD(&cells); | 
 |  | 
 | 	spin_lock_irq(&tc->lock); | 
 | 	list_splice_init(&tc->deferred_cells, &cells); | 
 | 	spin_unlock_irq(&tc->lock); | 
 |  | 
 | 	if (list_empty(&cells)) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		count = sort_cells(tc->pool, &cells); | 
 |  | 
 | 		for (i = 0; i < count; i++) { | 
 | 			cell = pool->cell_sort_array[i]; | 
 | 			BUG_ON(!cell->holder); | 
 |  | 
 | 			/* | 
 | 			 * If we've got no free new_mapping structs, and processing | 
 | 			 * this bio might require one, we pause until there are some | 
 | 			 * prepared mappings to process. | 
 | 			 */ | 
 | 			if (ensure_next_mapping(pool)) { | 
 | 				for (j = i; j < count; j++) | 
 | 					list_add(&pool->cell_sort_array[j]->user_list, &cells); | 
 |  | 
 | 				spin_lock_irq(&tc->lock); | 
 | 				list_splice(&cells, &tc->deferred_cells); | 
 | 				spin_unlock_irq(&tc->lock); | 
 | 				return; | 
 | 			} | 
 |  | 
 | 			if (bio_op(cell->holder) == REQ_OP_DISCARD) | 
 | 				pool->process_discard_cell(tc, cell); | 
 | 			else | 
 | 				pool->process_cell(tc, cell); | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} while (!list_empty(&cells)); | 
 | } | 
 |  | 
 | static void thin_get(struct thin_c *tc); | 
 | static void thin_put(struct thin_c *tc); | 
 |  | 
 | /* | 
 |  * We can't hold rcu_read_lock() around code that can block.  So we | 
 |  * find a thin with the rcu lock held; bump a refcount; then drop | 
 |  * the lock. | 
 |  */ | 
 | static struct thin_c *get_first_thin(struct pool *pool) | 
 | { | 
 | 	struct thin_c *tc = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list); | 
 | 	if (tc) | 
 | 		thin_get(tc); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return tc; | 
 | } | 
 |  | 
 | static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) | 
 | { | 
 | 	struct thin_c *old_tc = tc; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { | 
 | 		thin_get(tc); | 
 | 		thin_put(old_tc); | 
 | 		rcu_read_unlock(); | 
 | 		return tc; | 
 | 	} | 
 | 	thin_put(old_tc); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void process_deferred_bios(struct pool *pool) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct bio_list bios, bio_completions; | 
 | 	struct thin_c *tc; | 
 |  | 
 | 	tc = get_first_thin(pool); | 
 | 	while (tc) { | 
 | 		process_thin_deferred_cells(tc); | 
 | 		process_thin_deferred_bios(tc); | 
 | 		tc = get_next_thin(pool, tc); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there are any deferred flush bios, we must commit the metadata | 
 | 	 * before issuing them or signaling their completion. | 
 | 	 */ | 
 | 	bio_list_init(&bios); | 
 | 	bio_list_init(&bio_completions); | 
 |  | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	bio_list_merge(&bios, &pool->deferred_flush_bios); | 
 | 	bio_list_init(&pool->deferred_flush_bios); | 
 |  | 
 | 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions); | 
 | 	bio_list_init(&pool->deferred_flush_completions); | 
 | 	spin_unlock_irq(&pool->lock); | 
 |  | 
 | 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && | 
 | 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) | 
 | 		return; | 
 |  | 
 | 	if (commit(pool)) { | 
 | 		bio_list_merge(&bios, &bio_completions); | 
 |  | 
 | 		while ((bio = bio_list_pop(&bios))) | 
 | 			bio_io_error(bio); | 
 | 		return; | 
 | 	} | 
 | 	pool->last_commit_jiffies = jiffies; | 
 |  | 
 | 	while ((bio = bio_list_pop(&bio_completions))) | 
 | 		bio_endio(bio); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bios))) { | 
 | 		/* | 
 | 		 * The data device was flushed as part of metadata commit, | 
 | 		 * so complete redundant flushes immediately. | 
 | 		 */ | 
 | 		if (bio->bi_opf & REQ_PREFLUSH) | 
 | 			bio_endio(bio); | 
 | 		else | 
 | 			dm_submit_bio_remap(bio, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | static void do_worker(struct work_struct *ws) | 
 | { | 
 | 	struct pool *pool = container_of(ws, struct pool, worker); | 
 |  | 
 | 	throttle_work_start(&pool->throttle); | 
 | 	dm_pool_issue_prefetches(pool->pmd); | 
 | 	throttle_work_update(&pool->throttle); | 
 | 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); | 
 | 	throttle_work_update(&pool->throttle); | 
 | 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); | 
 | 	throttle_work_update(&pool->throttle); | 
 | 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); | 
 | 	throttle_work_update(&pool->throttle); | 
 | 	process_deferred_bios(pool); | 
 | 	throttle_work_complete(&pool->throttle); | 
 | } | 
 |  | 
 | /* | 
 |  * We want to commit periodically so that not too much | 
 |  * unwritten data builds up. | 
 |  */ | 
 | static void do_waker(struct work_struct *ws) | 
 | { | 
 | 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); | 
 |  | 
 | 	wake_worker(pool); | 
 | 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); | 
 | } | 
 |  | 
 | /* | 
 |  * We're holding onto IO to allow userland time to react.  After the | 
 |  * timeout either the pool will have been resized (and thus back in | 
 |  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. | 
 |  */ | 
 | static void do_no_space_timeout(struct work_struct *ws) | 
 | { | 
 | 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, | 
 | 					 no_space_timeout); | 
 |  | 
 | 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { | 
 | 		pool->pf.error_if_no_space = true; | 
 | 		notify_of_pool_mode_change(pool); | 
 | 		error_retry_list_with_code(pool, BLK_STS_NOSPC); | 
 | 	} | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | struct pool_work { | 
 | 	struct work_struct worker; | 
 | 	struct completion complete; | 
 | }; | 
 |  | 
 | static struct pool_work *to_pool_work(struct work_struct *ws) | 
 | { | 
 | 	return container_of(ws, struct pool_work, worker); | 
 | } | 
 |  | 
 | static void pool_work_complete(struct pool_work *pw) | 
 | { | 
 | 	complete(&pw->complete); | 
 | } | 
 |  | 
 | static void pool_work_wait(struct pool_work *pw, struct pool *pool, | 
 | 			   void (*fn)(struct work_struct *)) | 
 | { | 
 | 	INIT_WORK_ONSTACK(&pw->worker, fn); | 
 | 	init_completion(&pw->complete); | 
 | 	queue_work(pool->wq, &pw->worker); | 
 | 	wait_for_completion(&pw->complete); | 
 | 	destroy_work_on_stack(&pw->worker); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | struct noflush_work { | 
 | 	struct pool_work pw; | 
 | 	struct thin_c *tc; | 
 | }; | 
 |  | 
 | static struct noflush_work *to_noflush(struct work_struct *ws) | 
 | { | 
 | 	return container_of(to_pool_work(ws), struct noflush_work, pw); | 
 | } | 
 |  | 
 | static void do_noflush_start(struct work_struct *ws) | 
 | { | 
 | 	struct noflush_work *w = to_noflush(ws); | 
 |  | 
 | 	w->tc->requeue_mode = true; | 
 | 	requeue_io(w->tc); | 
 | 	pool_work_complete(&w->pw); | 
 | } | 
 |  | 
 | static void do_noflush_stop(struct work_struct *ws) | 
 | { | 
 | 	struct noflush_work *w = to_noflush(ws); | 
 |  | 
 | 	w->tc->requeue_mode = false; | 
 | 	pool_work_complete(&w->pw); | 
 | } | 
 |  | 
 | static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) | 
 | { | 
 | 	struct noflush_work w; | 
 |  | 
 | 	w.tc = tc; | 
 | 	pool_work_wait(&w.pw, tc->pool, fn); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static void set_discard_callbacks(struct pool *pool) | 
 | { | 
 | 	struct pool_c *pt = pool->ti->private; | 
 |  | 
 | 	if (pt->adjusted_pf.discard_passdown) { | 
 | 		pool->process_discard_cell = process_discard_cell_passdown; | 
 | 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1; | 
 | 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; | 
 | 	} else { | 
 | 		pool->process_discard_cell = process_discard_cell_no_passdown; | 
 | 		pool->process_prepared_discard = process_prepared_discard_no_passdown; | 
 | 	} | 
 | } | 
 |  | 
 | static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) | 
 | { | 
 | 	struct pool_c *pt = pool->ti->private; | 
 | 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd); | 
 | 	enum pool_mode old_mode = get_pool_mode(pool); | 
 | 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; | 
 |  | 
 | 	/* | 
 | 	 * Never allow the pool to transition to PM_WRITE mode if user | 
 | 	 * intervention is required to verify metadata and data consistency. | 
 | 	 */ | 
 | 	if (new_mode == PM_WRITE && needs_check) { | 
 | 		DMERR("%s: unable to switch pool to write mode until repaired.", | 
 | 		      dm_device_name(pool->pool_md)); | 
 | 		if (old_mode != new_mode) | 
 | 			new_mode = old_mode; | 
 | 		else | 
 | 			new_mode = PM_READ_ONLY; | 
 | 	} | 
 | 	/* | 
 | 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're | 
 | 	 * not going to recover without a thin_repair.	So we never let the | 
 | 	 * pool move out of the old mode. | 
 | 	 */ | 
 | 	if (old_mode == PM_FAIL) | 
 | 		new_mode = old_mode; | 
 |  | 
 | 	switch (new_mode) { | 
 | 	case PM_FAIL: | 
 | 		dm_pool_metadata_read_only(pool->pmd); | 
 | 		pool->process_bio = process_bio_fail; | 
 | 		pool->process_discard = process_bio_fail; | 
 | 		pool->process_cell = process_cell_fail; | 
 | 		pool->process_discard_cell = process_cell_fail; | 
 | 		pool->process_prepared_mapping = process_prepared_mapping_fail; | 
 | 		pool->process_prepared_discard = process_prepared_discard_fail; | 
 |  | 
 | 		error_retry_list(pool); | 
 | 		break; | 
 |  | 
 | 	case PM_OUT_OF_METADATA_SPACE: | 
 | 	case PM_READ_ONLY: | 
 | 		dm_pool_metadata_read_only(pool->pmd); | 
 | 		pool->process_bio = process_bio_read_only; | 
 | 		pool->process_discard = process_bio_success; | 
 | 		pool->process_cell = process_cell_read_only; | 
 | 		pool->process_discard_cell = process_cell_success; | 
 | 		pool->process_prepared_mapping = process_prepared_mapping_fail; | 
 | 		pool->process_prepared_discard = process_prepared_discard_success; | 
 |  | 
 | 		error_retry_list(pool); | 
 | 		break; | 
 |  | 
 | 	case PM_OUT_OF_DATA_SPACE: | 
 | 		/* | 
 | 		 * Ideally we'd never hit this state; the low water mark | 
 | 		 * would trigger userland to extend the pool before we | 
 | 		 * completely run out of data space.  However, many small | 
 | 		 * IOs to unprovisioned space can consume data space at an | 
 | 		 * alarming rate.  Adjust your low water mark if you're | 
 | 		 * frequently seeing this mode. | 
 | 		 */ | 
 | 		pool->out_of_data_space = true; | 
 | 		pool->process_bio = process_bio_read_only; | 
 | 		pool->process_discard = process_discard_bio; | 
 | 		pool->process_cell = process_cell_read_only; | 
 | 		pool->process_prepared_mapping = process_prepared_mapping; | 
 | 		set_discard_callbacks(pool); | 
 |  | 
 | 		if (!pool->pf.error_if_no_space && no_space_timeout) | 
 | 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); | 
 | 		break; | 
 |  | 
 | 	case PM_WRITE: | 
 | 		if (old_mode == PM_OUT_OF_DATA_SPACE) | 
 | 			cancel_delayed_work_sync(&pool->no_space_timeout); | 
 | 		pool->out_of_data_space = false; | 
 | 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; | 
 | 		dm_pool_metadata_read_write(pool->pmd); | 
 | 		pool->process_bio = process_bio; | 
 | 		pool->process_discard = process_discard_bio; | 
 | 		pool->process_cell = process_cell; | 
 | 		pool->process_prepared_mapping = process_prepared_mapping; | 
 | 		set_discard_callbacks(pool); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	pool->pf.mode = new_mode; | 
 | 	/* | 
 | 	 * The pool mode may have changed, sync it so bind_control_target() | 
 | 	 * doesn't cause an unexpected mode transition on resume. | 
 | 	 */ | 
 | 	pt->adjusted_pf.mode = new_mode; | 
 |  | 
 | 	if (old_mode != new_mode) | 
 | 		notify_of_pool_mode_change(pool); | 
 | } | 
 |  | 
 | static void abort_transaction(struct pool *pool) | 
 | { | 
 | 	const char *dev_name = dm_device_name(pool->pool_md); | 
 |  | 
 | 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); | 
 | 	if (dm_pool_abort_metadata(pool->pmd)) { | 
 | 		DMERR("%s: failed to abort metadata transaction", dev_name); | 
 | 		set_pool_mode(pool, PM_FAIL); | 
 | 	} | 
 |  | 
 | 	if (dm_pool_metadata_set_needs_check(pool->pmd)) { | 
 | 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); | 
 | 		set_pool_mode(pool, PM_FAIL); | 
 | 	} | 
 | } | 
 |  | 
 | static void metadata_operation_failed(struct pool *pool, const char *op, int r) | 
 | { | 
 | 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", | 
 | 		    dm_device_name(pool->pool_md), op, r); | 
 |  | 
 | 	abort_transaction(pool); | 
 | 	set_pool_mode(pool, PM_READ_ONLY); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Mapping functions. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Called only while mapping a thin bio to hand it over to the workqueue. | 
 |  */ | 
 | static void thin_defer_bio(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	spin_lock_irq(&tc->lock); | 
 | 	bio_list_add(&tc->deferred_bio_list, bio); | 
 | 	spin_unlock_irq(&tc->lock); | 
 |  | 
 | 	wake_worker(pool); | 
 | } | 
 |  | 
 | static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	throttle_lock(&pool->throttle); | 
 | 	thin_defer_bio(tc, bio); | 
 | 	throttle_unlock(&pool->throttle); | 
 | } | 
 |  | 
 | static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
 | { | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	throttle_lock(&pool->throttle); | 
 | 	spin_lock_irq(&tc->lock); | 
 | 	list_add_tail(&cell->user_list, &tc->deferred_cells); | 
 | 	spin_unlock_irq(&tc->lock); | 
 | 	throttle_unlock(&pool->throttle); | 
 |  | 
 | 	wake_worker(pool); | 
 | } | 
 |  | 
 | static void thin_hook_bio(struct thin_c *tc, struct bio *bio) | 
 | { | 
 | 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 |  | 
 | 	h->tc = tc; | 
 | 	h->shared_read_entry = NULL; | 
 | 	h->all_io_entry = NULL; | 
 | 	h->overwrite_mapping = NULL; | 
 | 	h->cell = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Non-blocking function called from the thin target's map function. | 
 |  */ | 
 | static int thin_bio_map(struct dm_target *ti, struct bio *bio) | 
 | { | 
 | 	int r; | 
 | 	struct thin_c *tc = ti->private; | 
 | 	dm_block_t block = get_bio_block(tc, bio); | 
 | 	struct dm_thin_device *td = tc->td; | 
 | 	struct dm_thin_lookup_result result; | 
 | 	struct dm_bio_prison_cell *virt_cell, *data_cell; | 
 | 	struct dm_cell_key key; | 
 |  | 
 | 	thin_hook_bio(tc, bio); | 
 |  | 
 | 	if (tc->requeue_mode) { | 
 | 		bio->bi_status = BLK_STS_DM_REQUEUE; | 
 | 		bio_endio(bio); | 
 | 		return DM_MAPIO_SUBMITTED; | 
 | 	} | 
 |  | 
 | 	if (get_pool_mode(tc->pool) == PM_FAIL) { | 
 | 		bio_io_error(bio); | 
 | 		return DM_MAPIO_SUBMITTED; | 
 | 	} | 
 |  | 
 | 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { | 
 | 		thin_defer_bio_with_throttle(tc, bio); | 
 | 		return DM_MAPIO_SUBMITTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We must hold the virtual cell before doing the lookup, otherwise | 
 | 	 * there's a race with discard. | 
 | 	 */ | 
 | 	build_virtual_key(tc->td, block, &key); | 
 | 	if (bio_detain(tc->pool, &key, bio, &virt_cell)) | 
 | 		return DM_MAPIO_SUBMITTED; | 
 |  | 
 | 	r = dm_thin_find_block(td, block, 0, &result); | 
 |  | 
 | 	/* | 
 | 	 * Note that we defer readahead too. | 
 | 	 */ | 
 | 	switch (r) { | 
 | 	case 0: | 
 | 		if (unlikely(result.shared)) { | 
 | 			/* | 
 | 			 * We have a race condition here between the | 
 | 			 * result.shared value returned by the lookup and | 
 | 			 * snapshot creation, which may cause new | 
 | 			 * sharing. | 
 | 			 * | 
 | 			 * To avoid this always quiesce the origin before | 
 | 			 * taking the snap.  You want to do this anyway to | 
 | 			 * ensure a consistent application view | 
 | 			 * (i.e. lockfs). | 
 | 			 * | 
 | 			 * More distant ancestors are irrelevant. The | 
 | 			 * shared flag will be set in their case. | 
 | 			 */ | 
 | 			thin_defer_cell(tc, virt_cell); | 
 | 			return DM_MAPIO_SUBMITTED; | 
 | 		} | 
 |  | 
 | 		build_data_key(tc->td, result.block, &key); | 
 | 		if (bio_detain(tc->pool, &key, bio, &data_cell)) { | 
 | 			cell_defer_no_holder(tc, virt_cell); | 
 | 			return DM_MAPIO_SUBMITTED; | 
 | 		} | 
 |  | 
 | 		inc_all_io_entry(tc->pool, bio); | 
 | 		cell_defer_no_holder(tc, data_cell); | 
 | 		cell_defer_no_holder(tc, virt_cell); | 
 |  | 
 | 		remap(tc, bio, result.block); | 
 | 		return DM_MAPIO_REMAPPED; | 
 |  | 
 | 	case -ENODATA: | 
 | 	case -EWOULDBLOCK: | 
 | 		thin_defer_cell(tc, virt_cell); | 
 | 		return DM_MAPIO_SUBMITTED; | 
 |  | 
 | 	default: | 
 | 		/* | 
 | 		 * Must always call bio_io_error on failure. | 
 | 		 * dm_thin_find_block can fail with -EINVAL if the | 
 | 		 * pool is switched to fail-io mode. | 
 | 		 */ | 
 | 		bio_io_error(bio); | 
 | 		cell_defer_no_holder(tc, virt_cell); | 
 | 		return DM_MAPIO_SUBMITTED; | 
 | 	} | 
 | } | 
 |  | 
 | static void requeue_bios(struct pool *pool) | 
 | { | 
 | 	struct thin_c *tc; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(tc, &pool->active_thins, list) { | 
 | 		spin_lock_irq(&tc->lock); | 
 | 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); | 
 | 		bio_list_init(&tc->retry_on_resume_list); | 
 | 		spin_unlock_irq(&tc->lock); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  *-------------------------------------------------------------- | 
 |  * Binding of control targets to a pool object | 
 |  *-------------------------------------------------------------- | 
 |  */ | 
 | static bool is_factor(sector_t block_size, uint32_t n) | 
 | { | 
 | 	return !sector_div(block_size, n); | 
 | } | 
 |  | 
 | /* | 
 |  * If discard_passdown was enabled verify that the data device | 
 |  * supports discards.  Disable discard_passdown if not. | 
 |  */ | 
 | static void disable_discard_passdown_if_not_supported(struct pool_c *pt) | 
 | { | 
 | 	struct pool *pool = pt->pool; | 
 | 	struct block_device *data_bdev = pt->data_dev->bdev; | 
 | 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; | 
 | 	const char *reason = NULL; | 
 |  | 
 | 	if (!pt->adjusted_pf.discard_passdown) | 
 | 		return; | 
 |  | 
 | 	if (!bdev_max_discard_sectors(pt->data_dev->bdev)) | 
 | 		reason = "discard unsupported"; | 
 |  | 
 | 	else if (data_limits->max_discard_sectors < pool->sectors_per_block) | 
 | 		reason = "max discard sectors smaller than a block"; | 
 |  | 
 | 	if (reason) { | 
 | 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); | 
 | 		pt->adjusted_pf.discard_passdown = false; | 
 | 	} | 
 | } | 
 |  | 
 | static int bind_control_target(struct pool *pool, struct dm_target *ti) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 |  | 
 | 	/* | 
 | 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded. | 
 | 	 */ | 
 | 	enum pool_mode old_mode = get_pool_mode(pool); | 
 | 	enum pool_mode new_mode = pt->adjusted_pf.mode; | 
 |  | 
 | 	/* | 
 | 	 * Don't change the pool's mode until set_pool_mode() below. | 
 | 	 * Otherwise the pool's process_* function pointers may | 
 | 	 * not match the desired pool mode. | 
 | 	 */ | 
 | 	pt->adjusted_pf.mode = old_mode; | 
 |  | 
 | 	pool->ti = ti; | 
 | 	pool->pf = pt->adjusted_pf; | 
 | 	pool->low_water_blocks = pt->low_water_blocks; | 
 |  | 
 | 	set_pool_mode(pool, new_mode); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void unbind_control_target(struct pool *pool, struct dm_target *ti) | 
 | { | 
 | 	if (pool->ti == ti) | 
 | 		pool->ti = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  *-------------------------------------------------------------- | 
 |  * Pool creation | 
 |  *-------------------------------------------------------------- | 
 |  */ | 
 | /* Initialize pool features. */ | 
 | static void pool_features_init(struct pool_features *pf) | 
 | { | 
 | 	pf->mode = PM_WRITE; | 
 | 	pf->zero_new_blocks = true; | 
 | 	pf->discard_enabled = true; | 
 | 	pf->discard_passdown = true; | 
 | 	pf->error_if_no_space = false; | 
 | } | 
 |  | 
 | static void __pool_destroy(struct pool *pool) | 
 | { | 
 | 	__pool_table_remove(pool); | 
 |  | 
 | 	vfree(pool->cell_sort_array); | 
 | 	if (dm_pool_metadata_close(pool->pmd) < 0) | 
 | 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
 |  | 
 | 	dm_bio_prison_destroy(pool->prison); | 
 | 	dm_kcopyd_client_destroy(pool->copier); | 
 |  | 
 | 	cancel_delayed_work_sync(&pool->waker); | 
 | 	cancel_delayed_work_sync(&pool->no_space_timeout); | 
 | 	if (pool->wq) | 
 | 		destroy_workqueue(pool->wq); | 
 |  | 
 | 	if (pool->next_mapping) | 
 | 		mempool_free(pool->next_mapping, &pool->mapping_pool); | 
 | 	mempool_exit(&pool->mapping_pool); | 
 | 	dm_deferred_set_destroy(pool->shared_read_ds); | 
 | 	dm_deferred_set_destroy(pool->all_io_ds); | 
 | 	kfree(pool); | 
 | } | 
 |  | 
 | static struct kmem_cache *_new_mapping_cache; | 
 |  | 
 | static struct pool *pool_create(struct mapped_device *pool_md, | 
 | 				struct block_device *metadata_dev, | 
 | 				struct block_device *data_dev, | 
 | 				unsigned long block_size, | 
 | 				int read_only, char **error) | 
 | { | 
 | 	int r; | 
 | 	void *err_p; | 
 | 	struct pool *pool; | 
 | 	struct dm_pool_metadata *pmd; | 
 | 	bool format_device = read_only ? false : true; | 
 |  | 
 | 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); | 
 | 	if (IS_ERR(pmd)) { | 
 | 		*error = "Error creating metadata object"; | 
 | 		return ERR_CAST(pmd); | 
 | 	} | 
 |  | 
 | 	pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
 | 	if (!pool) { | 
 | 		*error = "Error allocating memory for pool"; | 
 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 		goto bad_pool; | 
 | 	} | 
 |  | 
 | 	pool->pmd = pmd; | 
 | 	pool->sectors_per_block = block_size; | 
 | 	if (block_size & (block_size - 1)) | 
 | 		pool->sectors_per_block_shift = -1; | 
 | 	else | 
 | 		pool->sectors_per_block_shift = __ffs(block_size); | 
 | 	pool->low_water_blocks = 0; | 
 | 	pool_features_init(&pool->pf); | 
 | 	pool->prison = dm_bio_prison_create(); | 
 | 	if (!pool->prison) { | 
 | 		*error = "Error creating pool's bio prison"; | 
 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 		goto bad_prison; | 
 | 	} | 
 |  | 
 | 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); | 
 | 	if (IS_ERR(pool->copier)) { | 
 | 		r = PTR_ERR(pool->copier); | 
 | 		*error = "Error creating pool's kcopyd client"; | 
 | 		err_p = ERR_PTR(r); | 
 | 		goto bad_kcopyd_client; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Create singlethreaded workqueue that will service all devices | 
 | 	 * that use this metadata. | 
 | 	 */ | 
 | 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); | 
 | 	if (!pool->wq) { | 
 | 		*error = "Error creating pool's workqueue"; | 
 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 		goto bad_wq; | 
 | 	} | 
 |  | 
 | 	throttle_init(&pool->throttle); | 
 | 	INIT_WORK(&pool->worker, do_worker); | 
 | 	INIT_DELAYED_WORK(&pool->waker, do_waker); | 
 | 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); | 
 | 	spin_lock_init(&pool->lock); | 
 | 	bio_list_init(&pool->deferred_flush_bios); | 
 | 	bio_list_init(&pool->deferred_flush_completions); | 
 | 	INIT_LIST_HEAD(&pool->prepared_mappings); | 
 | 	INIT_LIST_HEAD(&pool->prepared_discards); | 
 | 	INIT_LIST_HEAD(&pool->prepared_discards_pt2); | 
 | 	INIT_LIST_HEAD(&pool->active_thins); | 
 | 	pool->low_water_triggered = false; | 
 | 	pool->suspended = true; | 
 | 	pool->out_of_data_space = false; | 
 |  | 
 | 	pool->shared_read_ds = dm_deferred_set_create(); | 
 | 	if (!pool->shared_read_ds) { | 
 | 		*error = "Error creating pool's shared read deferred set"; | 
 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 		goto bad_shared_read_ds; | 
 | 	} | 
 |  | 
 | 	pool->all_io_ds = dm_deferred_set_create(); | 
 | 	if (!pool->all_io_ds) { | 
 | 		*error = "Error creating pool's all io deferred set"; | 
 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 		goto bad_all_io_ds; | 
 | 	} | 
 |  | 
 | 	pool->next_mapping = NULL; | 
 | 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, | 
 | 				   _new_mapping_cache); | 
 | 	if (r) { | 
 | 		*error = "Error creating pool's mapping mempool"; | 
 | 		err_p = ERR_PTR(r); | 
 | 		goto bad_mapping_pool; | 
 | 	} | 
 |  | 
 | 	pool->cell_sort_array = | 
 | 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE, | 
 | 				   sizeof(*pool->cell_sort_array))); | 
 | 	if (!pool->cell_sort_array) { | 
 | 		*error = "Error allocating cell sort array"; | 
 | 		err_p = ERR_PTR(-ENOMEM); | 
 | 		goto bad_sort_array; | 
 | 	} | 
 |  | 
 | 	pool->ref_count = 1; | 
 | 	pool->last_commit_jiffies = jiffies; | 
 | 	pool->pool_md = pool_md; | 
 | 	pool->md_dev = metadata_dev; | 
 | 	pool->data_dev = data_dev; | 
 | 	__pool_table_insert(pool); | 
 |  | 
 | 	return pool; | 
 |  | 
 | bad_sort_array: | 
 | 	mempool_exit(&pool->mapping_pool); | 
 | bad_mapping_pool: | 
 | 	dm_deferred_set_destroy(pool->all_io_ds); | 
 | bad_all_io_ds: | 
 | 	dm_deferred_set_destroy(pool->shared_read_ds); | 
 | bad_shared_read_ds: | 
 | 	destroy_workqueue(pool->wq); | 
 | bad_wq: | 
 | 	dm_kcopyd_client_destroy(pool->copier); | 
 | bad_kcopyd_client: | 
 | 	dm_bio_prison_destroy(pool->prison); | 
 | bad_prison: | 
 | 	kfree(pool); | 
 | bad_pool: | 
 | 	if (dm_pool_metadata_close(pmd)) | 
 | 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
 |  | 
 | 	return err_p; | 
 | } | 
 |  | 
 | static void __pool_inc(struct pool *pool) | 
 | { | 
 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 	pool->ref_count++; | 
 | } | 
 |  | 
 | static void __pool_dec(struct pool *pool) | 
 | { | 
 | 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
 | 	BUG_ON(!pool->ref_count); | 
 | 	if (!--pool->ref_count) | 
 | 		__pool_destroy(pool); | 
 | } | 
 |  | 
 | static struct pool *__pool_find(struct mapped_device *pool_md, | 
 | 				struct block_device *metadata_dev, | 
 | 				struct block_device *data_dev, | 
 | 				unsigned long block_size, int read_only, | 
 | 				char **error, int *created) | 
 | { | 
 | 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); | 
 |  | 
 | 	if (pool) { | 
 | 		if (pool->pool_md != pool_md) { | 
 | 			*error = "metadata device already in use by a pool"; | 
 | 			return ERR_PTR(-EBUSY); | 
 | 		} | 
 | 		if (pool->data_dev != data_dev) { | 
 | 			*error = "data device already in use by a pool"; | 
 | 			return ERR_PTR(-EBUSY); | 
 | 		} | 
 | 		__pool_inc(pool); | 
 |  | 
 | 	} else { | 
 | 		pool = __pool_table_lookup(pool_md); | 
 | 		if (pool) { | 
 | 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { | 
 | 				*error = "different pool cannot replace a pool"; | 
 | 				return ERR_PTR(-EINVAL); | 
 | 			} | 
 | 			__pool_inc(pool); | 
 |  | 
 | 		} else { | 
 | 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); | 
 | 			*created = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return pool; | 
 | } | 
 |  | 
 | /* | 
 |  *-------------------------------------------------------------- | 
 |  * Pool target methods | 
 |  *-------------------------------------------------------------- | 
 |  */ | 
 | static void pool_dtr(struct dm_target *ti) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 |  | 
 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	unbind_control_target(pt->pool, ti); | 
 | 	__pool_dec(pt->pool); | 
 | 	dm_put_device(ti, pt->metadata_dev); | 
 | 	dm_put_device(ti, pt->data_dev); | 
 | 	kfree(pt); | 
 |  | 
 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | } | 
 |  | 
 | static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, | 
 | 			       struct dm_target *ti) | 
 | { | 
 | 	int r; | 
 | 	unsigned int argc; | 
 | 	const char *arg_name; | 
 |  | 
 | 	static const struct dm_arg _args[] = { | 
 | 		{0, 4, "Invalid number of pool feature arguments"}, | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * No feature arguments supplied. | 
 | 	 */ | 
 | 	if (!as->argc) | 
 | 		return 0; | 
 |  | 
 | 	r = dm_read_arg_group(_args, as, &argc, &ti->error); | 
 | 	if (r) | 
 | 		return -EINVAL; | 
 |  | 
 | 	while (argc && !r) { | 
 | 		arg_name = dm_shift_arg(as); | 
 | 		argc--; | 
 |  | 
 | 		if (!strcasecmp(arg_name, "skip_block_zeroing")) | 
 | 			pf->zero_new_blocks = false; | 
 |  | 
 | 		else if (!strcasecmp(arg_name, "ignore_discard")) | 
 | 			pf->discard_enabled = false; | 
 |  | 
 | 		else if (!strcasecmp(arg_name, "no_discard_passdown")) | 
 | 			pf->discard_passdown = false; | 
 |  | 
 | 		else if (!strcasecmp(arg_name, "read_only")) | 
 | 			pf->mode = PM_READ_ONLY; | 
 |  | 
 | 		else if (!strcasecmp(arg_name, "error_if_no_space")) | 
 | 			pf->error_if_no_space = true; | 
 |  | 
 | 		else { | 
 | 			ti->error = "Unrecognised pool feature requested"; | 
 | 			r = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void metadata_low_callback(void *context) | 
 | { | 
 | 	struct pool *pool = context; | 
 |  | 
 | 	DMWARN("%s: reached low water mark for metadata device: sending event.", | 
 | 	       dm_device_name(pool->pool_md)); | 
 |  | 
 | 	dm_table_event(pool->ti->table); | 
 | } | 
 |  | 
 | /* | 
 |  * We need to flush the data device **before** committing the metadata. | 
 |  * | 
 |  * This ensures that the data blocks of any newly inserted mappings are | 
 |  * properly written to non-volatile storage and won't be lost in case of a | 
 |  * crash. | 
 |  * | 
 |  * Failure to do so can result in data corruption in the case of internal or | 
 |  * external snapshots and in the case of newly provisioned blocks, when block | 
 |  * zeroing is enabled. | 
 |  */ | 
 | static int metadata_pre_commit_callback(void *context) | 
 | { | 
 | 	struct pool *pool = context; | 
 |  | 
 | 	return blkdev_issue_flush(pool->data_dev); | 
 | } | 
 |  | 
 | static sector_t get_dev_size(struct block_device *bdev) | 
 | { | 
 | 	return bdev_nr_sectors(bdev); | 
 | } | 
 |  | 
 | static void warn_if_metadata_device_too_big(struct block_device *bdev) | 
 | { | 
 | 	sector_t metadata_dev_size = get_dev_size(bdev); | 
 |  | 
 | 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) | 
 | 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", | 
 | 		       bdev, THIN_METADATA_MAX_SECTORS); | 
 | } | 
 |  | 
 | static sector_t get_metadata_dev_size(struct block_device *bdev) | 
 | { | 
 | 	sector_t metadata_dev_size = get_dev_size(bdev); | 
 |  | 
 | 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) | 
 | 		metadata_dev_size = THIN_METADATA_MAX_SECTORS; | 
 |  | 
 | 	return metadata_dev_size; | 
 | } | 
 |  | 
 | static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) | 
 | { | 
 | 	sector_t metadata_dev_size = get_metadata_dev_size(bdev); | 
 |  | 
 | 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); | 
 |  | 
 | 	return metadata_dev_size; | 
 | } | 
 |  | 
 | /* | 
 |  * When a metadata threshold is crossed a dm event is triggered, and | 
 |  * userland should respond by growing the metadata device.  We could let | 
 |  * userland set the threshold, like we do with the data threshold, but I'm | 
 |  * not sure they know enough to do this well. | 
 |  */ | 
 | static dm_block_t calc_metadata_threshold(struct pool_c *pt) | 
 | { | 
 | 	/* | 
 | 	 * 4M is ample for all ops with the possible exception of thin | 
 | 	 * device deletion which is harmless if it fails (just retry the | 
 | 	 * delete after you've grown the device). | 
 | 	 */ | 
 | 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; | 
 |  | 
 | 	return min((dm_block_t)1024ULL /* 4M */, quarter); | 
 | } | 
 |  | 
 | /* | 
 |  * thin-pool <metadata dev> <data dev> | 
 |  *	     <data block size (sectors)> | 
 |  *	     <low water mark (blocks)> | 
 |  *	     [<#feature args> [<arg>]*] | 
 |  * | 
 |  * Optional feature arguments are: | 
 |  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks. | 
 |  *	     ignore_discard: disable discard | 
 |  *	     no_discard_passdown: don't pass discards down to the data device | 
 |  *	     read_only: Don't allow any changes to be made to the pool metadata. | 
 |  *	     error_if_no_space: error IOs, instead of queueing, if no space. | 
 |  */ | 
 | static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
 | { | 
 | 	int r, pool_created = 0; | 
 | 	struct pool_c *pt; | 
 | 	struct pool *pool; | 
 | 	struct pool_features pf; | 
 | 	struct dm_arg_set as; | 
 | 	struct dm_dev *data_dev; | 
 | 	unsigned long block_size; | 
 | 	dm_block_t low_water_blocks; | 
 | 	struct dm_dev *metadata_dev; | 
 | 	blk_mode_t metadata_mode; | 
 |  | 
 | 	/* | 
 | 	 * FIXME Remove validation from scope of lock. | 
 | 	 */ | 
 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	if (argc < 4) { | 
 | 		ti->error = "Invalid argument count"; | 
 | 		r = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	as.argc = argc; | 
 | 	as.argv = argv; | 
 |  | 
 | 	/* make sure metadata and data are different devices */ | 
 | 	if (!strcmp(argv[0], argv[1])) { | 
 | 		ti->error = "Error setting metadata or data device"; | 
 | 		r = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set default pool features. | 
 | 	 */ | 
 | 	pool_features_init(&pf); | 
 |  | 
 | 	dm_consume_args(&as, 4); | 
 | 	r = parse_pool_features(&as, &pf, ti); | 
 | 	if (r) | 
 | 		goto out_unlock; | 
 |  | 
 | 	metadata_mode = BLK_OPEN_READ | | 
 | 		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE); | 
 | 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); | 
 | 	if (r) { | 
 | 		ti->error = "Error opening metadata block device"; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	warn_if_metadata_device_too_big(metadata_dev->bdev); | 
 |  | 
 | 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev); | 
 | 	if (r) { | 
 | 		ti->error = "Error getting data device"; | 
 | 		goto out_metadata; | 
 | 	} | 
 |  | 
 | 	if (kstrtoul(argv[2], 10, &block_size) || !block_size || | 
 | 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || | 
 | 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || | 
 | 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { | 
 | 		ti->error = "Invalid block size"; | 
 | 		r = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { | 
 | 		ti->error = "Invalid low water mark"; | 
 | 		r = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pt = kzalloc(sizeof(*pt), GFP_KERNEL); | 
 | 	if (!pt) { | 
 | 		r = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, | 
 | 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); | 
 | 	if (IS_ERR(pool)) { | 
 | 		r = PTR_ERR(pool); | 
 | 		goto out_free_pt; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * 'pool_created' reflects whether this is the first table load. | 
 | 	 * Top level discard support is not allowed to be changed after | 
 | 	 * initial load.  This would require a pool reload to trigger thin | 
 | 	 * device changes. | 
 | 	 */ | 
 | 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { | 
 | 		ti->error = "Discard support cannot be disabled once enabled"; | 
 | 		r = -EINVAL; | 
 | 		goto out_flags_changed; | 
 | 	} | 
 |  | 
 | 	pt->pool = pool; | 
 | 	pt->ti = ti; | 
 | 	pt->metadata_dev = metadata_dev; | 
 | 	pt->data_dev = data_dev; | 
 | 	pt->low_water_blocks = low_water_blocks; | 
 | 	pt->adjusted_pf = pt->requested_pf = pf; | 
 | 	ti->num_flush_bios = 1; | 
 | 	ti->limit_swap_bios = true; | 
 |  | 
 | 	/* | 
 | 	 * Only need to enable discards if the pool should pass | 
 | 	 * them down to the data device.  The thin device's discard | 
 | 	 * processing will cause mappings to be removed from the btree. | 
 | 	 */ | 
 | 	if (pf.discard_enabled && pf.discard_passdown) { | 
 | 		ti->num_discard_bios = 1; | 
 | 		/* | 
 | 		 * Setting 'discards_supported' circumvents the normal | 
 | 		 * stacking of discard limits (this keeps the pool and | 
 | 		 * thin devices' discard limits consistent). | 
 | 		 */ | 
 | 		ti->discards_supported = true; | 
 | 		ti->max_discard_granularity = true; | 
 | 	} | 
 | 	ti->private = pt; | 
 |  | 
 | 	r = dm_pool_register_metadata_threshold(pt->pool->pmd, | 
 | 						calc_metadata_threshold(pt), | 
 | 						metadata_low_callback, | 
 | 						pool); | 
 | 	if (r) { | 
 | 		ti->error = "Error registering metadata threshold"; | 
 | 		goto out_flags_changed; | 
 | 	} | 
 |  | 
 | 	dm_pool_register_pre_commit_callback(pool->pmd, | 
 | 					     metadata_pre_commit_callback, pool); | 
 |  | 
 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_flags_changed: | 
 | 	__pool_dec(pool); | 
 | out_free_pt: | 
 | 	kfree(pt); | 
 | out: | 
 | 	dm_put_device(ti, data_dev); | 
 | out_metadata: | 
 | 	dm_put_device(ti, metadata_dev); | 
 | out_unlock: | 
 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int pool_map(struct dm_target *ti, struct bio *bio) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	/* | 
 | 	 * As this is a singleton target, ti->begin is always zero. | 
 | 	 */ | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	bio_set_dev(bio, pt->data_dev->bdev); | 
 | 	spin_unlock_irq(&pool->lock); | 
 |  | 
 | 	return DM_MAPIO_REMAPPED; | 
 | } | 
 |  | 
 | static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) | 
 | { | 
 | 	int r; | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 | 	sector_t data_size = ti->len; | 
 | 	dm_block_t sb_data_size; | 
 |  | 
 | 	*need_commit = false; | 
 |  | 
 | 	(void) sector_div(data_size, pool->sectors_per_block); | 
 |  | 
 | 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); | 
 | 	if (r) { | 
 | 		DMERR("%s: failed to retrieve data device size", | 
 | 		      dm_device_name(pool->pool_md)); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if (data_size < sb_data_size) { | 
 | 		DMERR("%s: pool target (%llu blocks) too small: expected %llu", | 
 | 		      dm_device_name(pool->pool_md), | 
 | 		      (unsigned long long)data_size, sb_data_size); | 
 | 		return -EINVAL; | 
 |  | 
 | 	} else if (data_size > sb_data_size) { | 
 | 		if (dm_pool_metadata_needs_check(pool->pmd)) { | 
 | 			DMERR("%s: unable to grow the data device until repaired.", | 
 | 			      dm_device_name(pool->pool_md)); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (sb_data_size) | 
 | 			DMINFO("%s: growing the data device from %llu to %llu blocks", | 
 | 			       dm_device_name(pool->pool_md), | 
 | 			       sb_data_size, (unsigned long long)data_size); | 
 | 		r = dm_pool_resize_data_dev(pool->pmd, data_size); | 
 | 		if (r) { | 
 | 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		*need_commit = true; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) | 
 | { | 
 | 	int r; | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 | 	dm_block_t metadata_dev_size, sb_metadata_dev_size; | 
 |  | 
 | 	*need_commit = false; | 
 |  | 
 | 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); | 
 |  | 
 | 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); | 
 | 	if (r) { | 
 | 		DMERR("%s: failed to retrieve metadata device size", | 
 | 		      dm_device_name(pool->pool_md)); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if (metadata_dev_size < sb_metadata_dev_size) { | 
 | 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu", | 
 | 		      dm_device_name(pool->pool_md), | 
 | 		      metadata_dev_size, sb_metadata_dev_size); | 
 | 		return -EINVAL; | 
 |  | 
 | 	} else if (metadata_dev_size > sb_metadata_dev_size) { | 
 | 		if (dm_pool_metadata_needs_check(pool->pmd)) { | 
 | 			DMERR("%s: unable to grow the metadata device until repaired.", | 
 | 			      dm_device_name(pool->pool_md)); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		warn_if_metadata_device_too_big(pool->md_dev); | 
 | 		DMINFO("%s: growing the metadata device from %llu to %llu blocks", | 
 | 		       dm_device_name(pool->pool_md), | 
 | 		       sb_metadata_dev_size, metadata_dev_size); | 
 |  | 
 | 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) | 
 | 			set_pool_mode(pool, PM_WRITE); | 
 |  | 
 | 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); | 
 | 		if (r) { | 
 | 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		*need_commit = true; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieves the number of blocks of the data device from | 
 |  * the superblock and compares it to the actual device size, | 
 |  * thus resizing the data device in case it has grown. | 
 |  * | 
 |  * This both copes with opening preallocated data devices in the ctr | 
 |  * being followed by a resume | 
 |  * -and- | 
 |  * calling the resume method individually after userspace has | 
 |  * grown the data device in reaction to a table event. | 
 |  */ | 
 | static int pool_preresume(struct dm_target *ti) | 
 | { | 
 | 	int r; | 
 | 	bool need_commit1, need_commit2; | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	/* | 
 | 	 * Take control of the pool object. | 
 | 	 */ | 
 | 	r = bind_control_target(pool, ti); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	r = maybe_resize_data_dev(ti, &need_commit1); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	r = maybe_resize_metadata_dev(ti, &need_commit2); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	if (need_commit1 || need_commit2) | 
 | 		(void) commit(pool); | 
 | out: | 
 | 	/* | 
 | 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if | 
 | 	 * bio is in deferred list. Therefore need to return 0 | 
 | 	 * to allow pool_resume() to flush IO. | 
 | 	 */ | 
 | 	if (r && get_pool_mode(pool) == PM_FAIL) | 
 | 		r = 0; | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void pool_suspend_active_thins(struct pool *pool) | 
 | { | 
 | 	struct thin_c *tc; | 
 |  | 
 | 	/* Suspend all active thin devices */ | 
 | 	tc = get_first_thin(pool); | 
 | 	while (tc) { | 
 | 		dm_internal_suspend_noflush(tc->thin_md); | 
 | 		tc = get_next_thin(pool, tc); | 
 | 	} | 
 | } | 
 |  | 
 | static void pool_resume_active_thins(struct pool *pool) | 
 | { | 
 | 	struct thin_c *tc; | 
 |  | 
 | 	/* Resume all active thin devices */ | 
 | 	tc = get_first_thin(pool); | 
 | 	while (tc) { | 
 | 		dm_internal_resume(tc->thin_md); | 
 | 		tc = get_next_thin(pool, tc); | 
 | 	} | 
 | } | 
 |  | 
 | static void pool_resume(struct dm_target *ti) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	/* | 
 | 	 * Must requeue active_thins' bios and then resume | 
 | 	 * active_thins _before_ clearing 'suspend' flag. | 
 | 	 */ | 
 | 	requeue_bios(pool); | 
 | 	pool_resume_active_thins(pool); | 
 |  | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	pool->low_water_triggered = false; | 
 | 	pool->suspended = false; | 
 | 	spin_unlock_irq(&pool->lock); | 
 |  | 
 | 	do_waker(&pool->waker.work); | 
 | } | 
 |  | 
 | static void pool_presuspend(struct dm_target *ti) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	pool->suspended = true; | 
 | 	spin_unlock_irq(&pool->lock); | 
 |  | 
 | 	pool_suspend_active_thins(pool); | 
 | } | 
 |  | 
 | static void pool_presuspend_undo(struct dm_target *ti) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	pool_resume_active_thins(pool); | 
 |  | 
 | 	spin_lock_irq(&pool->lock); | 
 | 	pool->suspended = false; | 
 | 	spin_unlock_irq(&pool->lock); | 
 | } | 
 |  | 
 | static void pool_postsuspend(struct dm_target *ti) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	cancel_delayed_work_sync(&pool->waker); | 
 | 	cancel_delayed_work_sync(&pool->no_space_timeout); | 
 | 	flush_workqueue(pool->wq); | 
 | 	(void) commit(pool); | 
 | } | 
 |  | 
 | static int check_arg_count(unsigned int argc, unsigned int args_required) | 
 | { | 
 | 	if (argc != args_required) { | 
 | 		DMWARN("Message received with %u arguments instead of %u.", | 
 | 		       argc, args_required); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) | 
 | { | 
 | 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && | 
 | 	    *dev_id <= MAX_DEV_ID) | 
 | 		return 0; | 
 |  | 
 | 	if (warning) | 
 | 		DMWARN("Message received with invalid device id: %s", arg); | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) | 
 | { | 
 | 	dm_thin_id dev_id; | 
 | 	int r; | 
 |  | 
 | 	r = check_arg_count(argc, 2); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = read_dev_id(argv[1], &dev_id, 1); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = dm_pool_create_thin(pool->pmd, dev_id); | 
 | 	if (r) { | 
 | 		DMWARN("Creation of new thinly-provisioned device with id %s failed.", | 
 | 		       argv[1]); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) | 
 | { | 
 | 	dm_thin_id dev_id; | 
 | 	dm_thin_id origin_dev_id; | 
 | 	int r; | 
 |  | 
 | 	r = check_arg_count(argc, 3); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = read_dev_id(argv[1], &dev_id, 1); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = read_dev_id(argv[2], &origin_dev_id, 1); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); | 
 | 	if (r) { | 
 | 		DMWARN("Creation of new snapshot %s of device %s failed.", | 
 | 		       argv[1], argv[2]); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) | 
 | { | 
 | 	dm_thin_id dev_id; | 
 | 	int r; | 
 |  | 
 | 	r = check_arg_count(argc, 2); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = read_dev_id(argv[1], &dev_id, 1); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = dm_pool_delete_thin_device(pool->pmd, dev_id); | 
 | 	if (r) | 
 | 		DMWARN("Deletion of thin device %s failed.", argv[1]); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) | 
 | { | 
 | 	dm_thin_id old_id, new_id; | 
 | 	int r; | 
 |  | 
 | 	r = check_arg_count(argc, 3); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { | 
 | 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { | 
 | 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); | 
 | 	if (r) { | 
 | 		DMWARN("Failed to change transaction id from %s to %s.", | 
 | 		       argv[1], argv[2]); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = check_arg_count(argc, 1); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	(void) commit(pool); | 
 |  | 
 | 	r = dm_pool_reserve_metadata_snap(pool->pmd); | 
 | 	if (r) | 
 | 		DMWARN("reserve_metadata_snap message failed."); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = check_arg_count(argc, 1); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = dm_pool_release_metadata_snap(pool->pmd); | 
 | 	if (r) | 
 | 		DMWARN("release_metadata_snap message failed."); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Messages supported: | 
 |  *   create_thin	<dev_id> | 
 |  *   create_snap	<dev_id> <origin_id> | 
 |  *   delete		<dev_id> | 
 |  *   set_transaction_id <current_trans_id> <new_trans_id> | 
 |  *   reserve_metadata_snap | 
 |  *   release_metadata_snap | 
 |  */ | 
 | static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, | 
 | 			char *result, unsigned int maxlen) | 
 | { | 
 | 	int r = -EINVAL; | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { | 
 | 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", | 
 | 		      dm_device_name(pool->pool_md)); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	if (!strcasecmp(argv[0], "create_thin")) | 
 | 		r = process_create_thin_mesg(argc, argv, pool); | 
 |  | 
 | 	else if (!strcasecmp(argv[0], "create_snap")) | 
 | 		r = process_create_snap_mesg(argc, argv, pool); | 
 |  | 
 | 	else if (!strcasecmp(argv[0], "delete")) | 
 | 		r = process_delete_mesg(argc, argv, pool); | 
 |  | 
 | 	else if (!strcasecmp(argv[0], "set_transaction_id")) | 
 | 		r = process_set_transaction_id_mesg(argc, argv, pool); | 
 |  | 
 | 	else if (!strcasecmp(argv[0], "reserve_metadata_snap")) | 
 | 		r = process_reserve_metadata_snap_mesg(argc, argv, pool); | 
 |  | 
 | 	else if (!strcasecmp(argv[0], "release_metadata_snap")) | 
 | 		r = process_release_metadata_snap_mesg(argc, argv, pool); | 
 |  | 
 | 	else | 
 | 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]); | 
 |  | 
 | 	if (!r) | 
 | 		(void) commit(pool); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void emit_flags(struct pool_features *pf, char *result, | 
 | 		       unsigned int sz, unsigned int maxlen) | 
 | { | 
 | 	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + | 
 | 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) + | 
 | 		pf->error_if_no_space; | 
 | 	DMEMIT("%u ", count); | 
 |  | 
 | 	if (!pf->zero_new_blocks) | 
 | 		DMEMIT("skip_block_zeroing "); | 
 |  | 
 | 	if (!pf->discard_enabled) | 
 | 		DMEMIT("ignore_discard "); | 
 |  | 
 | 	if (!pf->discard_passdown) | 
 | 		DMEMIT("no_discard_passdown "); | 
 |  | 
 | 	if (pf->mode == PM_READ_ONLY) | 
 | 		DMEMIT("read_only "); | 
 |  | 
 | 	if (pf->error_if_no_space) | 
 | 		DMEMIT("error_if_no_space "); | 
 | } | 
 |  | 
 | /* | 
 |  * Status line is: | 
 |  *    <transaction id> <used metadata sectors>/<total metadata sectors> | 
 |  *    <used data sectors>/<total data sectors> <held metadata root> | 
 |  *    <pool mode> <discard config> <no space config> <needs_check> | 
 |  */ | 
 | static void pool_status(struct dm_target *ti, status_type_t type, | 
 | 			unsigned int status_flags, char *result, unsigned int maxlen) | 
 | { | 
 | 	int r; | 
 | 	unsigned int sz = 0; | 
 | 	uint64_t transaction_id; | 
 | 	dm_block_t nr_free_blocks_data; | 
 | 	dm_block_t nr_free_blocks_metadata; | 
 | 	dm_block_t nr_blocks_data; | 
 | 	dm_block_t nr_blocks_metadata; | 
 | 	dm_block_t held_root; | 
 | 	enum pool_mode mode; | 
 | 	char buf[BDEVNAME_SIZE]; | 
 | 	char buf2[BDEVNAME_SIZE]; | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 |  | 
 | 	switch (type) { | 
 | 	case STATUSTYPE_INFO: | 
 | 		if (get_pool_mode(pool) == PM_FAIL) { | 
 | 			DMEMIT("Fail"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Commit to ensure statistics aren't out-of-date */ | 
 | 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) | 
 | 			(void) commit(pool); | 
 |  | 
 | 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", | 
 | 			      dm_device_name(pool->pool_md), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", | 
 | 			      dm_device_name(pool->pool_md), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d", | 
 | 			      dm_device_name(pool->pool_md), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_pool_get_free_block_count returned %d", | 
 | 			      dm_device_name(pool->pool_md), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_pool_get_data_dev_size returned %d", | 
 | 			      dm_device_name(pool->pool_md), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_pool_get_metadata_snap returned %d", | 
 | 			      dm_device_name(pool->pool_md), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		DMEMIT("%llu %llu/%llu %llu/%llu ", | 
 | 		       (unsigned long long)transaction_id, | 
 | 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), | 
 | 		       (unsigned long long)nr_blocks_metadata, | 
 | 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data), | 
 | 		       (unsigned long long)nr_blocks_data); | 
 |  | 
 | 		if (held_root) | 
 | 			DMEMIT("%llu ", held_root); | 
 | 		else | 
 | 			DMEMIT("- "); | 
 |  | 
 | 		mode = get_pool_mode(pool); | 
 | 		if (mode == PM_OUT_OF_DATA_SPACE) | 
 | 			DMEMIT("out_of_data_space "); | 
 | 		else if (is_read_only_pool_mode(mode)) | 
 | 			DMEMIT("ro "); | 
 | 		else | 
 | 			DMEMIT("rw "); | 
 |  | 
 | 		if (!pool->pf.discard_enabled) | 
 | 			DMEMIT("ignore_discard "); | 
 | 		else if (pool->pf.discard_passdown) | 
 | 			DMEMIT("discard_passdown "); | 
 | 		else | 
 | 			DMEMIT("no_discard_passdown "); | 
 |  | 
 | 		if (pool->pf.error_if_no_space) | 
 | 			DMEMIT("error_if_no_space "); | 
 | 		else | 
 | 			DMEMIT("queue_if_no_space "); | 
 |  | 
 | 		if (dm_pool_metadata_needs_check(pool->pmd)) | 
 | 			DMEMIT("needs_check "); | 
 | 		else | 
 | 			DMEMIT("- "); | 
 |  | 
 | 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); | 
 |  | 
 | 		break; | 
 |  | 
 | 	case STATUSTYPE_TABLE: | 
 | 		DMEMIT("%s %s %lu %llu ", | 
 | 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), | 
 | 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev), | 
 | 		       (unsigned long)pool->sectors_per_block, | 
 | 		       (unsigned long long)pt->low_water_blocks); | 
 | 		emit_flags(&pt->requested_pf, result, sz, maxlen); | 
 | 		break; | 
 |  | 
 | 	case STATUSTYPE_IMA: | 
 | 		*result = '\0'; | 
 | 		break; | 
 | 	} | 
 | 	return; | 
 |  | 
 | err: | 
 | 	DMEMIT("Error"); | 
 | } | 
 |  | 
 | static int pool_iterate_devices(struct dm_target *ti, | 
 | 				iterate_devices_callout_fn fn, void *data) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 |  | 
 | 	return fn(ti, pt->data_dev, 0, ti->len, data); | 
 | } | 
 |  | 
 | static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
 | { | 
 | 	struct pool_c *pt = ti->private; | 
 | 	struct pool *pool = pt->pool; | 
 | 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * If max_sectors is smaller than pool->sectors_per_block adjust it | 
 | 	 * to the highest possible power-of-2 factor of pool->sectors_per_block. | 
 | 	 * This is especially beneficial when the pool's data device is a RAID | 
 | 	 * device that has a full stripe width that matches pool->sectors_per_block | 
 | 	 * -- because even though partial RAID stripe-sized IOs will be issued to a | 
 | 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe | 
 | 	 *    boundary.. which avoids additional partial RAID stripe writes cascading | 
 | 	 */ | 
 | 	if (limits->max_sectors < pool->sectors_per_block) { | 
 | 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { | 
 | 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) | 
 | 				limits->max_sectors--; | 
 | 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the system-determined stacked limits are compatible with the | 
 | 	 * pool's blocksize (io_opt is a factor) do not override them. | 
 | 	 */ | 
 | 	if (io_opt_sectors < pool->sectors_per_block || | 
 | 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) { | 
 | 		if (is_factor(pool->sectors_per_block, limits->max_sectors)) | 
 | 			limits->io_min = limits->max_sectors << SECTOR_SHIFT; | 
 | 		else | 
 | 			limits->io_min = pool->sectors_per_block << SECTOR_SHIFT; | 
 | 		limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * pt->adjusted_pf is a staging area for the actual features to use. | 
 | 	 * They get transferred to the live pool in bind_control_target() | 
 | 	 * called from pool_preresume(). | 
 | 	 */ | 
 |  | 
 | 	if (pt->adjusted_pf.discard_enabled) { | 
 | 		disable_discard_passdown_if_not_supported(pt); | 
 | 		if (!pt->adjusted_pf.discard_passdown) | 
 | 			limits->max_hw_discard_sectors = 0; | 
 | 		/* | 
 | 		 * The pool uses the same discard limits as the underlying data | 
 | 		 * device.  DM core has already set this up. | 
 | 		 */ | 
 | 	} else { | 
 | 		/* | 
 | 		 * Must explicitly disallow stacking discard limits otherwise the | 
 | 		 * block layer will stack them if pool's data device has support. | 
 | 		 */ | 
 | 		limits->discard_granularity = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static struct target_type pool_target = { | 
 | 	.name = "thin-pool", | 
 | 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | | 
 | 		    DM_TARGET_IMMUTABLE, | 
 | 	.version = {1, 23, 0}, | 
 | 	.module = THIS_MODULE, | 
 | 	.ctr = pool_ctr, | 
 | 	.dtr = pool_dtr, | 
 | 	.map = pool_map, | 
 | 	.presuspend = pool_presuspend, | 
 | 	.presuspend_undo = pool_presuspend_undo, | 
 | 	.postsuspend = pool_postsuspend, | 
 | 	.preresume = pool_preresume, | 
 | 	.resume = pool_resume, | 
 | 	.message = pool_message, | 
 | 	.status = pool_status, | 
 | 	.iterate_devices = pool_iterate_devices, | 
 | 	.io_hints = pool_io_hints, | 
 | }; | 
 |  | 
 | /* | 
 |  *-------------------------------------------------------------- | 
 |  * Thin target methods | 
 |  *-------------------------------------------------------------- | 
 |  */ | 
 | static void thin_get(struct thin_c *tc) | 
 | { | 
 | 	refcount_inc(&tc->refcount); | 
 | } | 
 |  | 
 | static void thin_put(struct thin_c *tc) | 
 | { | 
 | 	if (refcount_dec_and_test(&tc->refcount)) | 
 | 		complete(&tc->can_destroy); | 
 | } | 
 |  | 
 | static void thin_dtr(struct dm_target *ti) | 
 | { | 
 | 	struct thin_c *tc = ti->private; | 
 |  | 
 | 	spin_lock_irq(&tc->pool->lock); | 
 | 	list_del_rcu(&tc->list); | 
 | 	spin_unlock_irq(&tc->pool->lock); | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	thin_put(tc); | 
 | 	wait_for_completion(&tc->can_destroy); | 
 |  | 
 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	__pool_dec(tc->pool); | 
 | 	dm_pool_close_thin_device(tc->td); | 
 | 	dm_put_device(ti, tc->pool_dev); | 
 | 	if (tc->origin_dev) | 
 | 		dm_put_device(ti, tc->origin_dev); | 
 | 	kfree(tc); | 
 |  | 
 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * Thin target parameters: | 
 |  * | 
 |  * <pool_dev> <dev_id> [origin_dev] | 
 |  * | 
 |  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) | 
 |  * dev_id: the internal device identifier | 
 |  * origin_dev: a device external to the pool that should act as the origin | 
 |  * | 
 |  * If the pool device has discards disabled, they get disabled for the thin | 
 |  * device as well. | 
 |  */ | 
 | static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
 | { | 
 | 	int r; | 
 | 	struct thin_c *tc; | 
 | 	struct dm_dev *pool_dev, *origin_dev; | 
 | 	struct mapped_device *pool_md; | 
 |  | 
 | 	mutex_lock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	if (argc != 2 && argc != 3) { | 
 | 		ti->error = "Invalid argument count"; | 
 | 		r = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); | 
 | 	if (!tc) { | 
 | 		ti->error = "Out of memory"; | 
 | 		r = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	tc->thin_md = dm_table_get_md(ti->table); | 
 | 	spin_lock_init(&tc->lock); | 
 | 	INIT_LIST_HEAD(&tc->deferred_cells); | 
 | 	bio_list_init(&tc->deferred_bio_list); | 
 | 	bio_list_init(&tc->retry_on_resume_list); | 
 | 	tc->sort_bio_list = RB_ROOT; | 
 |  | 
 | 	if (argc == 3) { | 
 | 		if (!strcmp(argv[0], argv[2])) { | 
 | 			ti->error = "Error setting origin device"; | 
 | 			r = -EINVAL; | 
 | 			goto bad_origin_dev; | 
 | 		} | 
 |  | 
 | 		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev); | 
 | 		if (r) { | 
 | 			ti->error = "Error opening origin device"; | 
 | 			goto bad_origin_dev; | 
 | 		} | 
 | 		tc->origin_dev = origin_dev; | 
 | 	} | 
 |  | 
 | 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); | 
 | 	if (r) { | 
 | 		ti->error = "Error opening pool device"; | 
 | 		goto bad_pool_dev; | 
 | 	} | 
 | 	tc->pool_dev = pool_dev; | 
 |  | 
 | 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { | 
 | 		ti->error = "Invalid device id"; | 
 | 		r = -EINVAL; | 
 | 		goto bad_common; | 
 | 	} | 
 |  | 
 | 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); | 
 | 	if (!pool_md) { | 
 | 		ti->error = "Couldn't get pool mapped device"; | 
 | 		r = -EINVAL; | 
 | 		goto bad_common; | 
 | 	} | 
 |  | 
 | 	tc->pool = __pool_table_lookup(pool_md); | 
 | 	if (!tc->pool) { | 
 | 		ti->error = "Couldn't find pool object"; | 
 | 		r = -EINVAL; | 
 | 		goto bad_pool_lookup; | 
 | 	} | 
 | 	__pool_inc(tc->pool); | 
 |  | 
 | 	if (get_pool_mode(tc->pool) == PM_FAIL) { | 
 | 		ti->error = "Couldn't open thin device, Pool is in fail mode"; | 
 | 		r = -EINVAL; | 
 | 		goto bad_pool; | 
 | 	} | 
 |  | 
 | 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); | 
 | 	if (r) { | 
 | 		ti->error = "Couldn't open thin internal device"; | 
 | 		goto bad_pool; | 
 | 	} | 
 |  | 
 | 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); | 
 | 	if (r) | 
 | 		goto bad; | 
 |  | 
 | 	ti->num_flush_bios = 1; | 
 | 	ti->limit_swap_bios = true; | 
 | 	ti->flush_supported = true; | 
 | 	ti->accounts_remapped_io = true; | 
 | 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); | 
 |  | 
 | 	/* In case the pool supports discards, pass them on. */ | 
 | 	if (tc->pool->pf.discard_enabled) { | 
 | 		ti->discards_supported = true; | 
 | 		ti->num_discard_bios = 1; | 
 | 		ti->max_discard_granularity = true; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	spin_lock_irq(&tc->pool->lock); | 
 | 	if (tc->pool->suspended) { | 
 | 		spin_unlock_irq(&tc->pool->lock); | 
 | 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ | 
 | 		ti->error = "Unable to activate thin device while pool is suspended"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 | 	refcount_set(&tc->refcount, 1); | 
 | 	init_completion(&tc->can_destroy); | 
 | 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins); | 
 | 	spin_unlock_irq(&tc->pool->lock); | 
 | 	/* | 
 | 	 * This synchronize_rcu() call is needed here otherwise we risk a | 
 | 	 * wake_worker() call finding no bios to process (because the newly | 
 | 	 * added tc isn't yet visible).  So this reduces latency since we | 
 | 	 * aren't then dependent on the periodic commit to wake_worker(). | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	dm_put(pool_md); | 
 |  | 
 | 	return 0; | 
 |  | 
 | bad: | 
 | 	dm_pool_close_thin_device(tc->td); | 
 | bad_pool: | 
 | 	__pool_dec(tc->pool); | 
 | bad_pool_lookup: | 
 | 	dm_put(pool_md); | 
 | bad_common: | 
 | 	dm_put_device(ti, tc->pool_dev); | 
 | bad_pool_dev: | 
 | 	if (tc->origin_dev) | 
 | 		dm_put_device(ti, tc->origin_dev); | 
 | bad_origin_dev: | 
 | 	kfree(tc); | 
 | out_unlock: | 
 | 	mutex_unlock(&dm_thin_pool_table.mutex); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int thin_map(struct dm_target *ti, struct bio *bio) | 
 | { | 
 | 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); | 
 |  | 
 | 	return thin_bio_map(ti, bio); | 
 | } | 
 |  | 
 | static int thin_endio(struct dm_target *ti, struct bio *bio, | 
 | 		blk_status_t *err) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
 | 	struct list_head work; | 
 | 	struct dm_thin_new_mapping *m, *tmp; | 
 | 	struct pool *pool = h->tc->pool; | 
 |  | 
 | 	if (h->shared_read_entry) { | 
 | 		INIT_LIST_HEAD(&work); | 
 | 		dm_deferred_entry_dec(h->shared_read_entry, &work); | 
 |  | 
 | 		spin_lock_irqsave(&pool->lock, flags); | 
 | 		list_for_each_entry_safe(m, tmp, &work, list) { | 
 | 			list_del(&m->list); | 
 | 			__complete_mapping_preparation(m); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&pool->lock, flags); | 
 | 	} | 
 |  | 
 | 	if (h->all_io_entry) { | 
 | 		INIT_LIST_HEAD(&work); | 
 | 		dm_deferred_entry_dec(h->all_io_entry, &work); | 
 | 		if (!list_empty(&work)) { | 
 | 			spin_lock_irqsave(&pool->lock, flags); | 
 | 			list_for_each_entry_safe(m, tmp, &work, list) | 
 | 				list_add_tail(&m->list, &pool->prepared_discards); | 
 | 			spin_unlock_irqrestore(&pool->lock, flags); | 
 | 			wake_worker(pool); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (h->cell) | 
 | 		cell_defer_no_holder(h->tc, h->cell); | 
 |  | 
 | 	return DM_ENDIO_DONE; | 
 | } | 
 |  | 
 | static void thin_presuspend(struct dm_target *ti) | 
 | { | 
 | 	struct thin_c *tc = ti->private; | 
 |  | 
 | 	if (dm_noflush_suspending(ti)) | 
 | 		noflush_work(tc, do_noflush_start); | 
 | } | 
 |  | 
 | static void thin_postsuspend(struct dm_target *ti) | 
 | { | 
 | 	struct thin_c *tc = ti->private; | 
 |  | 
 | 	/* | 
 | 	 * The dm_noflush_suspending flag has been cleared by now, so | 
 | 	 * unfortunately we must always run this. | 
 | 	 */ | 
 | 	noflush_work(tc, do_noflush_stop); | 
 | } | 
 |  | 
 | static int thin_preresume(struct dm_target *ti) | 
 | { | 
 | 	struct thin_c *tc = ti->private; | 
 |  | 
 | 	if (tc->origin_dev) | 
 | 		tc->origin_size = get_dev_size(tc->origin_dev->bdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * <nr mapped sectors> <highest mapped sector> | 
 |  */ | 
 | static void thin_status(struct dm_target *ti, status_type_t type, | 
 | 			unsigned int status_flags, char *result, unsigned int maxlen) | 
 | { | 
 | 	int r; | 
 | 	ssize_t sz = 0; | 
 | 	dm_block_t mapped, highest; | 
 | 	char buf[BDEVNAME_SIZE]; | 
 | 	struct thin_c *tc = ti->private; | 
 |  | 
 | 	if (get_pool_mode(tc->pool) == PM_FAIL) { | 
 | 		DMEMIT("Fail"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!tc->td) | 
 | 		DMEMIT("-"); | 
 | 	else { | 
 | 		switch (type) { | 
 | 		case STATUSTYPE_INFO: | 
 | 			r = dm_thin_get_mapped_count(tc->td, &mapped); | 
 | 			if (r) { | 
 | 				DMERR("dm_thin_get_mapped_count returned %d", r); | 
 | 				goto err; | 
 | 			} | 
 |  | 
 | 			r = dm_thin_get_highest_mapped_block(tc->td, &highest); | 
 | 			if (r < 0) { | 
 | 				DMERR("dm_thin_get_highest_mapped_block returned %d", r); | 
 | 				goto err; | 
 | 			} | 
 |  | 
 | 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); | 
 | 			if (r) | 
 | 				DMEMIT("%llu", ((highest + 1) * | 
 | 						tc->pool->sectors_per_block) - 1); | 
 | 			else | 
 | 				DMEMIT("-"); | 
 | 			break; | 
 |  | 
 | 		case STATUSTYPE_TABLE: | 
 | 			DMEMIT("%s %lu", | 
 | 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev), | 
 | 			       (unsigned long) tc->dev_id); | 
 | 			if (tc->origin_dev) | 
 | 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); | 
 | 			break; | 
 |  | 
 | 		case STATUSTYPE_IMA: | 
 | 			*result = '\0'; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return; | 
 |  | 
 | err: | 
 | 	DMEMIT("Error"); | 
 | } | 
 |  | 
 | static int thin_iterate_devices(struct dm_target *ti, | 
 | 				iterate_devices_callout_fn fn, void *data) | 
 | { | 
 | 	sector_t blocks; | 
 | 	struct thin_c *tc = ti->private; | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	/* | 
 | 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So | 
 | 	 * we follow a more convoluted path through to the pool's target. | 
 | 	 */ | 
 | 	if (!pool->ti) | 
 | 		return 0;	/* nothing is bound */ | 
 |  | 
 | 	blocks = pool->ti->len; | 
 | 	(void) sector_div(blocks, pool->sectors_per_block); | 
 | 	if (blocks) | 
 | 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
 | { | 
 | 	struct thin_c *tc = ti->private; | 
 | 	struct pool *pool = tc->pool; | 
 |  | 
 | 	if (pool->pf.discard_enabled) { | 
 | 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; | 
 | 		limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE; | 
 | 	} | 
 | } | 
 |  | 
 | static struct target_type thin_target = { | 
 | 	.name = "thin", | 
 | 	.version = {1, 23, 0}, | 
 | 	.module	= THIS_MODULE, | 
 | 	.ctr = thin_ctr, | 
 | 	.dtr = thin_dtr, | 
 | 	.map = thin_map, | 
 | 	.end_io = thin_endio, | 
 | 	.preresume = thin_preresume, | 
 | 	.presuspend = thin_presuspend, | 
 | 	.postsuspend = thin_postsuspend, | 
 | 	.status = thin_status, | 
 | 	.iterate_devices = thin_iterate_devices, | 
 | 	.io_hints = thin_io_hints, | 
 | }; | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static int __init dm_thin_init(void) | 
 | { | 
 | 	int r = -ENOMEM; | 
 |  | 
 | 	pool_table_init(); | 
 |  | 
 | 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); | 
 | 	if (!_new_mapping_cache) | 
 | 		return r; | 
 |  | 
 | 	r = dm_register_target(&thin_target); | 
 | 	if (r) | 
 | 		goto bad_new_mapping_cache; | 
 |  | 
 | 	r = dm_register_target(&pool_target); | 
 | 	if (r) | 
 | 		goto bad_thin_target; | 
 |  | 
 | 	return 0; | 
 |  | 
 | bad_thin_target: | 
 | 	dm_unregister_target(&thin_target); | 
 | bad_new_mapping_cache: | 
 | 	kmem_cache_destroy(_new_mapping_cache); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void dm_thin_exit(void) | 
 | { | 
 | 	dm_unregister_target(&thin_target); | 
 | 	dm_unregister_target(&pool_target); | 
 |  | 
 | 	kmem_cache_destroy(_new_mapping_cache); | 
 |  | 
 | 	pool_table_exit(); | 
 | } | 
 |  | 
 | module_init(dm_thin_init); | 
 | module_exit(dm_thin_exit); | 
 |  | 
 | module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); | 
 | MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); | 
 |  | 
 | MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); | 
 | MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); | 
 | MODULE_LICENSE("GPL"); |