| // SPDX-License-Identifier: GPL-2.0 | 
 | /* Copyright(c) 1999 - 2018 Intel Corporation. */ | 
 |  | 
 | /* 82562G 10/100 Network Connection | 
 |  * 82562G-2 10/100 Network Connection | 
 |  * 82562GT 10/100 Network Connection | 
 |  * 82562GT-2 10/100 Network Connection | 
 |  * 82562V 10/100 Network Connection | 
 |  * 82562V-2 10/100 Network Connection | 
 |  * 82566DC-2 Gigabit Network Connection | 
 |  * 82566DC Gigabit Network Connection | 
 |  * 82566DM-2 Gigabit Network Connection | 
 |  * 82566DM Gigabit Network Connection | 
 |  * 82566MC Gigabit Network Connection | 
 |  * 82566MM Gigabit Network Connection | 
 |  * 82567LM Gigabit Network Connection | 
 |  * 82567LF Gigabit Network Connection | 
 |  * 82567V Gigabit Network Connection | 
 |  * 82567LM-2 Gigabit Network Connection | 
 |  * 82567LF-2 Gigabit Network Connection | 
 |  * 82567V-2 Gigabit Network Connection | 
 |  * 82567LF-3 Gigabit Network Connection | 
 |  * 82567LM-3 Gigabit Network Connection | 
 |  * 82567LM-4 Gigabit Network Connection | 
 |  * 82577LM Gigabit Network Connection | 
 |  * 82577LC Gigabit Network Connection | 
 |  * 82578DM Gigabit Network Connection | 
 |  * 82578DC Gigabit Network Connection | 
 |  * 82579LM Gigabit Network Connection | 
 |  * 82579V Gigabit Network Connection | 
 |  * Ethernet Connection I217-LM | 
 |  * Ethernet Connection I217-V | 
 |  * Ethernet Connection I218-V | 
 |  * Ethernet Connection I218-LM | 
 |  * Ethernet Connection (2) I218-LM | 
 |  * Ethernet Connection (2) I218-V | 
 |  * Ethernet Connection (3) I218-LM | 
 |  * Ethernet Connection (3) I218-V | 
 |  */ | 
 |  | 
 | #include "e1000.h" | 
 |  | 
 | /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ | 
 | /* Offset 04h HSFSTS */ | 
 | union ich8_hws_flash_status { | 
 | 	struct ich8_hsfsts { | 
 | 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */ | 
 | 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */ | 
 | 		u16 dael:1;	/* bit 2 Direct Access error Log */ | 
 | 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */ | 
 | 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */ | 
 | 		u16 reserved1:2;	/* bit 13:6 Reserved */ | 
 | 		u16 reserved2:6;	/* bit 13:6 Reserved */ | 
 | 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */ | 
 | 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */ | 
 | 	} hsf_status; | 
 | 	u16 regval; | 
 | }; | 
 |  | 
 | /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ | 
 | /* Offset 06h FLCTL */ | 
 | union ich8_hws_flash_ctrl { | 
 | 	struct ich8_hsflctl { | 
 | 		u16 flcgo:1;	/* 0 Flash Cycle Go */ | 
 | 		u16 flcycle:2;	/* 2:1 Flash Cycle */ | 
 | 		u16 reserved:5;	/* 7:3 Reserved  */ | 
 | 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */ | 
 | 		u16 flockdn:6;	/* 15:10 Reserved */ | 
 | 	} hsf_ctrl; | 
 | 	u16 regval; | 
 | }; | 
 |  | 
 | /* ICH Flash Region Access Permissions */ | 
 | union ich8_hws_flash_regacc { | 
 | 	struct ich8_flracc { | 
 | 		u32 grra:8;	/* 0:7 GbE region Read Access */ | 
 | 		u32 grwa:8;	/* 8:15 GbE region Write Access */ | 
 | 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */ | 
 | 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */ | 
 | 	} hsf_flregacc; | 
 | 	u16 regval; | 
 | }; | 
 |  | 
 | /* ICH Flash Protected Region */ | 
 | union ich8_flash_protected_range { | 
 | 	struct ich8_pr { | 
 | 		u32 base:13;	/* 0:12 Protected Range Base */ | 
 | 		u32 reserved1:2;	/* 13:14 Reserved */ | 
 | 		u32 rpe:1;	/* 15 Read Protection Enable */ | 
 | 		u32 limit:13;	/* 16:28 Protected Range Limit */ | 
 | 		u32 reserved2:2;	/* 29:30 Reserved */ | 
 | 		u32 wpe:1;	/* 31 Write Protection Enable */ | 
 | 	} range; | 
 | 	u32 regval; | 
 | }; | 
 |  | 
 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); | 
 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); | 
 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); | 
 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | 
 | 						u32 offset, u8 byte); | 
 | static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					 u8 *data); | 
 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					 u16 *data); | 
 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					 u8 size, u16 *data); | 
 | static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					   u32 *data); | 
 | static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, | 
 | 					  u32 offset, u32 *data); | 
 | static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, | 
 | 					    u32 offset, u32 data); | 
 | static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, | 
 | 						 u32 offset, u32 dword); | 
 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); | 
 | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); | 
 | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); | 
 | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); | 
 | static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); | 
 | static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); | 
 | static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); | 
 | static s32 e1000_led_on_pchlan(struct e1000_hw *hw); | 
 | static s32 e1000_led_off_pchlan(struct e1000_hw *hw); | 
 | static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); | 
 | static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); | 
 | static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); | 
 | static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); | 
 | static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); | 
 | static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); | 
 | static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); | 
 | static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); | 
 | static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); | 
 | static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); | 
 | static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); | 
 | static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); | 
 | static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); | 
 | static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); | 
 | static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); | 
 |  | 
 | static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) | 
 | { | 
 | 	return readw(hw->flash_address + reg); | 
 | } | 
 |  | 
 | static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) | 
 | { | 
 | 	return readl(hw->flash_address + reg); | 
 | } | 
 |  | 
 | static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) | 
 | { | 
 | 	writew(val, hw->flash_address + reg); | 
 | } | 
 |  | 
 | static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) | 
 | { | 
 | 	writel(val, hw->flash_address + reg); | 
 | } | 
 |  | 
 | #define er16flash(reg)		__er16flash(hw, (reg)) | 
 | #define er32flash(reg)		__er32flash(hw, (reg)) | 
 | #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val)) | 
 | #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val)) | 
 |  | 
 | /** | 
 |  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Test access to the PHY registers by reading the PHY ID registers.  If | 
 |  *  the PHY ID is already known (e.g. resume path) compare it with known ID, | 
 |  *  otherwise assume the read PHY ID is correct if it is valid. | 
 |  * | 
 |  *  Assumes the sw/fw/hw semaphore is already acquired. | 
 |  **/ | 
 | static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	u16 phy_reg = 0; | 
 | 	u32 phy_id = 0; | 
 | 	s32 ret_val = 0; | 
 | 	u16 retry_count; | 
 | 	u32 mac_reg = 0; | 
 |  | 
 | 	for (retry_count = 0; retry_count < 2; retry_count++) { | 
 | 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); | 
 | 		if (ret_val || (phy_reg == 0xFFFF)) | 
 | 			continue; | 
 | 		phy_id = (u32)(phy_reg << 16); | 
 |  | 
 | 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); | 
 | 		if (ret_val || (phy_reg == 0xFFFF)) { | 
 | 			phy_id = 0; | 
 | 			continue; | 
 | 		} | 
 | 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (hw->phy.id) { | 
 | 		if (hw->phy.id == phy_id) | 
 | 			goto out; | 
 | 	} else if (phy_id) { | 
 | 		hw->phy.id = phy_id; | 
 | 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* In case the PHY needs to be in mdio slow mode, | 
 | 	 * set slow mode and try to get the PHY id again. | 
 | 	 */ | 
 | 	if (hw->mac.type < e1000_pch_lpt) { | 
 | 		hw->phy.ops.release(hw); | 
 | 		ret_val = e1000_set_mdio_slow_mode_hv(hw); | 
 | 		if (!ret_val) | 
 | 			ret_val = e1000e_get_phy_id(hw); | 
 | 		hw->phy.ops.acquire(hw); | 
 | 	} | 
 |  | 
 | 	if (ret_val) | 
 | 		return false; | 
 | out: | 
 | 	if (hw->mac.type >= e1000_pch_lpt) { | 
 | 		/* Only unforce SMBus if ME is not active */ | 
 | 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { | 
 | 			/* Switching PHY interface always returns MDI error | 
 | 			 * so disable retry mechanism to avoid wasting time | 
 | 			 */ | 
 | 			e1000e_disable_phy_retry(hw); | 
 |  | 
 | 			/* Unforce SMBus mode in PHY */ | 
 | 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); | 
 | 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; | 
 | 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); | 
 |  | 
 | 			e1000e_enable_phy_retry(hw); | 
 |  | 
 | 			/* Unforce SMBus mode in MAC */ | 
 | 			mac_reg = er32(CTRL_EXT); | 
 | 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; | 
 | 			ew32(CTRL_EXT, mac_reg); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is | 
 |  *  used to reset the PHY to a quiescent state when necessary. | 
 |  **/ | 
 | static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) | 
 | { | 
 | 	u32 mac_reg; | 
 |  | 
 | 	/* Set Phy Config Counter to 50msec */ | 
 | 	mac_reg = er32(FEXTNVM3); | 
 | 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; | 
 | 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; | 
 | 	ew32(FEXTNVM3, mac_reg); | 
 |  | 
 | 	/* Toggle LANPHYPC Value bit */ | 
 | 	mac_reg = er32(CTRL); | 
 | 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; | 
 | 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; | 
 | 	ew32(CTRL, mac_reg); | 
 | 	e1e_flush(); | 
 | 	usleep_range(10, 20); | 
 | 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; | 
 | 	ew32(CTRL, mac_reg); | 
 | 	e1e_flush(); | 
 |  | 
 | 	if (hw->mac.type < e1000_pch_lpt) { | 
 | 		msleep(50); | 
 | 	} else { | 
 | 		u16 count = 20; | 
 |  | 
 | 		do { | 
 | 			usleep_range(5000, 6000); | 
 | 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); | 
 |  | 
 | 		msleep(30); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_reconfigure_k1_exit_timeout - reconfigure K1 exit timeout to | 
 |  * align to MTP and later platform requirements. | 
 |  * @hw: pointer to the HW structure | 
 |  * | 
 |  * Context: PHY semaphore must be held by caller. | 
 |  * Return: 0 on success, negative on failure | 
 |  */ | 
 | static s32 e1000_reconfigure_k1_exit_timeout(struct e1000_hw *hw) | 
 | { | 
 | 	u16 phy_timeout; | 
 | 	u32 fextnvm12; | 
 | 	s32 ret_val; | 
 |  | 
 | 	if (hw->mac.type < e1000_pch_mtp) | 
 | 		return 0; | 
 |  | 
 | 	/* Change Kumeran K1 power down state from P0s to P1 */ | 
 | 	fextnvm12 = er32(FEXTNVM12); | 
 | 	fextnvm12 &= ~E1000_FEXTNVM12_PHYPD_CTRL_MASK; | 
 | 	fextnvm12 |= E1000_FEXTNVM12_PHYPD_CTRL_P1; | 
 | 	ew32(FEXTNVM12, fextnvm12); | 
 |  | 
 | 	/* Wait for the interface the settle */ | 
 | 	usleep_range(1000, 1100); | 
 |  | 
 | 	/* Change K1 exit timeout */ | 
 | 	ret_val = e1e_rphy_locked(hw, I217_PHY_TIMEOUTS_REG, | 
 | 				  &phy_timeout); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	phy_timeout &= ~I217_PHY_TIMEOUTS_K1_EXIT_TO_MASK; | 
 | 	phy_timeout |= 0xF00; | 
 |  | 
 | 	return e1e_wphy_locked(hw, I217_PHY_TIMEOUTS_REG, | 
 | 				  phy_timeout); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Workarounds/flow necessary for PHY initialization during driver load | 
 |  *  and resume paths. | 
 |  **/ | 
 | static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_adapter *adapter = hw->adapter; | 
 | 	u32 mac_reg, fwsm = er32(FWSM); | 
 | 	s32 ret_val; | 
 |  | 
 | 	/* Gate automatic PHY configuration by hardware on managed and | 
 | 	 * non-managed 82579 and newer adapters. | 
 | 	 */ | 
 | 	e1000_gate_hw_phy_config_ich8lan(hw, true); | 
 |  | 
 | 	/* It is not possible to be certain of the current state of ULP | 
 | 	 * so forcibly disable it. | 
 | 	 */ | 
 | 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; | 
 | 	ret_val = e1000_disable_ulp_lpt_lp(hw, true); | 
 | 	if (ret_val) | 
 | 		e_warn("Failed to disable ULP\n"); | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) { | 
 | 		e_dbg("Failed to initialize PHY flow\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* There is no guarantee that the PHY is accessible at this time | 
 | 	 * so disable retry mechanism to avoid wasting time | 
 | 	 */ | 
 | 	e1000e_disable_phy_retry(hw); | 
 |  | 
 | 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is | 
 | 	 * inaccessible and resetting the PHY is not blocked, toggle the | 
 | 	 * LANPHYPC Value bit to force the interconnect to PCIe mode. | 
 | 	 */ | 
 | 	switch (hw->mac.type) { | 
 | 	case e1000_pch_mtp: | 
 | 	case e1000_pch_lnp: | 
 | 	case e1000_pch_ptp: | 
 | 	case e1000_pch_nvp: | 
 | 		/* At this point the PHY might be inaccessible so don't | 
 | 		 * propagate the failure | 
 | 		 */ | 
 | 		if (e1000_reconfigure_k1_exit_timeout(hw)) | 
 | 			e_dbg("Failed to reconfigure K1 exit timeout\n"); | 
 |  | 
 | 		fallthrough; | 
 | 	case e1000_pch_lpt: | 
 | 	case e1000_pch_spt: | 
 | 	case e1000_pch_cnp: | 
 | 	case e1000_pch_tgp: | 
 | 	case e1000_pch_adp: | 
 | 		if (e1000_phy_is_accessible_pchlan(hw)) | 
 | 			break; | 
 |  | 
 | 		/* Before toggling LANPHYPC, see if PHY is accessible by | 
 | 		 * forcing MAC to SMBus mode first. | 
 | 		 */ | 
 | 		mac_reg = er32(CTRL_EXT); | 
 | 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; | 
 | 		ew32(CTRL_EXT, mac_reg); | 
 |  | 
 | 		/* Wait 50 milliseconds for MAC to finish any retries | 
 | 		 * that it might be trying to perform from previous | 
 | 		 * attempts to acknowledge any phy read requests. | 
 | 		 */ | 
 | 		msleep(50); | 
 |  | 
 | 		fallthrough; | 
 | 	case e1000_pch2lan: | 
 | 		if (e1000_phy_is_accessible_pchlan(hw)) | 
 | 			break; | 
 |  | 
 | 		fallthrough; | 
 | 	case e1000_pchlan: | 
 | 		if ((hw->mac.type == e1000_pchlan) && | 
 | 		    (fwsm & E1000_ICH_FWSM_FW_VALID)) | 
 | 			break; | 
 |  | 
 | 		if (hw->phy.ops.check_reset_block(hw)) { | 
 | 			e_dbg("Required LANPHYPC toggle blocked by ME\n"); | 
 | 			ret_val = -E1000_ERR_PHY; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Toggle LANPHYPC Value bit */ | 
 | 		e1000_toggle_lanphypc_pch_lpt(hw); | 
 | 		if (hw->mac.type >= e1000_pch_lpt) { | 
 | 			if (e1000_phy_is_accessible_pchlan(hw)) | 
 | 				break; | 
 |  | 
 | 			/* Toggling LANPHYPC brings the PHY out of SMBus mode | 
 | 			 * so ensure that the MAC is also out of SMBus mode | 
 | 			 */ | 
 | 			mac_reg = er32(CTRL_EXT); | 
 | 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; | 
 | 			ew32(CTRL_EXT, mac_reg); | 
 |  | 
 | 			if (e1000_phy_is_accessible_pchlan(hw)) | 
 | 				break; | 
 |  | 
 | 			ret_val = -E1000_ERR_PHY; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	e1000e_enable_phy_retry(hw); | 
 |  | 
 | 	hw->phy.ops.release(hw); | 
 | 	if (!ret_val) { | 
 |  | 
 | 		/* Check to see if able to reset PHY.  Print error if not */ | 
 | 		if (hw->phy.ops.check_reset_block(hw)) { | 
 | 			e_err("Reset blocked by ME\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* Reset the PHY before any access to it.  Doing so, ensures | 
 | 		 * that the PHY is in a known good state before we read/write | 
 | 		 * PHY registers.  The generic reset is sufficient here, | 
 | 		 * because we haven't determined the PHY type yet. | 
 | 		 */ | 
 | 		ret_val = e1000e_phy_hw_reset_generic(hw); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		/* On a successful reset, possibly need to wait for the PHY | 
 | 		 * to quiesce to an accessible state before returning control | 
 | 		 * to the calling function.  If the PHY does not quiesce, then | 
 | 		 * return E1000E_BLK_PHY_RESET, as this is the condition that | 
 | 		 *  the PHY is in. | 
 | 		 */ | 
 | 		ret_val = hw->phy.ops.check_reset_block(hw); | 
 | 		if (ret_val) { | 
 | 			e_err("ME blocked access to PHY after reset\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (hw->mac.type >= e1000_pch_mtp) { | 
 | 			ret_val = hw->phy.ops.acquire(hw); | 
 | 			if (ret_val) { | 
 | 				e_err("Failed to reconfigure K1 exit timeout\n"); | 
 | 				goto out; | 
 | 			} | 
 | 			ret_val = e1000_reconfigure_k1_exit_timeout(hw); | 
 | 			hw->phy.ops.release(hw); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* Ungate automatic PHY configuration on non-managed 82579 */ | 
 | 	if ((hw->mac.type == e1000_pch2lan) && | 
 | 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) { | 
 | 		usleep_range(10000, 11000); | 
 | 		e1000_gate_hw_phy_config_ich8lan(hw, false); | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Initialize family-specific PHY parameters and function pointers. | 
 |  **/ | 
 | static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	s32 ret_val; | 
 |  | 
 | 	phy->addr = 1; | 
 | 	phy->reset_delay_us = 100; | 
 |  | 
 | 	phy->ops.set_page = e1000_set_page_igp; | 
 | 	phy->ops.read_reg = e1000_read_phy_reg_hv; | 
 | 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; | 
 | 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; | 
 | 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; | 
 | 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; | 
 | 	phy->ops.write_reg = e1000_write_phy_reg_hv; | 
 | 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; | 
 | 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; | 
 | 	phy->ops.power_up = e1000_power_up_phy_copper; | 
 | 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; | 
 | 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
 |  | 
 | 	phy->id = e1000_phy_unknown; | 
 |  | 
 | 	if (hw->mac.type == e1000_pch_mtp) { | 
 | 		phy->retry_count = 2; | 
 | 		e1000e_enable_phy_retry(hw); | 
 | 	} | 
 |  | 
 | 	ret_val = e1000_init_phy_workarounds_pchlan(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if (phy->id == e1000_phy_unknown) | 
 | 		switch (hw->mac.type) { | 
 | 		default: | 
 | 			ret_val = e1000e_get_phy_id(hw); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) | 
 | 				break; | 
 | 			fallthrough; | 
 | 		case e1000_pch2lan: | 
 | 		case e1000_pch_lpt: | 
 | 		case e1000_pch_spt: | 
 | 		case e1000_pch_cnp: | 
 | 		case e1000_pch_tgp: | 
 | 		case e1000_pch_adp: | 
 | 		case e1000_pch_mtp: | 
 | 		case e1000_pch_lnp: | 
 | 		case e1000_pch_ptp: | 
 | 		case e1000_pch_nvp: | 
 | 			/* In case the PHY needs to be in mdio slow mode, | 
 | 			 * set slow mode and try to get the PHY id again. | 
 | 			 */ | 
 | 			ret_val = e1000_set_mdio_slow_mode_hv(hw); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 			ret_val = e1000e_get_phy_id(hw); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 			break; | 
 | 		} | 
 | 	phy->type = e1000e_get_phy_type_from_id(phy->id); | 
 |  | 
 | 	switch (phy->type) { | 
 | 	case e1000_phy_82577: | 
 | 	case e1000_phy_82579: | 
 | 	case e1000_phy_i217: | 
 | 		phy->ops.check_polarity = e1000_check_polarity_82577; | 
 | 		phy->ops.force_speed_duplex = | 
 | 		    e1000_phy_force_speed_duplex_82577; | 
 | 		phy->ops.get_cable_length = e1000_get_cable_length_82577; | 
 | 		phy->ops.get_info = e1000_get_phy_info_82577; | 
 | 		phy->ops.commit = e1000e_phy_sw_reset; | 
 | 		break; | 
 | 	case e1000_phy_82578: | 
 | 		phy->ops.check_polarity = e1000_check_polarity_m88; | 
 | 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; | 
 | 		phy->ops.get_cable_length = e1000e_get_cable_length_m88; | 
 | 		phy->ops.get_info = e1000e_get_phy_info_m88; | 
 | 		break; | 
 | 	default: | 
 | 		ret_val = -E1000_ERR_PHY; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Initialize family-specific PHY parameters and function pointers. | 
 |  **/ | 
 | static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	s32 ret_val; | 
 | 	u16 i = 0; | 
 |  | 
 | 	phy->addr = 1; | 
 | 	phy->reset_delay_us = 100; | 
 |  | 
 | 	phy->ops.power_up = e1000_power_up_phy_copper; | 
 | 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; | 
 |  | 
 | 	/* We may need to do this twice - once for IGP and if that fails, | 
 | 	 * we'll set BM func pointers and try again | 
 | 	 */ | 
 | 	ret_val = e1000e_determine_phy_address(hw); | 
 | 	if (ret_val) { | 
 | 		phy->ops.write_reg = e1000e_write_phy_reg_bm; | 
 | 		phy->ops.read_reg = e1000e_read_phy_reg_bm; | 
 | 		ret_val = e1000e_determine_phy_address(hw); | 
 | 		if (ret_val) { | 
 | 			e_dbg("Cannot determine PHY addr. Erroring out\n"); | 
 | 			return ret_val; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	phy->id = 0; | 
 | 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && | 
 | 	       (i++ < 100)) { | 
 | 		usleep_range(1000, 1100); | 
 | 		ret_val = e1000e_get_phy_id(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	/* Verify phy id */ | 
 | 	switch (phy->id) { | 
 | 	case IGP03E1000_E_PHY_ID: | 
 | 		phy->type = e1000_phy_igp_3; | 
 | 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
 | 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; | 
 | 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; | 
 | 		phy->ops.get_info = e1000e_get_phy_info_igp; | 
 | 		phy->ops.check_polarity = e1000_check_polarity_igp; | 
 | 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; | 
 | 		break; | 
 | 	case IFE_E_PHY_ID: | 
 | 	case IFE_PLUS_E_PHY_ID: | 
 | 	case IFE_C_E_PHY_ID: | 
 | 		phy->type = e1000_phy_ife; | 
 | 		phy->autoneg_mask = E1000_ALL_NOT_GIG; | 
 | 		phy->ops.get_info = e1000_get_phy_info_ife; | 
 | 		phy->ops.check_polarity = e1000_check_polarity_ife; | 
 | 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; | 
 | 		break; | 
 | 	case BME1000_E_PHY_ID: | 
 | 		phy->type = e1000_phy_bm; | 
 | 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
 | 		phy->ops.read_reg = e1000e_read_phy_reg_bm; | 
 | 		phy->ops.write_reg = e1000e_write_phy_reg_bm; | 
 | 		phy->ops.commit = e1000e_phy_sw_reset; | 
 | 		phy->ops.get_info = e1000e_get_phy_info_m88; | 
 | 		phy->ops.check_polarity = e1000_check_polarity_m88; | 
 | 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; | 
 | 		break; | 
 | 	default: | 
 | 		return -E1000_ERR_PHY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Initialize family-specific NVM parameters and function | 
 |  *  pointers. | 
 |  **/ | 
 | static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u32 gfpreg, sector_base_addr, sector_end_addr; | 
 | 	u16 i; | 
 | 	u32 nvm_size; | 
 |  | 
 | 	nvm->type = e1000_nvm_flash_sw; | 
 |  | 
 | 	if (hw->mac.type >= e1000_pch_spt) { | 
 | 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the | 
 | 		 * STRAP register. This is because in SPT the GbE Flash region | 
 | 		 * is no longer accessed through the flash registers. Instead, | 
 | 		 * the mechanism has changed, and the Flash region access | 
 | 		 * registers are now implemented in GbE memory space. | 
 | 		 */ | 
 | 		nvm->flash_base_addr = 0; | 
 | 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) | 
 | 		    * NVM_SIZE_MULTIPLIER; | 
 | 		nvm->flash_bank_size = nvm_size / 2; | 
 | 		/* Adjust to word count */ | 
 | 		nvm->flash_bank_size /= sizeof(u16); | 
 | 		/* Set the base address for flash register access */ | 
 | 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; | 
 | 	} else { | 
 | 		/* Can't read flash registers if register set isn't mapped. */ | 
 | 		if (!hw->flash_address) { | 
 | 			e_dbg("ERROR: Flash registers not mapped\n"); | 
 | 			return -E1000_ERR_CONFIG; | 
 | 		} | 
 |  | 
 | 		gfpreg = er32flash(ICH_FLASH_GFPREG); | 
 |  | 
 | 		/* sector_X_addr is a "sector"-aligned address (4096 bytes) | 
 | 		 * Add 1 to sector_end_addr since this sector is included in | 
 | 		 * the overall size. | 
 | 		 */ | 
 | 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; | 
 | 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; | 
 |  | 
 | 		/* flash_base_addr is byte-aligned */ | 
 | 		nvm->flash_base_addr = sector_base_addr | 
 | 		    << FLASH_SECTOR_ADDR_SHIFT; | 
 |  | 
 | 		/* find total size of the NVM, then cut in half since the total | 
 | 		 * size represents two separate NVM banks. | 
 | 		 */ | 
 | 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) | 
 | 					<< FLASH_SECTOR_ADDR_SHIFT); | 
 | 		nvm->flash_bank_size /= 2; | 
 | 		/* Adjust to word count */ | 
 | 		nvm->flash_bank_size /= sizeof(u16); | 
 | 	} | 
 |  | 
 | 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; | 
 |  | 
 | 	/* Clear shadow ram */ | 
 | 	for (i = 0; i < nvm->word_size; i++) { | 
 | 		dev_spec->shadow_ram[i].modified = false; | 
 | 		dev_spec->shadow_ram[i].value = 0xFFFF; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Initialize family-specific MAC parameters and function | 
 |  *  pointers. | 
 |  **/ | 
 | static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 |  | 
 | 	/* Set media type function pointer */ | 
 | 	hw->phy.media_type = e1000_media_type_copper; | 
 |  | 
 | 	/* Set mta register count */ | 
 | 	mac->mta_reg_count = 32; | 
 | 	/* Set rar entry count */ | 
 | 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; | 
 | 	if (mac->type == e1000_ich8lan) | 
 | 		mac->rar_entry_count--; | 
 | 	/* FWSM register */ | 
 | 	mac->has_fwsm = true; | 
 | 	/* ARC subsystem not supported */ | 
 | 	mac->arc_subsystem_valid = false; | 
 | 	/* Adaptive IFS supported */ | 
 | 	mac->adaptive_ifs = true; | 
 |  | 
 | 	/* LED and other operations */ | 
 | 	switch (mac->type) { | 
 | 	case e1000_ich8lan: | 
 | 	case e1000_ich9lan: | 
 | 	case e1000_ich10lan: | 
 | 		/* check management mode */ | 
 | 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; | 
 | 		/* ID LED init */ | 
 | 		mac->ops.id_led_init = e1000e_id_led_init_generic; | 
 | 		/* blink LED */ | 
 | 		mac->ops.blink_led = e1000e_blink_led_generic; | 
 | 		/* setup LED */ | 
 | 		mac->ops.setup_led = e1000e_setup_led_generic; | 
 | 		/* cleanup LED */ | 
 | 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; | 
 | 		/* turn on/off LED */ | 
 | 		mac->ops.led_on = e1000_led_on_ich8lan; | 
 | 		mac->ops.led_off = e1000_led_off_ich8lan; | 
 | 		break; | 
 | 	case e1000_pch2lan: | 
 | 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; | 
 | 		mac->ops.rar_set = e1000_rar_set_pch2lan; | 
 | 		fallthrough; | 
 | 	case e1000_pch_lpt: | 
 | 	case e1000_pch_spt: | 
 | 	case e1000_pch_cnp: | 
 | 	case e1000_pch_tgp: | 
 | 	case e1000_pch_adp: | 
 | 	case e1000_pch_mtp: | 
 | 	case e1000_pch_lnp: | 
 | 	case e1000_pch_ptp: | 
 | 	case e1000_pch_nvp: | 
 | 	case e1000_pchlan: | 
 | 		/* check management mode */ | 
 | 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; | 
 | 		/* ID LED init */ | 
 | 		mac->ops.id_led_init = e1000_id_led_init_pchlan; | 
 | 		/* setup LED */ | 
 | 		mac->ops.setup_led = e1000_setup_led_pchlan; | 
 | 		/* cleanup LED */ | 
 | 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan; | 
 | 		/* turn on/off LED */ | 
 | 		mac->ops.led_on = e1000_led_on_pchlan; | 
 | 		mac->ops.led_off = e1000_led_off_pchlan; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (mac->type >= e1000_pch_lpt) { | 
 | 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; | 
 | 		mac->ops.rar_set = e1000_rar_set_pch_lpt; | 
 | 		mac->ops.setup_physical_interface = | 
 | 		    e1000_setup_copper_link_pch_lpt; | 
 | 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; | 
 | 	} | 
 |  | 
 | 	/* Enable PCS Lock-loss workaround for ICH8 */ | 
 | 	if (mac->type == e1000_ich8lan) | 
 | 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  __e1000_access_emi_reg_locked - Read/write EMI register | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @address: EMI address to program | 
 |  *  @data: pointer to value to read/write from/to the EMI address | 
 |  *  @read: boolean flag to indicate read or write | 
 |  * | 
 |  *  This helper function assumes the SW/FW/HW Semaphore is already acquired. | 
 |  **/ | 
 | static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, | 
 | 					 u16 *data, bool read) | 
 | { | 
 | 	s32 ret_val; | 
 |  | 
 | 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if (read) | 
 | 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); | 
 | 	else | 
 | 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_emi_reg_locked - Read Extended Management Interface register | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @addr: EMI address to program | 
 |  *  @data: value to be read from the EMI address | 
 |  * | 
 |  *  Assumes the SW/FW/HW Semaphore is already acquired. | 
 |  **/ | 
 | s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) | 
 | { | 
 | 	return __e1000_access_emi_reg_locked(hw, addr, data, true); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_write_emi_reg_locked - Write Extended Management Interface register | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @addr: EMI address to program | 
 |  *  @data: value to be written to the EMI address | 
 |  * | 
 |  *  Assumes the SW/FW/HW Semaphore is already acquired. | 
 |  **/ | 
 | s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) | 
 | { | 
 | 	return __e1000_access_emi_reg_locked(hw, addr, &data, false); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_eee_pchlan - Enable/disable EEE support | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of | 
 |  *  the link and the EEE capabilities of the link partner.  The LPI Control | 
 |  *  register bits will remain set only if/when link is up. | 
 |  * | 
 |  *  EEE LPI must not be asserted earlier than one second after link is up. | 
 |  *  On 82579, EEE LPI should not be enabled until such time otherwise there | 
 |  *  can be link issues with some switches.  Other devices can have EEE LPI | 
 |  *  enabled immediately upon link up since they have a timer in hardware which | 
 |  *  prevents LPI from being asserted too early. | 
 |  **/ | 
 | s32 e1000_set_eee_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	s32 ret_val; | 
 | 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; | 
 |  | 
 | 	switch (hw->phy.type) { | 
 | 	case e1000_phy_82579: | 
 | 		lpa = I82579_EEE_LP_ABILITY; | 
 | 		pcs_status = I82579_EEE_PCS_STATUS; | 
 | 		adv_addr = I82579_EEE_ADVERTISEMENT; | 
 | 		break; | 
 | 	case e1000_phy_i217: | 
 | 		lpa = I217_EEE_LP_ABILITY; | 
 | 		pcs_status = I217_EEE_PCS_STATUS; | 
 | 		adv_addr = I217_EEE_ADVERTISEMENT; | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	/* Clear bits that enable EEE in various speeds */ | 
 | 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; | 
 |  | 
 | 	/* Enable EEE if not disabled by user */ | 
 | 	if (!dev_spec->eee_disable) { | 
 | 		/* Save off link partner's EEE ability */ | 
 | 		ret_val = e1000_read_emi_reg_locked(hw, lpa, | 
 | 						    &dev_spec->eee_lp_ability); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		/* Read EEE advertisement */ | 
 | 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		/* Enable EEE only for speeds in which the link partner is | 
 | 		 * EEE capable and for which we advertise EEE. | 
 | 		 */ | 
 | 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) | 
 | 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; | 
 |  | 
 | 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { | 
 | 			e1e_rphy_locked(hw, MII_LPA, &data); | 
 | 			if (data & LPA_100FULL) | 
 | 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; | 
 | 			else | 
 | 				/* EEE is not supported in 100Half, so ignore | 
 | 				 * partner's EEE in 100 ability if full-duplex | 
 | 				 * is not advertised. | 
 | 				 */ | 
 | 				dev_spec->eee_lp_ability &= | 
 | 				    ~I82579_EEE_100_SUPPORTED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (hw->phy.type == e1000_phy_82579) { | 
 | 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, | 
 | 						    &data); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		data &= ~I82579_LPI_100_PLL_SHUT; | 
 | 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, | 
 | 						     data); | 
 | 	} | 
 |  | 
 | 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ | 
 | 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP | 
 |  *  @hw:   pointer to the HW structure | 
 |  *  @link: link up bool flag | 
 |  * | 
 |  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications | 
 |  *  preventing further DMA write requests.  Workaround the issue by disabling | 
 |  *  the de-assertion of the clock request when in 1Gpbs mode. | 
 |  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link | 
 |  *  speeds in order to avoid Tx hangs. | 
 |  **/ | 
 | static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) | 
 | { | 
 | 	u32 fextnvm6 = er32(FEXTNVM6); | 
 | 	u32 status = er32(STATUS); | 
 | 	s32 ret_val = 0; | 
 | 	u16 reg; | 
 |  | 
 | 	if (link && (status & E1000_STATUS_SPEED_1000)) { | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		ret_val = | 
 | 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, | 
 | 						®); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		ret_val = | 
 | 		    e1000e_write_kmrn_reg_locked(hw, | 
 | 						 E1000_KMRNCTRLSTA_K1_CONFIG, | 
 | 						 reg & | 
 | 						 ~E1000_KMRNCTRLSTA_K1_ENABLE); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		usleep_range(10, 20); | 
 |  | 
 | 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); | 
 |  | 
 | 		ret_val = | 
 | 		    e1000e_write_kmrn_reg_locked(hw, | 
 | 						 E1000_KMRNCTRLSTA_K1_CONFIG, | 
 | 						 reg); | 
 | release: | 
 | 		hw->phy.ops.release(hw); | 
 | 	} else { | 
 | 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */ | 
 | 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; | 
 |  | 
 | 		if ((hw->phy.revision > 5) || !link || | 
 | 		    ((status & E1000_STATUS_SPEED_100) && | 
 | 		     (status & E1000_STATUS_FD))) | 
 | 			goto update_fextnvm6; | 
 |  | 
 | 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		/* Clear link status transmit timeout */ | 
 | 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; | 
 |  | 
 | 		if (status & E1000_STATUS_SPEED_100) { | 
 | 			/* Set inband Tx timeout to 5x10us for 100Half */ | 
 | 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; | 
 |  | 
 | 			/* Do not extend the K1 entry latency for 100Half */ | 
 | 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; | 
 | 		} else { | 
 | 			/* Set inband Tx timeout to 50x10us for 10Full/Half */ | 
 | 			reg |= 50 << | 
 | 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; | 
 |  | 
 | 			/* Extend the K1 entry latency for 10 Mbps */ | 
 | 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; | 
 | 		} | 
 |  | 
 | 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | update_fextnvm6: | 
 | 		ew32(FEXTNVM6, fextnvm6); | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_platform_pm_pch_lpt - Set platform power management values | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @link: bool indicating link status | 
 |  * | 
 |  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" | 
 |  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed | 
 |  *  when link is up (which must not exceed the maximum latency supported | 
 |  *  by the platform), otherwise specify there is no LTR requirement. | 
 |  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop | 
 |  *  latencies in the LTR Extended Capability Structure in the PCIe Extended | 
 |  *  Capability register set, on this device LTR is set by writing the | 
 |  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and | 
 |  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) | 
 |  *  message to the PMC. | 
 |  **/ | 
 | static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) | 
 | { | 
 | 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | | 
 | 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; | 
 | 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */ | 
 | 	u32 lat_enc_d = 0;	/* latency decoded */ | 
 | 	u16 lat_enc = 0;	/* latency encoded */ | 
 |  | 
 | 	if (link) { | 
 | 		u16 speed, duplex, scale = 0; | 
 | 		u16 max_snoop, max_nosnoop; | 
 | 		u16 max_ltr_enc;	/* max LTR latency encoded */ | 
 | 		u64 value; | 
 | 		u32 rxa; | 
 |  | 
 | 		if (!hw->adapter->max_frame_size) { | 
 | 			e_dbg("max_frame_size not set.\n"); | 
 | 			return -E1000_ERR_CONFIG; | 
 | 		} | 
 |  | 
 | 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex); | 
 | 		if (!speed) { | 
 | 			e_dbg("Speed not set.\n"); | 
 | 			return -E1000_ERR_CONFIG; | 
 | 		} | 
 |  | 
 | 		/* Rx Packet Buffer Allocation size (KB) */ | 
 | 		rxa = er32(PBA) & E1000_PBA_RXA_MASK; | 
 |  | 
 | 		/* Determine the maximum latency tolerated by the device. | 
 | 		 * | 
 | 		 * Per the PCIe spec, the tolerated latencies are encoded as | 
 | 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by | 
 | 		 * a 10-bit value (0-1023) to provide a range from 1 ns to | 
 | 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns, | 
 | 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns. | 
 | 		 */ | 
 | 		rxa *= 512; | 
 | 		value = (rxa > hw->adapter->max_frame_size) ? | 
 | 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) : | 
 | 			0; | 
 |  | 
 | 		while (value > PCI_LTR_VALUE_MASK) { | 
 | 			scale++; | 
 | 			value = DIV_ROUND_UP(value, BIT(5)); | 
 | 		} | 
 | 		if (scale > E1000_LTRV_SCALE_MAX) { | 
 | 			e_dbg("Invalid LTR latency scale %d\n", scale); | 
 | 			return -E1000_ERR_CONFIG; | 
 | 		} | 
 | 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); | 
 |  | 
 | 		/* Determine the maximum latency tolerated by the platform */ | 
 | 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, | 
 | 				     &max_snoop); | 
 | 		pci_read_config_word(hw->adapter->pdev, | 
 | 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); | 
 | 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); | 
 |  | 
 | 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) * | 
 | 			     (1U << (E1000_LTRV_SCALE_FACTOR * | 
 | 			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc))); | 
 |  | 
 | 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) * | 
 | 			(1U << (E1000_LTRV_SCALE_FACTOR * | 
 | 				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc))); | 
 |  | 
 | 		if (lat_enc_d > max_ltr_enc_d) | 
 | 			lat_enc = max_ltr_enc; | 
 | 	} | 
 |  | 
 | 	/* Set Snoop and No-Snoop latencies the same */ | 
 | 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); | 
 | 	ew32(LTRV, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode. | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already | 
 |  *  acquired. | 
 |  * | 
 |  * Return: 0 on success, negative errno on failure. | 
 |  **/ | 
 | static s32 e1000e_force_smbus(struct e1000_hw *hw) | 
 | { | 
 | 	u16 smb_ctrl = 0; | 
 | 	u32 ctrl_ext; | 
 | 	s32 ret_val; | 
 |  | 
 | 	/* Switching PHY interface always returns MDI error | 
 | 	 * so disable retry mechanism to avoid wasting time | 
 | 	 */ | 
 | 	e1000e_disable_phy_retry(hw); | 
 |  | 
 | 	/* Force SMBus mode in the PHY */ | 
 | 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl); | 
 | 	if (ret_val) { | 
 | 		e1000e_enable_phy_retry(hw); | 
 | 		return ret_val; | 
 | 	} | 
 |  | 
 | 	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS; | 
 | 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl); | 
 |  | 
 | 	e1000e_enable_phy_retry(hw); | 
 |  | 
 | 	/* Force SMBus mode in the MAC */ | 
 | 	ctrl_ext = er32(CTRL_EXT); | 
 | 	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS; | 
 | 	ew32(CTRL_EXT, ctrl_ext); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @to_sx: boolean indicating a system power state transition to Sx | 
 |  * | 
 |  *  When link is down, configure ULP mode to significantly reduce the power | 
 |  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the | 
 |  *  ME firmware to start the ULP configuration.  If not on an ME enabled | 
 |  *  system, configure the ULP mode by software. | 
 |  */ | 
 | s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) | 
 | { | 
 | 	u32 mac_reg; | 
 | 	s32 ret_val = 0; | 
 | 	u16 phy_reg; | 
 | 	u16 oem_reg = 0; | 
 |  | 
 | 	if ((hw->mac.type < e1000_pch_lpt) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || | 
 | 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) | 
 | 		return 0; | 
 |  | 
 | 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { | 
 | 		/* Request ME configure ULP mode in the PHY */ | 
 | 		mac_reg = er32(H2ME); | 
 | 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; | 
 | 		ew32(H2ME, mac_reg); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!to_sx) { | 
 | 		int i = 0; | 
 |  | 
 | 		/* Poll up to 5 seconds for Cable Disconnected indication */ | 
 | 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { | 
 | 			/* Bail if link is re-acquired */ | 
 | 			if (er32(STATUS) & E1000_STATUS_LU) | 
 | 				return -E1000_ERR_PHY; | 
 |  | 
 | 			if (i++ == 100) | 
 | 				break; | 
 |  | 
 | 			msleep(50); | 
 | 		} | 
 | 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", | 
 | 		      (er32(FEXT) & | 
 | 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); | 
 | 	} | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	ret_val = e1000e_force_smbus(hw); | 
 | 	if (ret_val) { | 
 | 		e_dbg("Failed to force SMBUS: %d\n", ret_val); | 
 | 		goto release; | 
 | 	} | 
 |  | 
 | 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable | 
 | 	 * LPLU and disable Gig speed when entering ULP | 
 | 	 */ | 
 | 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { | 
 | 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, | 
 | 						       &oem_reg); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		phy_reg = oem_reg; | 
 | 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; | 
 |  | 
 | 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, | 
 | 							phy_reg); | 
 |  | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 |  | 
 | 	/* Set Inband ULP Exit, Reset to SMBus mode and | 
 | 	 * Disable SMBus Release on PERST# in PHY | 
 | 	 */ | 
 | 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 | 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | | 
 | 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST); | 
 | 	if (to_sx) { | 
 | 		if (er32(WUFC) & E1000_WUFC_LNKC) | 
 | 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST; | 
 | 		else | 
 | 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; | 
 |  | 
 | 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; | 
 | 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; | 
 | 	} else { | 
 | 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; | 
 | 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; | 
 | 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; | 
 | 	} | 
 | 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); | 
 |  | 
 | 	/* Set Disable SMBus Release on PERST# in MAC */ | 
 | 	mac_reg = er32(FEXTNVM7); | 
 | 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; | 
 | 	ew32(FEXTNVM7, mac_reg); | 
 |  | 
 | 	/* Commit ULP changes in PHY by starting auto ULP configuration */ | 
 | 	phy_reg |= I218_ULP_CONFIG1_START; | 
 | 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); | 
 |  | 
 | 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && | 
 | 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) { | 
 | 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, | 
 | 							oem_reg); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 |  | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 | out: | 
 | 	if (ret_val) | 
 | 		e_dbg("Error in ULP enable flow: %d\n", ret_val); | 
 | 	else | 
 | 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @force: boolean indicating whether or not to force disabling ULP | 
 |  * | 
 |  *  Un-configure ULP mode when link is up, the system is transitioned from | 
 |  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled | 
 |  *  system, poll for an indication from ME that ULP has been un-configured. | 
 |  *  If not on an ME enabled system, un-configure the ULP mode by software. | 
 |  * | 
 |  *  During nominal operation, this function is called when link is acquired | 
 |  *  to disable ULP mode (force=false); otherwise, for example when unloading | 
 |  *  the driver or during Sx->S0 transitions, this is called with force=true | 
 |  *  to forcibly disable ULP. | 
 |  */ | 
 | static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u32 mac_reg; | 
 | 	u16 phy_reg; | 
 | 	int i = 0; | 
 |  | 
 | 	if ((hw->mac.type < e1000_pch_lpt) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || | 
 | 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) | 
 | 		return 0; | 
 |  | 
 | 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { | 
 | 		struct e1000_adapter *adapter = hw->adapter; | 
 | 		bool firmware_bug = false; | 
 |  | 
 | 		if (force) { | 
 | 			/* Request ME un-configure ULP mode in the PHY */ | 
 | 			mac_reg = er32(H2ME); | 
 | 			mac_reg &= ~E1000_H2ME_ULP; | 
 | 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; | 
 | 			ew32(H2ME, mac_reg); | 
 | 		} | 
 |  | 
 | 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE. | 
 | 		 * If this takes more than 1 second, show a warning indicating a | 
 | 		 * firmware bug | 
 | 		 */ | 
 | 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { | 
 | 			if (i++ == 250) { | 
 | 				ret_val = -E1000_ERR_PHY; | 
 | 				goto out; | 
 | 			} | 
 | 			if (i > 100 && !firmware_bug) | 
 | 				firmware_bug = true; | 
 |  | 
 | 			usleep_range(10000, 11000); | 
 | 		} | 
 | 		if (firmware_bug) | 
 | 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n", | 
 | 			       i * 10); | 
 | 		else | 
 | 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n", | 
 | 			      i * 10); | 
 |  | 
 | 		if (force) { | 
 | 			mac_reg = er32(H2ME); | 
 | 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; | 
 | 			ew32(H2ME, mac_reg); | 
 | 		} else { | 
 | 			/* Clear H2ME.ULP after ME ULP configuration */ | 
 | 			mac_reg = er32(H2ME); | 
 | 			mac_reg &= ~E1000_H2ME_ULP; | 
 | 			ew32(H2ME, mac_reg); | 
 | 		} | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (force) | 
 | 		/* Toggle LANPHYPC Value bit */ | 
 | 		e1000_toggle_lanphypc_pch_lpt(hw); | 
 |  | 
 | 	/* Switching PHY interface always returns MDI error | 
 | 	 * so disable retry mechanism to avoid wasting time | 
 | 	 */ | 
 | 	e1000e_disable_phy_retry(hw); | 
 |  | 
 | 	/* Unforce SMBus mode in PHY */ | 
 | 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); | 
 | 	if (ret_val) { | 
 | 		/* The MAC might be in PCIe mode, so temporarily force to | 
 | 		 * SMBus mode in order to access the PHY. | 
 | 		 */ | 
 | 		mac_reg = er32(CTRL_EXT); | 
 | 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; | 
 | 		ew32(CTRL_EXT, mac_reg); | 
 |  | 
 | 		msleep(50); | 
 |  | 
 | 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, | 
 | 						       &phy_reg); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 | 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; | 
 | 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); | 
 |  | 
 | 	e1000e_enable_phy_retry(hw); | 
 |  | 
 | 	/* Unforce SMBus mode in MAC */ | 
 | 	mac_reg = er32(CTRL_EXT); | 
 | 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; | 
 | 	ew32(CTRL_EXT, mac_reg); | 
 |  | 
 | 	/* When ULP mode was previously entered, K1 was disabled by the | 
 | 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP. | 
 | 	 */ | 
 | 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 | 	phy_reg |= HV_PM_CTRL_K1_ENABLE; | 
 | 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); | 
 |  | 
 | 	/* Clear ULP enabled configuration */ | 
 | 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 | 	phy_reg &= ~(I218_ULP_CONFIG1_IND | | 
 | 		     I218_ULP_CONFIG1_STICKY_ULP | | 
 | 		     I218_ULP_CONFIG1_RESET_TO_SMBUS | | 
 | 		     I218_ULP_CONFIG1_WOL_HOST | | 
 | 		     I218_ULP_CONFIG1_INBAND_EXIT | | 
 | 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC | | 
 | 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | | 
 | 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST); | 
 | 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); | 
 |  | 
 | 	/* Commit ULP changes by starting auto ULP configuration */ | 
 | 	phy_reg |= I218_ULP_CONFIG1_START; | 
 | 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); | 
 |  | 
 | 	/* Clear Disable SMBus Release on PERST# in MAC */ | 
 | 	mac_reg = er32(FEXTNVM7); | 
 | 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; | 
 | 	ew32(FEXTNVM7, mac_reg); | 
 |  | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 | 	if (force) { | 
 | 		e1000_phy_hw_reset(hw); | 
 | 		msleep(50); | 
 | 	} | 
 | out: | 
 | 	if (ret_val) | 
 | 		e_dbg("Error in ULP disable flow: %d\n", ret_val); | 
 | 	else | 
 | 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper) | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Checks to see of the link status of the hardware has changed.  If a | 
 |  *  change in link status has been detected, then we read the PHY registers | 
 |  *  to get the current speed/duplex if link exists. | 
 |  **/ | 
 | static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	s32 ret_val, tipg_reg = 0; | 
 | 	u16 emi_addr, emi_val = 0; | 
 | 	bool link; | 
 | 	u16 phy_reg; | 
 |  | 
 | 	/* We only want to go out to the PHY registers to see if Auto-Neg | 
 | 	 * has completed and/or if our link status has changed.  The | 
 | 	 * get_link_status flag is set upon receiving a Link Status | 
 | 	 * Change or Rx Sequence Error interrupt. | 
 | 	 */ | 
 | 	if (!mac->get_link_status) | 
 | 		return 0; | 
 | 	mac->get_link_status = false; | 
 |  | 
 | 	/* First we want to see if the MII Status Register reports | 
 | 	 * link.  If so, then we want to get the current speed/duplex | 
 | 	 * of the PHY. | 
 | 	 */ | 
 | 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (hw->mac.type == e1000_pchlan) { | 
 | 		ret_val = e1000_k1_gig_workaround_hv(hw, link); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* When connected at 10Mbps half-duplex, some parts are excessively | 
 | 	 * aggressive resulting in many collisions. To avoid this, increase | 
 | 	 * the IPG and reduce Rx latency in the PHY. | 
 | 	 */ | 
 | 	if ((hw->mac.type >= e1000_pch2lan) && link) { | 
 | 		u16 speed, duplex; | 
 |  | 
 | 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); | 
 | 		tipg_reg = er32(TIPG); | 
 | 		tipg_reg &= ~E1000_TIPG_IPGT_MASK; | 
 |  | 
 | 		if (duplex == HALF_DUPLEX && speed == SPEED_10) { | 
 | 			tipg_reg |= 0xFF; | 
 | 			/* Reduce Rx latency in analog PHY */ | 
 | 			emi_val = 0; | 
 | 		} else if (hw->mac.type >= e1000_pch_spt && | 
 | 			   duplex == FULL_DUPLEX && speed != SPEED_1000) { | 
 | 			tipg_reg |= 0xC; | 
 | 			emi_val = 1; | 
 | 		} else { | 
 |  | 
 | 			/* Roll back the default values */ | 
 | 			tipg_reg |= 0x08; | 
 | 			emi_val = 1; | 
 | 		} | 
 |  | 
 | 		ew32(TIPG, tipg_reg); | 
 |  | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		if (hw->mac.type == e1000_pch2lan) | 
 | 			emi_addr = I82579_RX_CONFIG; | 
 | 		else | 
 | 			emi_addr = I217_RX_CONFIG; | 
 | 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); | 
 |  | 
 | 		if (hw->mac.type >= e1000_pch_lpt) { | 
 | 			u16 phy_reg; | 
 |  | 
 | 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); | 
 | 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; | 
 | 			if (speed == SPEED_100 || speed == SPEED_10) | 
 | 				phy_reg |= 0x3E8; | 
 | 			else | 
 | 				phy_reg |= 0xFA; | 
 | 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); | 
 |  | 
 | 			if (speed == SPEED_1000) { | 
 | 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, | 
 | 							    &phy_reg); | 
 |  | 
 | 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ; | 
 |  | 
 | 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, | 
 | 							     phy_reg); | 
 | 			} | 
 | 		} | 
 | 		hw->phy.ops.release(hw); | 
 |  | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		if (hw->mac.type >= e1000_pch_spt) { | 
 | 			u16 data; | 
 | 			u16 ptr_gap; | 
 |  | 
 | 			if (speed == SPEED_1000) { | 
 | 				ret_val = hw->phy.ops.acquire(hw); | 
 | 				if (ret_val) | 
 | 					goto out; | 
 |  | 
 | 				ret_val = e1e_rphy_locked(hw, | 
 | 							  PHY_REG(776, 20), | 
 | 							  &data); | 
 | 				if (ret_val) { | 
 | 					hw->phy.ops.release(hw); | 
 | 					goto out; | 
 | 				} | 
 |  | 
 | 				ptr_gap = (data & (0x3FF << 2)) >> 2; | 
 | 				if (ptr_gap < 0x18) { | 
 | 					data &= ~(0x3FF << 2); | 
 | 					data |= (0x18 << 2); | 
 | 					ret_val = | 
 | 					    e1e_wphy_locked(hw, | 
 | 							    PHY_REG(776, 20), | 
 | 							    data); | 
 | 				} | 
 | 				hw->phy.ops.release(hw); | 
 | 				if (ret_val) | 
 | 					goto out; | 
 | 			} else { | 
 | 				ret_val = hw->phy.ops.acquire(hw); | 
 | 				if (ret_val) | 
 | 					goto out; | 
 |  | 
 | 				ret_val = e1e_wphy_locked(hw, | 
 | 							  PHY_REG(776, 20), | 
 | 							  0xC023); | 
 | 				hw->phy.ops.release(hw); | 
 | 				if (ret_val) | 
 | 					goto out; | 
 |  | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* I217 Packet Loss issue: | 
 | 	 * ensure that FEXTNVM4 Beacon Duration is set correctly | 
 | 	 * on power up. | 
 | 	 * Set the Beacon Duration for I217 to 8 usec | 
 | 	 */ | 
 | 	if (hw->mac.type >= e1000_pch_lpt) { | 
 | 		u32 mac_reg; | 
 |  | 
 | 		mac_reg = er32(FEXTNVM4); | 
 | 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; | 
 | 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; | 
 | 		ew32(FEXTNVM4, mac_reg); | 
 | 	} | 
 |  | 
 | 	/* Work-around I218 hang issue */ | 
 | 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || | 
 | 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { | 
 | 		ret_val = e1000_k1_workaround_lpt_lp(hw, link); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 	} | 
 | 	if (hw->mac.type >= e1000_pch_lpt) { | 
 | 		/* Set platform power management values for | 
 | 		 * Latency Tolerance Reporting (LTR) | 
 | 		 */ | 
 | 		ret_val = e1000_platform_pm_pch_lpt(hw, link); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* Clear link partner's EEE ability */ | 
 | 	hw->dev_spec.ich8lan.eee_lp_ability = 0; | 
 |  | 
 | 	if (hw->mac.type >= e1000_pch_lpt) { | 
 | 		u32 fextnvm6 = er32(FEXTNVM6); | 
 |  | 
 | 		if (hw->mac.type == e1000_pch_spt) { | 
 | 			/* FEXTNVM6 K1-off workaround - for SPT only */ | 
 | 			u32 pcieanacfg = er32(PCIEANACFG); | 
 |  | 
 | 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) | 
 | 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; | 
 | 			else | 
 | 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; | 
 | 		} | 
 |  | 
 | 		ew32(FEXTNVM6, fextnvm6); | 
 | 	} | 
 |  | 
 | 	if (!link) | 
 | 		goto out; | 
 |  | 
 | 	switch (hw->mac.type) { | 
 | 	case e1000_pch2lan: | 
 | 		ret_val = e1000_k1_workaround_lv(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		fallthrough; | 
 | 	case e1000_pchlan: | 
 | 		if (hw->phy.type == e1000_phy_82578) { | 
 | 			ret_val = e1000_link_stall_workaround_hv(hw); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} | 
 |  | 
 | 		/* Workaround for PCHx parts in half-duplex: | 
 | 		 * Set the number of preambles removed from the packet | 
 | 		 * when it is passed from the PHY to the MAC to prevent | 
 | 		 * the MAC from misinterpreting the packet type. | 
 | 		 */ | 
 | 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); | 
 | 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; | 
 |  | 
 | 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) | 
 | 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); | 
 |  | 
 | 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Check if there was DownShift, must be checked | 
 | 	 * immediately after link-up | 
 | 	 */ | 
 | 	e1000e_check_downshift(hw); | 
 |  | 
 | 	/* Enable/Disable EEE after link up */ | 
 | 	if (hw->phy.type > e1000_phy_82579) { | 
 | 		ret_val = e1000_set_eee_pchlan(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	/* If we are forcing speed/duplex, then we simply return since | 
 | 	 * we have already determined whether we have link or not. | 
 | 	 */ | 
 | 	if (!mac->autoneg) | 
 | 		return -E1000_ERR_CONFIG; | 
 |  | 
 | 	/* Auto-Neg is enabled.  Auto Speed Detection takes care | 
 | 	 * of MAC speed/duplex configuration.  So we only need to | 
 | 	 * configure Collision Distance in the MAC. | 
 | 	 */ | 
 | 	mac->ops.config_collision_dist(hw); | 
 |  | 
 | 	/* Configure Flow Control now that Auto-Neg has completed. | 
 | 	 * First, we need to restore the desired flow control | 
 | 	 * settings because we may have had to re-autoneg with a | 
 | 	 * different link partner. | 
 | 	 */ | 
 | 	ret_val = e1000e_config_fc_after_link_up(hw); | 
 | 	if (ret_val) | 
 | 		e_dbg("Error configuring flow control\n"); | 
 |  | 
 | 	return ret_val; | 
 |  | 
 | out: | 
 | 	mac->get_link_status = true; | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	s32 rc; | 
 |  | 
 | 	rc = e1000_init_mac_params_ich8lan(hw); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	rc = e1000_init_nvm_params_ich8lan(hw); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	switch (hw->mac.type) { | 
 | 	case e1000_ich8lan: | 
 | 	case e1000_ich9lan: | 
 | 	case e1000_ich10lan: | 
 | 		rc = e1000_init_phy_params_ich8lan(hw); | 
 | 		break; | 
 | 	case e1000_pchlan: | 
 | 	case e1000_pch2lan: | 
 | 	case e1000_pch_lpt: | 
 | 	case e1000_pch_spt: | 
 | 	case e1000_pch_cnp: | 
 | 	case e1000_pch_tgp: | 
 | 	case e1000_pch_adp: | 
 | 	case e1000_pch_mtp: | 
 | 	case e1000_pch_lnp: | 
 | 	case e1000_pch_ptp: | 
 | 	case e1000_pch_nvp: | 
 | 		rc = e1000_init_phy_params_pchlan(hw); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or | 
 | 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). | 
 | 	 */ | 
 | 	if ((adapter->hw.phy.type == e1000_phy_ife) || | 
 | 	    ((adapter->hw.mac.type >= e1000_pch2lan) && | 
 | 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { | 
 | 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; | 
 | 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; | 
 |  | 
 | 		hw->mac.ops.blink_led = NULL; | 
 | 	} | 
 |  | 
 | 	if ((adapter->hw.mac.type == e1000_ich8lan) && | 
 | 	    (adapter->hw.phy.type != e1000_phy_ife)) | 
 | 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; | 
 |  | 
 | 	/* Enable workaround for 82579 w/ ME enabled */ | 
 | 	if ((adapter->hw.mac.type == e1000_pch2lan) && | 
 | 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | 
 | 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(nvm_mutex); | 
 |  | 
 | /** | 
 |  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Acquires the mutex for performing NVM operations. | 
 |  **/ | 
 | static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) | 
 | { | 
 | 	mutex_lock(&nvm_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_release_nvm_ich8lan - Release NVM mutex | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Releases the mutex used while performing NVM operations. | 
 |  **/ | 
 | static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) | 
 | { | 
 | 	mutex_unlock(&nvm_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_acquire_swflag_ich8lan - Acquire software control flag | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Acquires the software control flag for performing PHY and select | 
 |  *  MAC CSR accesses. | 
 |  **/ | 
 | static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; | 
 | 	s32 ret_val = 0; | 
 |  | 
 | 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, | 
 | 			     &hw->adapter->state)) { | 
 | 		e_dbg("contention for Phy access\n"); | 
 | 		return -E1000_ERR_PHY; | 
 | 	} | 
 |  | 
 | 	while (timeout) { | 
 | 		extcnf_ctrl = er32(EXTCNF_CTRL); | 
 | 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) | 
 | 			break; | 
 |  | 
 | 		mdelay(1); | 
 | 		timeout--; | 
 | 	} | 
 |  | 
 | 	if (!timeout) { | 
 | 		e_dbg("SW has already locked the resource.\n"); | 
 | 		ret_val = -E1000_ERR_CONFIG; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	timeout = SW_FLAG_TIMEOUT; | 
 |  | 
 | 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | 
 | 	ew32(EXTCNF_CTRL, extcnf_ctrl); | 
 |  | 
 | 	while (timeout) { | 
 | 		extcnf_ctrl = er32(EXTCNF_CTRL); | 
 | 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | 
 | 			break; | 
 |  | 
 | 		mdelay(1); | 
 | 		timeout--; | 
 | 	} | 
 |  | 
 | 	if (!timeout) { | 
 | 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", | 
 | 		      er32(FWSM), extcnf_ctrl); | 
 | 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | 
 | 		ew32(EXTCNF_CTRL, extcnf_ctrl); | 
 | 		ret_val = -E1000_ERR_CONFIG; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (ret_val) | 
 | 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_release_swflag_ich8lan - Release software control flag | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Releases the software control flag for performing PHY and select | 
 |  *  MAC CSR accesses. | 
 |  **/ | 
 | static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 extcnf_ctrl; | 
 |  | 
 | 	extcnf_ctrl = er32(EXTCNF_CTRL); | 
 |  | 
 | 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { | 
 | 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | 
 | 		ew32(EXTCNF_CTRL, extcnf_ctrl); | 
 | 	} else { | 
 | 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); | 
 | 	} | 
 |  | 
 | 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_mng_mode_ich8lan - Checks management mode | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  This checks if the adapter has any manageability enabled. | 
 |  *  This is a function pointer entry point only called by read/write | 
 |  *  routines for the PHY and NVM parts. | 
 |  **/ | 
 | static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 fwsm; | 
 |  | 
 | 	fwsm = er32(FWSM); | 
 | 	return (fwsm & E1000_ICH_FWSM_FW_VALID) && | 
 | 		((fwsm & E1000_FWSM_MODE_MASK) == | 
 | 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_mng_mode_pchlan - Checks management mode | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  This checks if the adapter has iAMT enabled. | 
 |  *  This is a function pointer entry point only called by read/write | 
 |  *  routines for the PHY and NVM parts. | 
 |  **/ | 
 | static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 fwsm; | 
 |  | 
 | 	fwsm = er32(FWSM); | 
 | 	return (fwsm & E1000_ICH_FWSM_FW_VALID) && | 
 | 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_rar_set_pch2lan - Set receive address register | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @addr: pointer to the receive address | 
 |  *  @index: receive address array register | 
 |  * | 
 |  *  Sets the receive address array register at index to the address passed | 
 |  *  in by addr.  For 82579, RAR[0] is the base address register that is to | 
 |  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME). | 
 |  *  Use SHRA[0-3] in place of those reserved for ME. | 
 |  **/ | 
 | static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) | 
 | { | 
 | 	u32 rar_low, rar_high; | 
 |  | 
 | 	/* HW expects these in little endian so we reverse the byte order | 
 | 	 * from network order (big endian) to little endian | 
 | 	 */ | 
 | 	rar_low = ((u32)addr[0] | | 
 | 		   ((u32)addr[1] << 8) | | 
 | 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); | 
 |  | 
 | 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); | 
 |  | 
 | 	/* If MAC address zero, no need to set the AV bit */ | 
 | 	if (rar_low || rar_high) | 
 | 		rar_high |= E1000_RAH_AV; | 
 |  | 
 | 	if (index == 0) { | 
 | 		ew32(RAL(index), rar_low); | 
 | 		e1e_flush(); | 
 | 		ew32(RAH(index), rar_high); | 
 | 		e1e_flush(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* RAR[1-6] are owned by manageability.  Skip those and program the | 
 | 	 * next address into the SHRA register array. | 
 | 	 */ | 
 | 	if (index < (u32)(hw->mac.rar_entry_count)) { | 
 | 		s32 ret_val; | 
 |  | 
 | 		ret_val = e1000_acquire_swflag_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		ew32(SHRAL(index - 1), rar_low); | 
 | 		e1e_flush(); | 
 | 		ew32(SHRAH(index - 1), rar_high); | 
 | 		e1e_flush(); | 
 |  | 
 | 		e1000_release_swflag_ich8lan(hw); | 
 |  | 
 | 		/* verify the register updates */ | 
 | 		if ((er32(SHRAL(index - 1)) == rar_low) && | 
 | 		    (er32(SHRAH(index - 1)) == rar_high)) | 
 | 			return 0; | 
 |  | 
 | 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", | 
 | 		      (index - 1), er32(FWSM)); | 
 | 	} | 
 |  | 
 | out: | 
 | 	e_dbg("Failed to write receive address at index %d\n", index); | 
 | 	return -E1000_ERR_CONFIG; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Get the number of available receive registers that the Host can | 
 |  *  program. SHRA[0-10] are the shared receive address registers | 
 |  *  that are shared between the Host and manageability engine (ME). | 
 |  *  ME can reserve any number of addresses and the host needs to be | 
 |  *  able to tell how many available registers it has access to. | 
 |  **/ | 
 | static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) | 
 | { | 
 | 	u32 wlock_mac; | 
 | 	u32 num_entries; | 
 |  | 
 | 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; | 
 | 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; | 
 |  | 
 | 	switch (wlock_mac) { | 
 | 	case 0: | 
 | 		/* All SHRA[0..10] and RAR[0] available */ | 
 | 		num_entries = hw->mac.rar_entry_count; | 
 | 		break; | 
 | 	case 1: | 
 | 		/* Only RAR[0] available */ | 
 | 		num_entries = 1; | 
 | 		break; | 
 | 	default: | 
 | 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ | 
 | 		num_entries = wlock_mac + 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return num_entries; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_rar_set_pch_lpt - Set receive address registers | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @addr: pointer to the receive address | 
 |  *  @index: receive address array register | 
 |  * | 
 |  *  Sets the receive address register array at index to the address passed | 
 |  *  in by addr. For LPT, RAR[0] is the base address register that is to | 
 |  *  contain the MAC address. SHRA[0-10] are the shared receive address | 
 |  *  registers that are shared between the Host and manageability engine (ME). | 
 |  **/ | 
 | static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) | 
 | { | 
 | 	u32 rar_low, rar_high; | 
 | 	u32 wlock_mac; | 
 |  | 
 | 	/* HW expects these in little endian so we reverse the byte order | 
 | 	 * from network order (big endian) to little endian | 
 | 	 */ | 
 | 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | | 
 | 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); | 
 |  | 
 | 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); | 
 |  | 
 | 	/* If MAC address zero, no need to set the AV bit */ | 
 | 	if (rar_low || rar_high) | 
 | 		rar_high |= E1000_RAH_AV; | 
 |  | 
 | 	if (index == 0) { | 
 | 		ew32(RAL(index), rar_low); | 
 | 		e1e_flush(); | 
 | 		ew32(RAH(index), rar_high); | 
 | 		e1e_flush(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* The manageability engine (ME) can lock certain SHRAR registers that | 
 | 	 * it is using - those registers are unavailable for use. | 
 | 	 */ | 
 | 	if (index < hw->mac.rar_entry_count) { | 
 | 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; | 
 | 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; | 
 |  | 
 | 		/* Check if all SHRAR registers are locked */ | 
 | 		if (wlock_mac == 1) | 
 | 			goto out; | 
 |  | 
 | 		if ((wlock_mac == 0) || (index <= wlock_mac)) { | 
 | 			s32 ret_val; | 
 |  | 
 | 			ret_val = e1000_acquire_swflag_ich8lan(hw); | 
 |  | 
 | 			if (ret_val) | 
 | 				goto out; | 
 |  | 
 | 			ew32(SHRAL_PCH_LPT(index - 1), rar_low); | 
 | 			e1e_flush(); | 
 | 			ew32(SHRAH_PCH_LPT(index - 1), rar_high); | 
 | 			e1e_flush(); | 
 |  | 
 | 			e1000_release_swflag_ich8lan(hw); | 
 |  | 
 | 			/* verify the register updates */ | 
 | 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && | 
 | 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) | 
 | 				return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	e_dbg("Failed to write receive address at index %d\n", index); | 
 | 	return -E1000_ERR_CONFIG; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Checks if firmware is blocking the reset of the PHY. | 
 |  *  This is a function pointer entry point only called by | 
 |  *  reset routines. | 
 |  **/ | 
 | static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	bool blocked = false; | 
 | 	int i = 0; | 
 |  | 
 | 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && | 
 | 	       (i++ < 30)) | 
 | 		usleep_range(10000, 11000); | 
 | 	return blocked ? E1000_BLK_PHY_RESET : 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Assumes semaphore already acquired. | 
 |  * | 
 |  **/ | 
 | static s32 e1000_write_smbus_addr(struct e1000_hw *hw) | 
 | { | 
 | 	u16 phy_data; | 
 | 	u32 strap = er32(STRAP); | 
 | 	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap); | 
 | 	s32 ret_val; | 
 |  | 
 | 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; | 
 |  | 
 | 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	phy_data &= ~HV_SMB_ADDR_MASK; | 
 | 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); | 
 | 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; | 
 |  | 
 | 	if (hw->phy.type == e1000_phy_i217) { | 
 | 		/* Restore SMBus frequency */ | 
 | 		if (freq--) { | 
 | 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK; | 
 | 			phy_data |= (freq & BIT(0)) << | 
 | 			    HV_SMB_ADDR_FREQ_LOW_SHIFT; | 
 | 			phy_data |= (freq & BIT(1)) << | 
 | 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); | 
 | 		} else { | 
 | 			e_dbg("Unsupported SMB frequency in PHY\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration | 
 |  *  @hw:   pointer to the HW structure | 
 |  * | 
 |  *  SW should configure the LCD from the NVM extended configuration region | 
 |  *  as a workaround for certain parts. | 
 |  **/ | 
 | static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; | 
 | 	s32 ret_val = 0; | 
 | 	u16 word_addr, reg_data, reg_addr, phy_page = 0; | 
 |  | 
 | 	/* Initialize the PHY from the NVM on ICH platforms.  This | 
 | 	 * is needed due to an issue where the NVM configuration is | 
 | 	 * not properly autoloaded after power transitions. | 
 | 	 * Therefore, after each PHY reset, we will load the | 
 | 	 * configuration data out of the NVM manually. | 
 | 	 */ | 
 | 	switch (hw->mac.type) { | 
 | 	case e1000_ich8lan: | 
 | 		if (phy->type != e1000_phy_igp_3) | 
 | 			return ret_val; | 
 |  | 
 | 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || | 
 | 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { | 
 | 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; | 
 | 			break; | 
 | 		} | 
 | 		fallthrough; | 
 | 	case e1000_pchlan: | 
 | 	case e1000_pch2lan: | 
 | 	case e1000_pch_lpt: | 
 | 	case e1000_pch_spt: | 
 | 	case e1000_pch_cnp: | 
 | 	case e1000_pch_tgp: | 
 | 	case e1000_pch_adp: | 
 | 	case e1000_pch_mtp: | 
 | 	case e1000_pch_lnp: | 
 | 	case e1000_pch_ptp: | 
 | 	case e1000_pch_nvp: | 
 | 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; | 
 | 		break; | 
 | 	default: | 
 | 		return ret_val; | 
 | 	} | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	data = er32(FEXTNVM); | 
 | 	if (!(data & sw_cfg_mask)) | 
 | 		goto release; | 
 |  | 
 | 	/* Make sure HW does not configure LCD from PHY | 
 | 	 * extended configuration before SW configuration | 
 | 	 */ | 
 | 	data = er32(EXTCNF_CTRL); | 
 | 	if ((hw->mac.type < e1000_pch2lan) && | 
 | 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) | 
 | 		goto release; | 
 |  | 
 | 	cnf_size = er32(EXTCNF_SIZE); | 
 | 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; | 
 | 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; | 
 | 	if (!cnf_size) | 
 | 		goto release; | 
 |  | 
 | 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; | 
 | 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; | 
 |  | 
 | 	if (((hw->mac.type == e1000_pchlan) && | 
 | 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || | 
 | 	    (hw->mac.type > e1000_pchlan)) { | 
 | 		/* HW configures the SMBus address and LEDs when the | 
 | 		 * OEM and LCD Write Enable bits are set in the NVM. | 
 | 		 * When both NVM bits are cleared, SW will configure | 
 | 		 * them instead. | 
 | 		 */ | 
 | 		ret_val = e1000_write_smbus_addr(hw); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		data = er32(LEDCTL); | 
 | 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, | 
 | 							(u16)data); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 |  | 
 | 	/* Configure LCD from extended configuration region. */ | 
 |  | 
 | 	/* cnf_base_addr is in DWORD */ | 
 | 	word_addr = (u16)(cnf_base_addr << 1); | 
 |  | 
 | 	for (i = 0; i < cnf_size; i++) { | 
 | 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), | 
 | 					 1, ®_addr); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 		/* Save off the PHY page for future writes. */ | 
 | 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { | 
 | 			phy_page = reg_data; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		reg_addr &= PHY_REG_MASK; | 
 | 		reg_addr |= phy_page; | 
 |  | 
 | 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 |  | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_k1_gig_workaround_hv - K1 Si workaround | 
 |  *  @hw:   pointer to the HW structure | 
 |  *  @link: link up bool flag | 
 |  * | 
 |  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning | 
 |  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig | 
 |  *  If link is down, the function will restore the default K1 setting located | 
 |  *  in the NVM. | 
 |  **/ | 
 | static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u16 status_reg = 0; | 
 | 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; | 
 |  | 
 | 	if (hw->mac.type != e1000_pchlan) | 
 | 		return 0; | 
 |  | 
 | 	/* Wrap the whole flow with the sw flag */ | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ | 
 | 	if (link) { | 
 | 		if (hw->phy.type == e1000_phy_82578) { | 
 | 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, | 
 | 						  &status_reg); | 
 | 			if (ret_val) | 
 | 				goto release; | 
 |  | 
 | 			status_reg &= (BM_CS_STATUS_LINK_UP | | 
 | 				       BM_CS_STATUS_RESOLVED | | 
 | 				       BM_CS_STATUS_SPEED_MASK); | 
 |  | 
 | 			if (status_reg == (BM_CS_STATUS_LINK_UP | | 
 | 					   BM_CS_STATUS_RESOLVED | | 
 | 					   BM_CS_STATUS_SPEED_1000)) | 
 | 				k1_enable = false; | 
 | 		} | 
 |  | 
 | 		if (hw->phy.type == e1000_phy_82577) { | 
 | 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); | 
 | 			if (ret_val) | 
 | 				goto release; | 
 |  | 
 | 			status_reg &= (HV_M_STATUS_LINK_UP | | 
 | 				       HV_M_STATUS_AUTONEG_COMPLETE | | 
 | 				       HV_M_STATUS_SPEED_MASK); | 
 |  | 
 | 			if (status_reg == (HV_M_STATUS_LINK_UP | | 
 | 					   HV_M_STATUS_AUTONEG_COMPLETE | | 
 | 					   HV_M_STATUS_SPEED_1000)) | 
 | 				k1_enable = false; | 
 | 		} | 
 |  | 
 | 		/* Link stall fix for link up */ | 
 | 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 |  | 
 | 	} else { | 
 | 		/* Link stall fix for link down */ | 
 | 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 |  | 
 | 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); | 
 |  | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_configure_k1_ich8lan - Configure K1 power state | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @k1_enable: K1 state to configure | 
 |  * | 
 |  *  Configure the K1 power state based on the provided parameter. | 
 |  *  Assumes semaphore already acquired. | 
 |  * | 
 |  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) | 
 |  **/ | 
 | s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u32 ctrl_reg = 0; | 
 | 	u32 ctrl_ext = 0; | 
 | 	u32 reg = 0; | 
 | 	u16 kmrn_reg = 0; | 
 |  | 
 | 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, | 
 | 					      &kmrn_reg); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if (k1_enable) | 
 | 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; | 
 | 	else | 
 | 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; | 
 |  | 
 | 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, | 
 | 					       kmrn_reg); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	usleep_range(20, 40); | 
 | 	ctrl_ext = er32(CTRL_EXT); | 
 | 	ctrl_reg = er32(CTRL); | 
 |  | 
 | 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
 | 	reg |= E1000_CTRL_FRCSPD; | 
 | 	ew32(CTRL, reg); | 
 |  | 
 | 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); | 
 | 	e1e_flush(); | 
 | 	usleep_range(20, 40); | 
 | 	ew32(CTRL, ctrl_reg); | 
 | 	ew32(CTRL_EXT, ctrl_ext); | 
 | 	e1e_flush(); | 
 | 	usleep_range(20, 40); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration | 
 |  *  @hw:       pointer to the HW structure | 
 |  *  @d0_state: boolean if entering d0 or d3 device state | 
 |  * | 
 |  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are | 
 |  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit | 
 |  *  in NVM determines whether HW should configure LPLU and Gbe Disable. | 
 |  **/ | 
 | static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u32 mac_reg; | 
 | 	u16 oem_reg; | 
 |  | 
 | 	if (hw->mac.type < e1000_pchlan) | 
 | 		return ret_val; | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if (hw->mac.type == e1000_pchlan) { | 
 | 		mac_reg = er32(EXTCNF_CTRL); | 
 | 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) | 
 | 			goto release; | 
 | 	} | 
 |  | 
 | 	mac_reg = er32(FEXTNVM); | 
 | 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) | 
 | 		goto release; | 
 |  | 
 | 	mac_reg = er32(PHY_CTRL); | 
 |  | 
 | 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); | 
 |  | 
 | 	if (d0_state) { | 
 | 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) | 
 | 			oem_reg |= HV_OEM_BITS_GBE_DIS; | 
 |  | 
 | 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) | 
 | 			oem_reg |= HV_OEM_BITS_LPLU; | 
 | 	} else { | 
 | 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | | 
 | 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) | 
 | 			oem_reg |= HV_OEM_BITS_GBE_DIS; | 
 |  | 
 | 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | | 
 | 			       E1000_PHY_CTRL_NOND0A_LPLU)) | 
 | 			oem_reg |= HV_OEM_BITS_LPLU; | 
 | 	} | 
 |  | 
 | 	/* Set Restart auto-neg to activate the bits */ | 
 | 	if ((d0_state || (hw->mac.type != e1000_pchlan)) && | 
 | 	    !hw->phy.ops.check_reset_block(hw)) | 
 | 		oem_reg |= HV_OEM_BITS_RESTART_AN; | 
 |  | 
 | 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); | 
 |  | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode | 
 |  *  @hw:   pointer to the HW structure | 
 |  **/ | 
 | static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 data; | 
 |  | 
 | 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	data |= HV_KMRN_MDIO_SLOW; | 
 |  | 
 | 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  A series of PHY workarounds to be done after every PHY reset. | 
 |  **/ | 
 | static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u16 phy_data; | 
 |  | 
 | 	if (hw->mac.type != e1000_pchlan) | 
 | 		return 0; | 
 |  | 
 | 	/* Set MDIO slow mode before any other MDIO access */ | 
 | 	if (hw->phy.type == e1000_phy_82577) { | 
 | 		ret_val = e1000_set_mdio_slow_mode_hv(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	if (((hw->phy.type == e1000_phy_82577) && | 
 | 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || | 
 | 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { | 
 | 		/* Disable generation of early preamble */ | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		/* Preamble tuning for SSC */ | 
 | 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	if (hw->phy.type == e1000_phy_82578) { | 
 | 		/* Return registers to default by doing a soft reset then | 
 | 		 * writing 0x3140 to the control register. | 
 | 		 */ | 
 | 		if (hw->phy.revision < 2) { | 
 | 			e1000e_phy_sw_reset(hw); | 
 | 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Select page 0 */ | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	hw->phy.addr = 1; | 
 | 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); | 
 | 	hw->phy.ops.release(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	/* Configure the K1 Si workaround during phy reset assuming there is | 
 | 	 * link so that it disables K1 if link is in 1Gbps. | 
 | 	 */ | 
 | 	ret_val = e1000_k1_gig_workaround_hv(hw, true); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	/* Workaround for link disconnects on a busy hub in half duplex */ | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 | 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 | 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	/* set MSE higher to enable link to stay up when noise is high */ | 
 | 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY | 
 |  *  @hw:   pointer to the HW structure | 
 |  **/ | 
 | void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 mac_reg; | 
 | 	u16 i, phy_reg = 0; | 
 | 	s32 ret_val; | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return; | 
 | 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ | 
 | 	for (i = 0; i < (hw->mac.rar_entry_count); i++) { | 
 | 		mac_reg = er32(RAL(i)); | 
 | 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), | 
 | 					   (u16)(mac_reg & 0xFFFF)); | 
 | 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), | 
 | 					   (u16)((mac_reg >> 16) & 0xFFFF)); | 
 |  | 
 | 		mac_reg = er32(RAH(i)); | 
 | 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), | 
 | 					   (u16)(mac_reg & 0xFFFF)); | 
 | 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), | 
 | 					   (u16)((mac_reg & E1000_RAH_AV) >> 16)); | 
 | 	} | 
 |  | 
 | 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); | 
 |  | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation | 
 |  *  with 82579 PHY | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos | 
 |  **/ | 
 | s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u16 phy_reg, data; | 
 | 	u32 mac_reg; | 
 | 	u16 i; | 
 |  | 
 | 	if (hw->mac.type < e1000_pch2lan) | 
 | 		return 0; | 
 |  | 
 | 	/* disable Rx path while enabling/disabling workaround */ | 
 | 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); | 
 | 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if (enable) { | 
 | 		/* Write Rx addresses (rar_entry_count for RAL/H, and | 
 | 		 * SHRAL/H) and initial CRC values to the MAC | 
 | 		 */ | 
 | 		for (i = 0; i < hw->mac.rar_entry_count; i++) { | 
 | 			u8 mac_addr[ETH_ALEN] = { 0 }; | 
 | 			u32 addr_high, addr_low; | 
 |  | 
 | 			addr_high = er32(RAH(i)); | 
 | 			if (!(addr_high & E1000_RAH_AV)) | 
 | 				continue; | 
 | 			addr_low = er32(RAL(i)); | 
 | 			mac_addr[0] = (addr_low & 0xFF); | 
 | 			mac_addr[1] = ((addr_low >> 8) & 0xFF); | 
 | 			mac_addr[2] = ((addr_low >> 16) & 0xFF); | 
 | 			mac_addr[3] = ((addr_low >> 24) & 0xFF); | 
 | 			mac_addr[4] = (addr_high & 0xFF); | 
 | 			mac_addr[5] = ((addr_high >> 8) & 0xFF); | 
 |  | 
 | 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); | 
 | 		} | 
 |  | 
 | 		/* Write Rx addresses to the PHY */ | 
 | 		e1000_copy_rx_addrs_to_phy_ich8lan(hw); | 
 |  | 
 | 		/* Enable jumbo frame workaround in the MAC */ | 
 | 		mac_reg = er32(FFLT_DBG); | 
 | 		mac_reg &= ~BIT(14); | 
 | 		mac_reg |= (7 << 15); | 
 | 		ew32(FFLT_DBG, mac_reg); | 
 |  | 
 | 		mac_reg = er32(RCTL); | 
 | 		mac_reg |= E1000_RCTL_SECRC; | 
 | 		ew32(RCTL, mac_reg); | 
 |  | 
 | 		ret_val = e1000e_read_kmrn_reg(hw, | 
 | 					       E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
 | 					       &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		ret_val = e1000e_write_kmrn_reg(hw, | 
 | 						E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
 | 						data | BIT(0)); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		ret_val = e1000e_read_kmrn_reg(hw, | 
 | 					       E1000_KMRNCTRLSTA_HD_CTRL, | 
 | 					       &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		data &= ~(0xF << 8); | 
 | 		data |= (0xB << 8); | 
 | 		ret_val = e1000e_write_kmrn_reg(hw, | 
 | 						E1000_KMRNCTRLSTA_HD_CTRL, | 
 | 						data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		/* Enable jumbo frame workaround in the PHY */ | 
 | 		e1e_rphy(hw, PHY_REG(769, 23), &data); | 
 | 		data &= ~(0x7F << 5); | 
 | 		data |= (0x37 << 5); | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		e1e_rphy(hw, PHY_REG(769, 16), &data); | 
 | 		data &= ~BIT(13); | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		e1e_rphy(hw, PHY_REG(776, 20), &data); | 
 | 		data &= ~(0x3FF << 2); | 
 | 		data |= (E1000_TX_PTR_GAP << 2); | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		e1e_rphy(hw, HV_PM_CTRL, &data); | 
 | 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} else { | 
 | 		/* Write MAC register values back to h/w defaults */ | 
 | 		mac_reg = er32(FFLT_DBG); | 
 | 		mac_reg &= ~(0xF << 14); | 
 | 		ew32(FFLT_DBG, mac_reg); | 
 |  | 
 | 		mac_reg = er32(RCTL); | 
 | 		mac_reg &= ~E1000_RCTL_SECRC; | 
 | 		ew32(RCTL, mac_reg); | 
 |  | 
 | 		ret_val = e1000e_read_kmrn_reg(hw, | 
 | 					       E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
 | 					       &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		ret_val = e1000e_write_kmrn_reg(hw, | 
 | 						E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
 | 						data & ~BIT(0)); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		ret_val = e1000e_read_kmrn_reg(hw, | 
 | 					       E1000_KMRNCTRLSTA_HD_CTRL, | 
 | 					       &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		data &= ~(0xF << 8); | 
 | 		data |= (0xB << 8); | 
 | 		ret_val = e1000e_write_kmrn_reg(hw, | 
 | 						E1000_KMRNCTRLSTA_HD_CTRL, | 
 | 						data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		/* Write PHY register values back to h/w defaults */ | 
 | 		e1e_rphy(hw, PHY_REG(769, 23), &data); | 
 | 		data &= ~(0x7F << 5); | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		e1e_rphy(hw, PHY_REG(769, 16), &data); | 
 | 		data |= BIT(13); | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		e1e_rphy(hw, PHY_REG(776, 20), &data); | 
 | 		data &= ~(0x3FF << 2); | 
 | 		data |= (0x8 << 2); | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		e1e_rphy(hw, HV_PM_CTRL, &data); | 
 | 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	/* re-enable Rx path after enabling/disabling workaround */ | 
 | 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  A series of PHY workarounds to be done after every PHY reset. | 
 |  **/ | 
 | static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val = 0; | 
 |  | 
 | 	if (hw->mac.type != e1000_pch2lan) | 
 | 		return 0; | 
 |  | 
 | 	/* Set MDIO slow mode before any other MDIO access */ | 
 | 	ret_val = e1000_set_mdio_slow_mode_hv(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	ret_val = hw->phy.ops.acquire(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 | 	/* set MSE higher to enable link to stay up when noise is high */ | 
 | 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 | 	/* drop link after 5 times MSE threshold was reached */ | 
 | 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); | 
 | release: | 
 | 	hw->phy.ops.release(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_k1_workaround_lv - K1 Si workaround | 
 |  *  @hw:   pointer to the HW structure | 
 |  * | 
 |  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps | 
 |  *  Disable K1 in 1000Mbps and 100Mbps | 
 |  **/ | 
 | static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u16 status_reg = 0; | 
 |  | 
 | 	if (hw->mac.type != e1000_pch2lan) | 
 | 		return 0; | 
 |  | 
 | 	/* Set K1 beacon duration based on 10Mbs speed */ | 
 | 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) | 
 | 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { | 
 | 		if (status_reg & | 
 | 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { | 
 | 			u16 pm_phy_reg; | 
 |  | 
 | 			/* LV 1G/100 Packet drop issue wa  */ | 
 | 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; | 
 | 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} else { | 
 | 			u32 mac_reg; | 
 |  | 
 | 			mac_reg = er32(FEXTNVM4); | 
 | 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; | 
 | 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; | 
 | 			ew32(FEXTNVM4, mac_reg); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware | 
 |  *  @hw:   pointer to the HW structure | 
 |  *  @gate: boolean set to true to gate, false to ungate | 
 |  * | 
 |  *  Gate/ungate the automatic PHY configuration via hardware; perform | 
 |  *  the configuration via software instead. | 
 |  **/ | 
 | static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) | 
 | { | 
 | 	u32 extcnf_ctrl; | 
 |  | 
 | 	if (hw->mac.type < e1000_pch2lan) | 
 | 		return; | 
 |  | 
 | 	extcnf_ctrl = er32(EXTCNF_CTRL); | 
 |  | 
 | 	if (gate) | 
 | 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; | 
 | 	else | 
 | 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; | 
 |  | 
 | 	ew32(EXTCNF_CTRL, extcnf_ctrl); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_lan_init_done_ich8lan - Check for PHY config completion | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Check the appropriate indication the MAC has finished configuring the | 
 |  *  PHY after a software reset. | 
 |  **/ | 
 | static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; | 
 |  | 
 | 	/* Wait for basic configuration completes before proceeding */ | 
 | 	do { | 
 | 		data = er32(STATUS); | 
 | 		data &= E1000_STATUS_LAN_INIT_DONE; | 
 | 		usleep_range(100, 200); | 
 | 	} while ((!data) && --loop); | 
 |  | 
 | 	/* If basic configuration is incomplete before the above loop | 
 | 	 * count reaches 0, loading the configuration from NVM will | 
 | 	 * leave the PHY in a bad state possibly resulting in no link. | 
 | 	 */ | 
 | 	if (loop == 0) | 
 | 		e_dbg("LAN_INIT_DONE not set, increase timeout\n"); | 
 |  | 
 | 	/* Clear the Init Done bit for the next init event */ | 
 | 	data = er32(STATUS); | 
 | 	data &= ~E1000_STATUS_LAN_INIT_DONE; | 
 | 	ew32(STATUS, data); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u16 reg; | 
 |  | 
 | 	if (hw->phy.ops.check_reset_block(hw)) | 
 | 		return 0; | 
 |  | 
 | 	/* Allow time for h/w to get to quiescent state after reset */ | 
 | 	usleep_range(10000, 11000); | 
 |  | 
 | 	/* Perform any necessary post-reset workarounds */ | 
 | 	switch (hw->mac.type) { | 
 | 	case e1000_pchlan: | 
 | 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		break; | 
 | 	case e1000_pch2lan: | 
 | 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Clear the host wakeup bit after lcd reset */ | 
 | 	if (hw->mac.type >= e1000_pchlan) { | 
 | 		e1e_rphy(hw, BM_PORT_GEN_CFG, ®); | 
 | 		reg &= ~BM_WUC_HOST_WU_BIT; | 
 | 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg); | 
 | 	} | 
 |  | 
 | 	/* Configure the LCD with the extended configuration region in NVM */ | 
 | 	ret_val = e1000_sw_lcd_config_ich8lan(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	/* Configure the LCD with the OEM bits in NVM */ | 
 | 	ret_val = e1000_oem_bits_config_ich8lan(hw, true); | 
 |  | 
 | 	if (hw->mac.type == e1000_pch2lan) { | 
 | 		/* Ungate automatic PHY configuration on non-managed 82579 */ | 
 | 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { | 
 | 			usleep_range(10000, 11000); | 
 | 			e1000_gate_hw_phy_config_ich8lan(hw, false); | 
 | 		} | 
 |  | 
 | 		/* Set EEE LPI Update Timer to 200usec */ | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		ret_val = e1000_write_emi_reg_locked(hw, | 
 | 						     I82579_LPI_UPDATE_TIMER, | 
 | 						     0x1387); | 
 | 		hw->phy.ops.release(hw); | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Resets the PHY | 
 |  *  This is a function pointer entry point called by drivers | 
 |  *  or other shared routines. | 
 |  **/ | 
 | static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val = 0; | 
 |  | 
 | 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */ | 
 | 	if ((hw->mac.type == e1000_pch2lan) && | 
 | 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | 
 | 		e1000_gate_hw_phy_config_ich8lan(hw, true); | 
 |  | 
 | 	ret_val = e1000e_phy_hw_reset_generic(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	return e1000_post_phy_reset_ich8lan(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @active: true to enable LPLU, false to disable | 
 |  * | 
 |  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write | 
 |  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set | 
 |  *  the phy speed. This function will manually set the LPLU bit and restart | 
 |  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function | 
 |  *  since it configures the same bit. | 
 |  **/ | 
 | static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 oem_reg; | 
 |  | 
 | 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if (active) | 
 | 		oem_reg |= HV_OEM_BITS_LPLU; | 
 | 	else | 
 | 		oem_reg &= ~HV_OEM_BITS_LPLU; | 
 |  | 
 | 	if (!hw->phy.ops.check_reset_block(hw)) | 
 | 		oem_reg |= HV_OEM_BITS_RESTART_AN; | 
 |  | 
 | 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @active: true to enable LPLU, false to disable | 
 |  * | 
 |  *  Sets the LPLU D0 state according to the active flag.  When | 
 |  *  activating LPLU this function also disables smart speed | 
 |  *  and vice versa.  LPLU will not be activated unless the | 
 |  *  device autonegotiation advertisement meets standards of | 
 |  *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
 |  *  This is a function pointer entry point only called by | 
 |  *  PHY setup routines. | 
 |  **/ | 
 | static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	u32 phy_ctrl; | 
 | 	s32 ret_val = 0; | 
 | 	u16 data; | 
 |  | 
 | 	if (phy->type == e1000_phy_ife) | 
 | 		return 0; | 
 |  | 
 | 	phy_ctrl = er32(PHY_CTRL); | 
 |  | 
 | 	if (active) { | 
 | 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | 
 | 		ew32(PHY_CTRL, phy_ctrl); | 
 |  | 
 | 		if (phy->type != e1000_phy_igp_3) | 
 | 			return 0; | 
 |  | 
 | 		/* Call gig speed drop workaround on LPLU before accessing | 
 | 		 * any PHY registers | 
 | 		 */ | 
 | 		if (hw->mac.type == e1000_ich8lan) | 
 | 			e1000e_gig_downshift_workaround_ich8lan(hw); | 
 |  | 
 | 		/* When LPLU is enabled, we should disable SmartSpeed */ | 
 | 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} else { | 
 | 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | 
 | 		ew32(PHY_CTRL, phy_ctrl); | 
 |  | 
 | 		if (phy->type != e1000_phy_igp_3) | 
 | 			return 0; | 
 |  | 
 | 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
 | 		 * during Dx states where the power conservation is most | 
 | 		 * important.  During driver activity we should enable | 
 | 		 * SmartSpeed, so performance is maintained. | 
 | 		 */ | 
 | 		if (phy->smart_speed == e1000_smart_speed_on) { | 
 | 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   &data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 |  | 
 | 			data |= IGP01E1000_PSCFR_SMART_SPEED; | 
 | 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} else if (phy->smart_speed == e1000_smart_speed_off) { | 
 | 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   &data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 |  | 
 | 			data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @active: true to enable LPLU, false to disable | 
 |  * | 
 |  *  Sets the LPLU D3 state according to the active flag.  When | 
 |  *  activating LPLU this function also disables smart speed | 
 |  *  and vice versa.  LPLU will not be activated unless the | 
 |  *  device autonegotiation advertisement meets standards of | 
 |  *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
 |  *  This is a function pointer entry point only called by | 
 |  *  PHY setup routines. | 
 |  **/ | 
 | static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	u32 phy_ctrl; | 
 | 	s32 ret_val = 0; | 
 | 	u16 data; | 
 |  | 
 | 	phy_ctrl = er32(PHY_CTRL); | 
 |  | 
 | 	if (!active) { | 
 | 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | 
 | 		ew32(PHY_CTRL, phy_ctrl); | 
 |  | 
 | 		if (phy->type != e1000_phy_igp_3) | 
 | 			return 0; | 
 |  | 
 | 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
 | 		 * during Dx states where the power conservation is most | 
 | 		 * important.  During driver activity we should enable | 
 | 		 * SmartSpeed, so performance is maintained. | 
 | 		 */ | 
 | 		if (phy->smart_speed == e1000_smart_speed_on) { | 
 | 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   &data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 |  | 
 | 			data |= IGP01E1000_PSCFR_SMART_SPEED; | 
 | 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} else if (phy->smart_speed == e1000_smart_speed_off) { | 
 | 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   &data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 |  | 
 | 			data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 					   data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} | 
 | 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | 
 | 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | 
 | 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | 
 | 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | 
 | 		ew32(PHY_CTRL, phy_ctrl); | 
 |  | 
 | 		if (phy->type != e1000_phy_igp_3) | 
 | 			return 0; | 
 |  | 
 | 		/* Call gig speed drop workaround on LPLU before accessing | 
 | 		 * any PHY registers | 
 | 		 */ | 
 | 		if (hw->mac.type == e1000_ich8lan) | 
 | 			e1000e_gig_downshift_workaround_ich8lan(hw); | 
 |  | 
 | 		/* When LPLU is enabled, we should disable SmartSpeed */ | 
 | 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @bank:  pointer to the variable that returns the active bank | 
 |  * | 
 |  *  Reads signature byte from the NVM using the flash access registers. | 
 |  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. | 
 |  **/ | 
 | static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) | 
 | { | 
 | 	u32 eecd; | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); | 
 | 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; | 
 | 	u32 nvm_dword = 0; | 
 | 	u8 sig_byte = 0; | 
 | 	s32 ret_val; | 
 |  | 
 | 	switch (hw->mac.type) { | 
 | 	case e1000_pch_spt: | 
 | 	case e1000_pch_cnp: | 
 | 	case e1000_pch_tgp: | 
 | 	case e1000_pch_adp: | 
 | 	case e1000_pch_mtp: | 
 | 	case e1000_pch_lnp: | 
 | 	case e1000_pch_ptp: | 
 | 	case e1000_pch_nvp: | 
 | 		bank1_offset = nvm->flash_bank_size; | 
 | 		act_offset = E1000_ICH_NVM_SIG_WORD; | 
 |  | 
 | 		/* set bank to 0 in case flash read fails */ | 
 | 		*bank = 0; | 
 |  | 
 | 		/* Check bank 0 */ | 
 | 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, | 
 | 							 &nvm_dword); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		sig_byte = FIELD_GET(0xFF00, nvm_dword); | 
 | 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | 
 | 		    E1000_ICH_NVM_SIG_VALUE) { | 
 | 			*bank = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* Check bank 1 */ | 
 | 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + | 
 | 							 bank1_offset, | 
 | 							 &nvm_dword); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		sig_byte = FIELD_GET(0xFF00, nvm_dword); | 
 | 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | 
 | 		    E1000_ICH_NVM_SIG_VALUE) { | 
 | 			*bank = 1; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		e_dbg("ERROR: No valid NVM bank present\n"); | 
 | 		return -E1000_ERR_NVM; | 
 | 	case e1000_ich8lan: | 
 | 	case e1000_ich9lan: | 
 | 		eecd = er32(EECD); | 
 | 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == | 
 | 		    E1000_EECD_SEC1VAL_VALID_MASK) { | 
 | 			if (eecd & E1000_EECD_SEC1VAL) | 
 | 				*bank = 1; | 
 | 			else | 
 | 				*bank = 0; | 
 |  | 
 | 			return 0; | 
 | 		} | 
 | 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); | 
 | 		fallthrough; | 
 | 	default: | 
 | 		/* set bank to 0 in case flash read fails */ | 
 | 		*bank = 0; | 
 |  | 
 | 		/* Check bank 0 */ | 
 | 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, | 
 | 							&sig_byte); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | 
 | 		    E1000_ICH_NVM_SIG_VALUE) { | 
 | 			*bank = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* Check bank 1 */ | 
 | 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + | 
 | 							bank1_offset, | 
 | 							&sig_byte); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | 
 | 		    E1000_ICH_NVM_SIG_VALUE) { | 
 | 			*bank = 1; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		e_dbg("ERROR: No valid NVM bank present\n"); | 
 | 		return -E1000_ERR_NVM; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_nvm_spt - NVM access for SPT | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset (in bytes) of the word(s) to read. | 
 |  *  @words: Size of data to read in words. | 
 |  *  @data: pointer to the word(s) to read at offset. | 
 |  * | 
 |  *  Reads a word(s) from the NVM | 
 |  **/ | 
 | static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, | 
 | 			      u16 *data) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u32 act_offset; | 
 | 	s32 ret_val = 0; | 
 | 	u32 bank = 0; | 
 | 	u32 dword = 0; | 
 | 	u16 offset_to_read; | 
 | 	u16 i; | 
 |  | 
 | 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | 
 | 	    (words == 0)) { | 
 | 		e_dbg("nvm parameter(s) out of bounds\n"); | 
 | 		ret_val = -E1000_ERR_NVM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nvm->ops.acquire(hw); | 
 |  | 
 | 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | 
 | 	if (ret_val) { | 
 | 		e_dbg("Could not detect valid bank, assuming bank 0\n"); | 
 | 		bank = 0; | 
 | 	} | 
 |  | 
 | 	act_offset = (bank) ? nvm->flash_bank_size : 0; | 
 | 	act_offset += offset; | 
 |  | 
 | 	ret_val = 0; | 
 |  | 
 | 	for (i = 0; i < words; i += 2) { | 
 | 		if (words - i == 1) { | 
 | 			if (dev_spec->shadow_ram[offset + i].modified) { | 
 | 				data[i] = | 
 | 				    dev_spec->shadow_ram[offset + i].value; | 
 | 			} else { | 
 | 				offset_to_read = act_offset + i - | 
 | 				    ((act_offset + i) % 2); | 
 | 				ret_val = | 
 | 				  e1000_read_flash_dword_ich8lan(hw, | 
 | 								 offset_to_read, | 
 | 								 &dword); | 
 | 				if (ret_val) | 
 | 					break; | 
 | 				if ((act_offset + i) % 2 == 0) | 
 | 					data[i] = (u16)(dword & 0xFFFF); | 
 | 				else | 
 | 					data[i] = (u16)((dword >> 16) & 0xFFFF); | 
 | 			} | 
 | 		} else { | 
 | 			offset_to_read = act_offset + i; | 
 | 			if (!(dev_spec->shadow_ram[offset + i].modified) || | 
 | 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) { | 
 | 				ret_val = | 
 | 				  e1000_read_flash_dword_ich8lan(hw, | 
 | 								 offset_to_read, | 
 | 								 &dword); | 
 | 				if (ret_val) | 
 | 					break; | 
 | 			} | 
 | 			if (dev_spec->shadow_ram[offset + i].modified) | 
 | 				data[i] = | 
 | 				    dev_spec->shadow_ram[offset + i].value; | 
 | 			else | 
 | 				data[i] = (u16)(dword & 0xFFFF); | 
 | 			if (dev_spec->shadow_ram[offset + i].modified) | 
 | 				data[i + 1] = | 
 | 				    dev_spec->shadow_ram[offset + i + 1].value; | 
 | 			else | 
 | 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	nvm->ops.release(hw); | 
 |  | 
 | out: | 
 | 	if (ret_val) | 
 | 		e_dbg("NVM read error: %d\n", ret_val); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset (in bytes) of the word(s) to read. | 
 |  *  @words: Size of data to read in words | 
 |  *  @data: Pointer to the word(s) to read at offset. | 
 |  * | 
 |  *  Reads a word(s) from the NVM using the flash access registers. | 
 |  **/ | 
 | static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | 
 | 				  u16 *data) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u32 act_offset; | 
 | 	s32 ret_val = 0; | 
 | 	u32 bank = 0; | 
 | 	u16 i, word; | 
 |  | 
 | 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | 
 | 	    (words == 0)) { | 
 | 		e_dbg("nvm parameter(s) out of bounds\n"); | 
 | 		ret_val = -E1000_ERR_NVM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nvm->ops.acquire(hw); | 
 |  | 
 | 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | 
 | 	if (ret_val) { | 
 | 		e_dbg("Could not detect valid bank, assuming bank 0\n"); | 
 | 		bank = 0; | 
 | 	} | 
 |  | 
 | 	act_offset = (bank) ? nvm->flash_bank_size : 0; | 
 | 	act_offset += offset; | 
 |  | 
 | 	ret_val = 0; | 
 | 	for (i = 0; i < words; i++) { | 
 | 		if (dev_spec->shadow_ram[offset + i].modified) { | 
 | 			data[i] = dev_spec->shadow_ram[offset + i].value; | 
 | 		} else { | 
 | 			ret_val = e1000_read_flash_word_ich8lan(hw, | 
 | 								act_offset + i, | 
 | 								&word); | 
 | 			if (ret_val) | 
 | 				break; | 
 | 			data[i] = word; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	nvm->ops.release(hw); | 
 |  | 
 | out: | 
 | 	if (ret_val) | 
 | 		e_dbg("NVM read error: %d\n", ret_val); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_flash_cycle_init_ich8lan - Initialize flash | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  This function does initial flash setup so that a new read/write/erase cycle | 
 |  *  can be started. | 
 |  **/ | 
 | static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	s32 ret_val = -E1000_ERR_NVM; | 
 |  | 
 | 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 |  | 
 | 	/* Check if the flash descriptor is valid */ | 
 | 	if (!hsfsts.hsf_status.fldesvalid) { | 
 | 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n"); | 
 | 		return -E1000_ERR_NVM; | 
 | 	} | 
 |  | 
 | 	/* Clear FCERR and DAEL in hw status by writing 1 */ | 
 | 	hsfsts.hsf_status.flcerr = 1; | 
 | 	hsfsts.hsf_status.dael = 1; | 
 | 	if (hw->mac.type >= e1000_pch_spt) | 
 | 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); | 
 | 	else | 
 | 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
 |  | 
 | 	/* Either we should have a hardware SPI cycle in progress | 
 | 	 * bit to check against, in order to start a new cycle or | 
 | 	 * FDONE bit should be changed in the hardware so that it | 
 | 	 * is 1 after hardware reset, which can then be used as an | 
 | 	 * indication whether a cycle is in progress or has been | 
 | 	 * completed. | 
 | 	 */ | 
 |  | 
 | 	if (!hsfsts.hsf_status.flcinprog) { | 
 | 		/* There is no cycle running at present, | 
 | 		 * so we can start a cycle. | 
 | 		 * Begin by setting Flash Cycle Done. | 
 | 		 */ | 
 | 		hsfsts.hsf_status.flcdone = 1; | 
 | 		if (hw->mac.type >= e1000_pch_spt) | 
 | 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); | 
 | 		else | 
 | 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
 | 		ret_val = 0; | 
 | 	} else { | 
 | 		s32 i; | 
 |  | 
 | 		/* Otherwise poll for sometime so the current | 
 | 		 * cycle has a chance to end before giving up. | 
 | 		 */ | 
 | 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { | 
 | 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 | 			if (!hsfsts.hsf_status.flcinprog) { | 
 | 				ret_val = 0; | 
 | 				break; | 
 | 			} | 
 | 			udelay(1); | 
 | 		} | 
 | 		if (!ret_val) { | 
 | 			/* Successful in waiting for previous cycle to timeout, | 
 | 			 * now set the Flash Cycle Done. | 
 | 			 */ | 
 | 			hsfsts.hsf_status.flcdone = 1; | 
 | 			if (hw->mac.type >= e1000_pch_spt) | 
 | 				ew32flash(ICH_FLASH_HSFSTS, | 
 | 					  hsfsts.regval & 0xFFFF); | 
 | 			else | 
 | 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
 | 		} else { | 
 | 			e_dbg("Flash controller busy, cannot get access\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @timeout: maximum time to wait for completion | 
 |  * | 
 |  *  This function starts a flash cycle and waits for its completion. | 
 |  **/ | 
 | static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) | 
 | { | 
 | 	union ich8_hws_flash_ctrl hsflctl; | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	u32 i = 0; | 
 |  | 
 | 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | 
 | 	if (hw->mac.type >= e1000_pch_spt) | 
 | 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; | 
 | 	else | 
 | 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
 | 	hsflctl.hsf_ctrl.flcgo = 1; | 
 |  | 
 | 	if (hw->mac.type >= e1000_pch_spt) | 
 | 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); | 
 | 	else | 
 | 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
 |  | 
 | 	/* wait till FDONE bit is set to 1 */ | 
 | 	do { | 
 | 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 | 		if (hsfsts.hsf_status.flcdone) | 
 | 			break; | 
 | 		udelay(1); | 
 | 	} while (i++ < timeout); | 
 |  | 
 | 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) | 
 | 		return 0; | 
 |  | 
 | 	return -E1000_ERR_NVM; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_flash_dword_ich8lan - Read dword from flash | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: offset to data location | 
 |  *  @data: pointer to the location for storing the data | 
 |  * | 
 |  *  Reads the flash dword at offset into data.  Offset is converted | 
 |  *  to bytes before read. | 
 |  **/ | 
 | static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					  u32 *data) | 
 | { | 
 | 	/* Must convert word offset into bytes. */ | 
 | 	offset <<= 1; | 
 | 	return e1000_read_flash_data32_ich8lan(hw, offset, data); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_flash_word_ich8lan - Read word from flash | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: offset to data location | 
 |  *  @data: pointer to the location for storing the data | 
 |  * | 
 |  *  Reads the flash word at offset into data.  Offset is converted | 
 |  *  to bytes before read. | 
 |  **/ | 
 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					 u16 *data) | 
 | { | 
 | 	/* Must convert offset into bytes. */ | 
 | 	offset <<= 1; | 
 |  | 
 | 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_flash_byte_ich8lan - Read byte from flash | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset of the byte to read. | 
 |  *  @data: Pointer to a byte to store the value read. | 
 |  * | 
 |  *  Reads a single byte from the NVM using the flash access registers. | 
 |  **/ | 
 | static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					 u8 *data) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 word = 0; | 
 |  | 
 | 	/* In SPT, only 32 bits access is supported, | 
 | 	 * so this function should not be called. | 
 | 	 */ | 
 | 	if (hw->mac.type >= e1000_pch_spt) | 
 | 		return -E1000_ERR_NVM; | 
 | 	else | 
 | 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); | 
 |  | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	*data = (u8)word; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset (in bytes) of the byte or word to read. | 
 |  *  @size: Size of data to read, 1=byte 2=word | 
 |  *  @data: Pointer to the word to store the value read. | 
 |  * | 
 |  *  Reads a byte or word from the NVM using the flash access registers. | 
 |  **/ | 
 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					 u8 size, u16 *data) | 
 | { | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	union ich8_hws_flash_ctrl hsflctl; | 
 | 	u32 flash_linear_addr; | 
 | 	u32 flash_data = 0; | 
 | 	s32 ret_val = -E1000_ERR_NVM; | 
 | 	u8 count = 0; | 
 |  | 
 | 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) | 
 | 		return -E1000_ERR_NVM; | 
 |  | 
 | 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + | 
 | 			     hw->nvm.flash_base_addr); | 
 |  | 
 | 	do { | 
 | 		udelay(1); | 
 | 		/* Steps */ | 
 | 		ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			break; | 
 |  | 
 | 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
 | 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | 
 | 		hsflctl.hsf_ctrl.fldbcount = size - 1; | 
 | 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | 
 | 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
 |  | 
 | 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
 |  | 
 | 		ret_val = | 
 | 		    e1000_flash_cycle_ich8lan(hw, | 
 | 					      ICH_FLASH_READ_COMMAND_TIMEOUT); | 
 |  | 
 | 		/* Check if FCERR is set to 1, if set to 1, clear it | 
 | 		 * and try the whole sequence a few more times, else | 
 | 		 * read in (shift in) the Flash Data0, the order is | 
 | 		 * least significant byte first msb to lsb | 
 | 		 */ | 
 | 		if (!ret_val) { | 
 | 			flash_data = er32flash(ICH_FLASH_FDATA0); | 
 | 			if (size == 1) | 
 | 				*data = (u8)(flash_data & 0x000000FF); | 
 | 			else if (size == 2) | 
 | 				*data = (u16)(flash_data & 0x0000FFFF); | 
 | 			break; | 
 | 		} else { | 
 | 			/* If we've gotten here, then things are probably | 
 | 			 * completely hosed, but if the error condition is | 
 | 			 * detected, it won't hurt to give it another try... | 
 | 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
 | 			 */ | 
 | 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 | 			if (hsfsts.hsf_status.flcerr) { | 
 | 				/* Repeat for some time before giving up. */ | 
 | 				continue; | 
 | 			} else if (!hsfsts.hsf_status.flcdone) { | 
 | 				e_dbg("Timeout error - flash cycle did not complete.\n"); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_read_flash_data32_ich8lan - Read dword from NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset (in bytes) of the dword to read. | 
 |  *  @data: Pointer to the dword to store the value read. | 
 |  * | 
 |  *  Reads a byte or word from the NVM using the flash access registers. | 
 |  **/ | 
 |  | 
 | static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					   u32 *data) | 
 | { | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	union ich8_hws_flash_ctrl hsflctl; | 
 | 	u32 flash_linear_addr; | 
 | 	s32 ret_val = -E1000_ERR_NVM; | 
 | 	u8 count = 0; | 
 |  | 
 | 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) | 
 | 		return -E1000_ERR_NVM; | 
 | 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + | 
 | 			     hw->nvm.flash_base_addr); | 
 |  | 
 | 	do { | 
 | 		udelay(1); | 
 | 		/* Steps */ | 
 | 		ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			break; | 
 | 		/* In SPT, This register is in Lan memory space, not flash. | 
 | 		 * Therefore, only 32 bit access is supported | 
 | 		 */ | 
 | 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; | 
 |  | 
 | 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | 
 | 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; | 
 | 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | 
 | 		/* In SPT, This register is in Lan memory space, not flash. | 
 | 		 * Therefore, only 32 bit access is supported | 
 | 		 */ | 
 | 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); | 
 | 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
 |  | 
 | 		ret_val = | 
 | 		   e1000_flash_cycle_ich8lan(hw, | 
 | 					     ICH_FLASH_READ_COMMAND_TIMEOUT); | 
 |  | 
 | 		/* Check if FCERR is set to 1, if set to 1, clear it | 
 | 		 * and try the whole sequence a few more times, else | 
 | 		 * read in (shift in) the Flash Data0, the order is | 
 | 		 * least significant byte first msb to lsb | 
 | 		 */ | 
 | 		if (!ret_val) { | 
 | 			*data = er32flash(ICH_FLASH_FDATA0); | 
 | 			break; | 
 | 		} else { | 
 | 			/* If we've gotten here, then things are probably | 
 | 			 * completely hosed, but if the error condition is | 
 | 			 * detected, it won't hurt to give it another try... | 
 | 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
 | 			 */ | 
 | 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 | 			if (hsfsts.hsf_status.flcerr) { | 
 | 				/* Repeat for some time before giving up. */ | 
 | 				continue; | 
 | 			} else if (!hsfsts.hsf_status.flcdone) { | 
 | 				e_dbg("Timeout error - flash cycle did not complete.\n"); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset (in bytes) of the word(s) to write. | 
 |  *  @words: Size of data to write in words | 
 |  *  @data: Pointer to the word(s) to write at offset. | 
 |  * | 
 |  *  Writes a byte or word to the NVM using the flash access registers. | 
 |  **/ | 
 | static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | 
 | 				   u16 *data) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u16 i; | 
 |  | 
 | 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | 
 | 	    (words == 0)) { | 
 | 		e_dbg("nvm parameter(s) out of bounds\n"); | 
 | 		return -E1000_ERR_NVM; | 
 | 	} | 
 |  | 
 | 	nvm->ops.acquire(hw); | 
 |  | 
 | 	for (i = 0; i < words; i++) { | 
 | 		dev_spec->shadow_ram[offset + i].modified = true; | 
 | 		dev_spec->shadow_ram[offset + i].value = data[i]; | 
 | 	} | 
 |  | 
 | 	nvm->ops.release(hw); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  The NVM checksum is updated by calling the generic update_nvm_checksum, | 
 |  *  which writes the checksum to the shadow ram.  The changes in the shadow | 
 |  *  ram are then committed to the EEPROM by processing each bank at a time | 
 |  *  checking for the modified bit and writing only the pending changes. | 
 |  *  After a successful commit, the shadow ram is cleared and is ready for | 
 |  *  future writes. | 
 |  **/ | 
 | static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank; | 
 | 	s32 ret_val; | 
 | 	u32 dword = 0; | 
 |  | 
 | 	ret_val = e1000e_update_nvm_checksum_generic(hw); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (nvm->type != e1000_nvm_flash_sw) | 
 | 		goto out; | 
 |  | 
 | 	nvm->ops.acquire(hw); | 
 |  | 
 | 	/* We're writing to the opposite bank so if we're on bank 1, | 
 | 	 * write to bank 0 etc.  We also need to erase the segment that | 
 | 	 * is going to be written | 
 | 	 */ | 
 | 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | 
 | 	if (ret_val) { | 
 | 		e_dbg("Could not detect valid bank, assuming bank 0\n"); | 
 | 		bank = 0; | 
 | 	} | 
 |  | 
 | 	if (bank == 0) { | 
 | 		new_bank_offset = nvm->flash_bank_size; | 
 | 		old_bank_offset = 0; | 
 | 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} else { | 
 | 		old_bank_offset = nvm->flash_bank_size; | 
 | 		new_bank_offset = 0; | 
 | 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 | 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { | 
 | 		/* Determine whether to write the value stored | 
 | 		 * in the other NVM bank or a modified value stored | 
 | 		 * in the shadow RAM | 
 | 		 */ | 
 | 		ret_val = e1000_read_flash_dword_ich8lan(hw, | 
 | 							 i + old_bank_offset, | 
 | 							 &dword); | 
 |  | 
 | 		if (dev_spec->shadow_ram[i].modified) { | 
 | 			dword &= 0xffff0000; | 
 | 			dword |= (dev_spec->shadow_ram[i].value & 0xffff); | 
 | 		} | 
 | 		if (dev_spec->shadow_ram[i + 1].modified) { | 
 | 			dword &= 0x0000ffff; | 
 | 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) | 
 | 				  << 16); | 
 | 		} | 
 | 		if (ret_val) | 
 | 			break; | 
 |  | 
 | 		/* If the word is 0x13, then make sure the signature bits | 
 | 		 * (15:14) are 11b until the commit has completed. | 
 | 		 * This will allow us to write 10b which indicates the | 
 | 		 * signature is valid.  We want to do this after the write | 
 | 		 * has completed so that we don't mark the segment valid | 
 | 		 * while the write is still in progress | 
 | 		 */ | 
 | 		if (i == E1000_ICH_NVM_SIG_WORD - 1) | 
 | 			dword |= E1000_ICH_NVM_SIG_MASK << 16; | 
 |  | 
 | 		/* Convert offset to bytes. */ | 
 | 		act_offset = (i + new_bank_offset) << 1; | 
 |  | 
 | 		usleep_range(100, 200); | 
 |  | 
 | 		/* Write the data to the new bank. Offset in words */ | 
 | 		act_offset = i + new_bank_offset; | 
 | 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, | 
 | 								dword); | 
 | 		if (ret_val) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Don't bother writing the segment valid bits if sector | 
 | 	 * programming failed. | 
 | 	 */ | 
 | 	if (ret_val) { | 
 | 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ | 
 | 		e_dbg("Flash commit failed.\n"); | 
 | 		goto release; | 
 | 	} | 
 |  | 
 | 	/* Finally validate the new segment by setting bit 15:14 | 
 | 	 * to 10b in word 0x13 , this can be done without an | 
 | 	 * erase as well since these bits are 11 to start with | 
 | 	 * and we need to change bit 14 to 0b | 
 | 	 */ | 
 | 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; | 
 |  | 
 | 	/*offset in words but we read dword */ | 
 | 	--act_offset; | 
 | 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); | 
 |  | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	dword &= 0xBFFFFFFF; | 
 | 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); | 
 |  | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	/* offset in words but we read dword */ | 
 | 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; | 
 | 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); | 
 |  | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	dword &= 0x00FFFFFF; | 
 | 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); | 
 |  | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	/* Great!  Everything worked, we can now clear the cached entries. */ | 
 | 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | 
 | 		dev_spec->shadow_ram[i].modified = false; | 
 | 		dev_spec->shadow_ram[i].value = 0xFFFF; | 
 | 	} | 
 |  | 
 | release: | 
 | 	nvm->ops.release(hw); | 
 |  | 
 | 	/* Reload the EEPROM, or else modifications will not appear | 
 | 	 * until after the next adapter reset. | 
 | 	 */ | 
 | 	if (!ret_val) { | 
 | 		nvm->ops.reload(hw); | 
 | 		usleep_range(10000, 11000); | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (ret_val) | 
 | 		e_dbg("NVM update error: %d\n", ret_val); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  The NVM checksum is updated by calling the generic update_nvm_checksum, | 
 |  *  which writes the checksum to the shadow ram.  The changes in the shadow | 
 |  *  ram are then committed to the EEPROM by processing each bank at a time | 
 |  *  checking for the modified bit and writing only the pending changes. | 
 |  *  After a successful commit, the shadow ram is cleared and is ready for | 
 |  *  future writes. | 
 |  **/ | 
 | static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank; | 
 | 	s32 ret_val; | 
 | 	u16 data = 0; | 
 |  | 
 | 	ret_val = e1000e_update_nvm_checksum_generic(hw); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (nvm->type != e1000_nvm_flash_sw) | 
 | 		goto out; | 
 |  | 
 | 	nvm->ops.acquire(hw); | 
 |  | 
 | 	/* We're writing to the opposite bank so if we're on bank 1, | 
 | 	 * write to bank 0 etc.  We also need to erase the segment that | 
 | 	 * is going to be written | 
 | 	 */ | 
 | 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | 
 | 	if (ret_val) { | 
 | 		e_dbg("Could not detect valid bank, assuming bank 0\n"); | 
 | 		bank = 0; | 
 | 	} | 
 |  | 
 | 	if (bank == 0) { | 
 | 		new_bank_offset = nvm->flash_bank_size; | 
 | 		old_bank_offset = 0; | 
 | 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} else { | 
 | 		old_bank_offset = nvm->flash_bank_size; | 
 | 		new_bank_offset = 0; | 
 | 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 	} | 
 | 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | 
 | 		if (dev_spec->shadow_ram[i].modified) { | 
 | 			data = dev_spec->shadow_ram[i].value; | 
 | 		} else { | 
 | 			ret_val = e1000_read_flash_word_ich8lan(hw, i + | 
 | 								old_bank_offset, | 
 | 								&data); | 
 | 			if (ret_val) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* If the word is 0x13, then make sure the signature bits | 
 | 		 * (15:14) are 11b until the commit has completed. | 
 | 		 * This will allow us to write 10b which indicates the | 
 | 		 * signature is valid.  We want to do this after the write | 
 | 		 * has completed so that we don't mark the segment valid | 
 | 		 * while the write is still in progress | 
 | 		 */ | 
 | 		if (i == E1000_ICH_NVM_SIG_WORD) | 
 | 			data |= E1000_ICH_NVM_SIG_MASK; | 
 |  | 
 | 		/* Convert offset to bytes. */ | 
 | 		act_offset = (i + new_bank_offset) << 1; | 
 |  | 
 | 		usleep_range(100, 200); | 
 | 		/* Write the bytes to the new bank. */ | 
 | 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | 
 | 							       act_offset, | 
 | 							       (u8)data); | 
 | 		if (ret_val) | 
 | 			break; | 
 |  | 
 | 		usleep_range(100, 200); | 
 | 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | 
 | 							       act_offset + 1, | 
 | 							       (u8)(data >> 8)); | 
 | 		if (ret_val) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Don't bother writing the segment valid bits if sector | 
 | 	 * programming failed. | 
 | 	 */ | 
 | 	if (ret_val) { | 
 | 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ | 
 | 		e_dbg("Flash commit failed.\n"); | 
 | 		goto release; | 
 | 	} | 
 |  | 
 | 	/* Finally validate the new segment by setting bit 15:14 | 
 | 	 * to 10b in word 0x13 , this can be done without an | 
 | 	 * erase as well since these bits are 11 to start with | 
 | 	 * and we need to change bit 14 to 0b | 
 | 	 */ | 
 | 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; | 
 | 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	data &= 0xBFFF; | 
 | 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | 
 | 						       act_offset * 2 + 1, | 
 | 						       (u8)(data >> 8)); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	/* And invalidate the previously valid segment by setting | 
 | 	 * its signature word (0x13) high_byte to 0b. This can be | 
 | 	 * done without an erase because flash erase sets all bits | 
 | 	 * to 1's. We can write 1's to 0's without an erase | 
 | 	 */ | 
 | 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; | 
 | 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); | 
 | 	if (ret_val) | 
 | 		goto release; | 
 |  | 
 | 	/* Great!  Everything worked, we can now clear the cached entries. */ | 
 | 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | 
 | 		dev_spec->shadow_ram[i].modified = false; | 
 | 		dev_spec->shadow_ram[i].value = 0xFFFF; | 
 | 	} | 
 |  | 
 | release: | 
 | 	nvm->ops.release(hw); | 
 |  | 
 | 	/* Reload the EEPROM, or else modifications will not appear | 
 | 	 * until after the next adapter reset. | 
 | 	 */ | 
 | 	if (!ret_val) { | 
 | 		nvm->ops.reload(hw); | 
 | 		usleep_range(10000, 11000); | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (ret_val) | 
 | 		e_dbg("NVM update error: %d\n", ret_val); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. | 
 |  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not | 
 |  *  calculated, in which case we need to calculate the checksum and set bit 6. | 
 |  **/ | 
 | static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 data; | 
 | 	u16 word; | 
 | 	u16 valid_csum_mask; | 
 |  | 
 | 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0, | 
 | 	 * the checksum needs to be fixed.  This bit is an indication that | 
 | 	 * the NVM was prepared by OEM software and did not calculate | 
 | 	 * the checksum...a likely scenario. | 
 | 	 */ | 
 | 	switch (hw->mac.type) { | 
 | 	case e1000_pch_lpt: | 
 | 	case e1000_pch_spt: | 
 | 	case e1000_pch_cnp: | 
 | 	case e1000_pch_tgp: | 
 | 	case e1000_pch_adp: | 
 | 	case e1000_pch_mtp: | 
 | 	case e1000_pch_lnp: | 
 | 	case e1000_pch_ptp: | 
 | 	case e1000_pch_nvp: | 
 | 		word = NVM_COMPAT; | 
 | 		valid_csum_mask = NVM_COMPAT_VALID_CSUM; | 
 | 		break; | 
 | 	default: | 
 | 		word = NVM_FUTURE_INIT_WORD1; | 
 | 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ret_val = e1000_read_nvm(hw, word, 1, &data); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if (!(data & valid_csum_mask)) { | 
 | 		e_dbg("NVM Checksum valid bit not set\n"); | 
 |  | 
 | 		if (hw->mac.type < e1000_pch_tgp) { | 
 | 			data |= valid_csum_mask; | 
 | 			ret_val = e1000_write_nvm(hw, word, 1, &data); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 			ret_val = e1000e_update_nvm_checksum(hw); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 | 		} else if (hw->mac.type == e1000_pch_tgp) { | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return e1000e_validate_nvm_checksum_generic(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  To prevent malicious write/erase of the NVM, set it to be read-only | 
 |  *  so that the hardware ignores all write/erase cycles of the NVM via | 
 |  *  the flash control registers.  The shadow-ram copy of the NVM will | 
 |  *  still be updated, however any updates to this copy will not stick | 
 |  *  across driver reloads. | 
 |  **/ | 
 | void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	union ich8_flash_protected_range pr0; | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	u32 gfpreg; | 
 |  | 
 | 	nvm->ops.acquire(hw); | 
 |  | 
 | 	gfpreg = er32flash(ICH_FLASH_GFPREG); | 
 |  | 
 | 	/* Write-protect GbE Sector of NVM */ | 
 | 	pr0.regval = er32flash(ICH_FLASH_PR0); | 
 | 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; | 
 | 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); | 
 | 	pr0.range.wpe = true; | 
 | 	ew32flash(ICH_FLASH_PR0, pr0.regval); | 
 |  | 
 | 	/* Lock down a subset of GbE Flash Control Registers, e.g. | 
 | 	 * PR0 to prevent the write-protection from being lifted. | 
 | 	 * Once FLOCKDN is set, the registers protected by it cannot | 
 | 	 * be written until FLOCKDN is cleared by a hardware reset. | 
 | 	 */ | 
 | 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 | 	hsfsts.hsf_status.flockdn = true; | 
 | 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
 |  | 
 | 	nvm->ops.release(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset (in bytes) of the byte/word to read. | 
 |  *  @size: Size of data to read, 1=byte 2=word | 
 |  *  @data: The byte(s) to write to the NVM. | 
 |  * | 
 |  *  Writes one/two bytes to the NVM using the flash access registers. | 
 |  **/ | 
 | static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					  u8 size, u16 data) | 
 | { | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	union ich8_hws_flash_ctrl hsflctl; | 
 | 	u32 flash_linear_addr; | 
 | 	u32 flash_data = 0; | 
 | 	s32 ret_val; | 
 | 	u8 count = 0; | 
 |  | 
 | 	if (hw->mac.type >= e1000_pch_spt) { | 
 | 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) | 
 | 			return -E1000_ERR_NVM; | 
 | 	} else { | 
 | 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) | 
 | 			return -E1000_ERR_NVM; | 
 | 	} | 
 |  | 
 | 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + | 
 | 			     hw->nvm.flash_base_addr); | 
 |  | 
 | 	do { | 
 | 		udelay(1); | 
 | 		/* Steps */ | 
 | 		ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			break; | 
 | 		/* In SPT, This register is in Lan memory space, not | 
 | 		 * flash.  Therefore, only 32 bit access is supported | 
 | 		 */ | 
 | 		if (hw->mac.type >= e1000_pch_spt) | 
 | 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; | 
 | 		else | 
 | 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
 |  | 
 | 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | 
 | 		hsflctl.hsf_ctrl.fldbcount = size - 1; | 
 | 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | 
 | 		/* In SPT, This register is in Lan memory space, | 
 | 		 * not flash.  Therefore, only 32 bit access is | 
 | 		 * supported | 
 | 		 */ | 
 | 		if (hw->mac.type >= e1000_pch_spt) | 
 | 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); | 
 | 		else | 
 | 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
 |  | 
 | 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
 |  | 
 | 		if (size == 1) | 
 | 			flash_data = (u32)data & 0x00FF; | 
 | 		else | 
 | 			flash_data = (u32)data; | 
 |  | 
 | 		ew32flash(ICH_FLASH_FDATA0, flash_data); | 
 |  | 
 | 		/* check if FCERR is set to 1 , if set to 1, clear it | 
 | 		 * and try the whole sequence a few more times else done | 
 | 		 */ | 
 | 		ret_val = | 
 | 		    e1000_flash_cycle_ich8lan(hw, | 
 | 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT); | 
 | 		if (!ret_val) | 
 | 			break; | 
 |  | 
 | 		/* If we're here, then things are most likely | 
 | 		 * completely hosed, but if the error condition | 
 | 		 * is detected, it won't hurt to give it another | 
 | 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
 | 		 */ | 
 | 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 | 		if (hsfsts.hsf_status.flcerr) | 
 | 			/* Repeat for some time before giving up. */ | 
 | 			continue; | 
 | 		if (!hsfsts.hsf_status.flcdone) { | 
 | 			e_dbg("Timeout error - flash cycle did not complete.\n"); | 
 | 			break; | 
 | 		} | 
 | 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 | *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM | 
 | *  @hw: pointer to the HW structure | 
 | *  @offset: The offset (in bytes) of the dwords to read. | 
 | *  @data: The 4 bytes to write to the NVM. | 
 | * | 
 | *  Writes one/two/four bytes to the NVM using the flash access registers. | 
 | **/ | 
 | static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					    u32 data) | 
 | { | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	union ich8_hws_flash_ctrl hsflctl; | 
 | 	u32 flash_linear_addr; | 
 | 	s32 ret_val; | 
 | 	u8 count = 0; | 
 |  | 
 | 	if (hw->mac.type >= e1000_pch_spt) { | 
 | 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK) | 
 | 			return -E1000_ERR_NVM; | 
 | 	} | 
 | 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + | 
 | 			     hw->nvm.flash_base_addr); | 
 | 	do { | 
 | 		udelay(1); | 
 | 		/* Steps */ | 
 | 		ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			break; | 
 |  | 
 | 		/* In SPT, This register is in Lan memory space, not | 
 | 		 * flash.  Therefore, only 32 bit access is supported | 
 | 		 */ | 
 | 		if (hw->mac.type >= e1000_pch_spt) | 
 | 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) | 
 | 			    >> 16; | 
 | 		else | 
 | 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
 |  | 
 | 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; | 
 | 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | 
 |  | 
 | 		/* In SPT, This register is in Lan memory space, | 
 | 		 * not flash.  Therefore, only 32 bit access is | 
 | 		 * supported | 
 | 		 */ | 
 | 		if (hw->mac.type >= e1000_pch_spt) | 
 | 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); | 
 | 		else | 
 | 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
 |  | 
 | 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
 |  | 
 | 		ew32flash(ICH_FLASH_FDATA0, data); | 
 |  | 
 | 		/* check if FCERR is set to 1 , if set to 1, clear it | 
 | 		 * and try the whole sequence a few more times else done | 
 | 		 */ | 
 | 		ret_val = | 
 | 		   e1000_flash_cycle_ich8lan(hw, | 
 | 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT); | 
 |  | 
 | 		if (!ret_val) | 
 | 			break; | 
 |  | 
 | 		/* If we're here, then things are most likely | 
 | 		 * completely hosed, but if the error condition | 
 | 		 * is detected, it won't hurt to give it another | 
 | 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
 | 		 */ | 
 | 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 |  | 
 | 		if (hsfsts.hsf_status.flcerr) | 
 | 			/* Repeat for some time before giving up. */ | 
 | 			continue; | 
 | 		if (!hsfsts.hsf_status.flcdone) { | 
 | 			e_dbg("Timeout error - flash cycle did not complete.\n"); | 
 | 			break; | 
 | 		} | 
 | 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The index of the byte to read. | 
 |  *  @data: The byte to write to the NVM. | 
 |  * | 
 |  *  Writes a single byte to the NVM using the flash access registers. | 
 |  **/ | 
 | static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | 
 | 					  u8 data) | 
 | { | 
 | 	u16 word = (u16)data; | 
 |  | 
 | 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word); | 
 | } | 
 |  | 
 | /** | 
 | *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM | 
 | *  @hw: pointer to the HW structure | 
 | *  @offset: The offset of the word to write. | 
 | *  @dword: The dword to write to the NVM. | 
 | * | 
 | *  Writes a single dword to the NVM using the flash access registers. | 
 | *  Goes through a retry algorithm before giving up. | 
 | **/ | 
 | static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, | 
 | 						 u32 offset, u32 dword) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 program_retries; | 
 |  | 
 | 	/* Must convert word offset into bytes. */ | 
 | 	offset <<= 1; | 
 | 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); | 
 |  | 
 | 	if (!ret_val) | 
 | 		return ret_val; | 
 | 	for (program_retries = 0; program_retries < 100; program_retries++) { | 
 | 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); | 
 | 		usleep_range(100, 200); | 
 | 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); | 
 | 		if (!ret_val) | 
 | 			break; | 
 | 	} | 
 | 	if (program_retries == 100) | 
 | 		return -E1000_ERR_NVM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: The offset of the byte to write. | 
 |  *  @byte: The byte to write to the NVM. | 
 |  * | 
 |  *  Writes a single byte to the NVM using the flash access registers. | 
 |  *  Goes through a retry algorithm before giving up. | 
 |  **/ | 
 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | 
 | 						u32 offset, u8 byte) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 program_retries; | 
 |  | 
 | 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | 
 | 	if (!ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	for (program_retries = 0; program_retries < 100; program_retries++) { | 
 | 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); | 
 | 		usleep_range(100, 200); | 
 | 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | 
 | 		if (!ret_val) | 
 | 			break; | 
 | 	} | 
 | 	if (program_retries == 100) | 
 | 		return -E1000_ERR_NVM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @bank: 0 for first bank, 1 for second bank, etc. | 
 |  * | 
 |  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based. | 
 |  *  bank N is 4096 * N + flash_reg_addr. | 
 |  **/ | 
 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) | 
 | { | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	union ich8_hws_flash_status hsfsts; | 
 | 	union ich8_hws_flash_ctrl hsflctl; | 
 | 	u32 flash_linear_addr; | 
 | 	/* bank size is in 16bit words - adjust to bytes */ | 
 | 	u32 flash_bank_size = nvm->flash_bank_size * 2; | 
 | 	s32 ret_val; | 
 | 	s32 count = 0; | 
 | 	s32 j, iteration, sector_size; | 
 |  | 
 | 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 |  | 
 | 	/* Determine HW Sector size: Read BERASE bits of hw flash status | 
 | 	 * register | 
 | 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16 | 
 | 	 *     consecutive sectors.  The start index for the nth Hw sector | 
 | 	 *     can be calculated as = bank * 4096 + n * 256 | 
 | 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | 
 | 	 *     The start index for the nth Hw sector can be calculated | 
 | 	 *     as = bank * 4096 | 
 | 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 | 
 | 	 *     (ich9 only, otherwise error condition) | 
 | 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 | 
 | 	 */ | 
 | 	switch (hsfsts.hsf_status.berasesz) { | 
 | 	case 0: | 
 | 		/* Hw sector size 256 */ | 
 | 		sector_size = ICH_FLASH_SEG_SIZE_256; | 
 | 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; | 
 | 		break; | 
 | 	case 1: | 
 | 		sector_size = ICH_FLASH_SEG_SIZE_4K; | 
 | 		iteration = 1; | 
 | 		break; | 
 | 	case 2: | 
 | 		sector_size = ICH_FLASH_SEG_SIZE_8K; | 
 | 		iteration = 1; | 
 | 		break; | 
 | 	case 3: | 
 | 		sector_size = ICH_FLASH_SEG_SIZE_64K; | 
 | 		iteration = 1; | 
 | 		break; | 
 | 	default: | 
 | 		return -E1000_ERR_NVM; | 
 | 	} | 
 |  | 
 | 	/* Start with the base address, then add the sector offset. */ | 
 | 	flash_linear_addr = hw->nvm.flash_base_addr; | 
 | 	flash_linear_addr += (bank) ? flash_bank_size : 0; | 
 |  | 
 | 	for (j = 0; j < iteration; j++) { | 
 | 		do { | 
 | 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; | 
 |  | 
 | 			/* Steps */ | 
 | 			ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
 | 			if (ret_val) | 
 | 				return ret_val; | 
 |  | 
 | 			/* Write a value 11 (block Erase) in Flash | 
 | 			 * Cycle field in hw flash control | 
 | 			 */ | 
 | 			if (hw->mac.type >= e1000_pch_spt) | 
 | 				hsflctl.regval = | 
 | 				    er32flash(ICH_FLASH_HSFSTS) >> 16; | 
 | 			else | 
 | 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
 |  | 
 | 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; | 
 | 			if (hw->mac.type >= e1000_pch_spt) | 
 | 				ew32flash(ICH_FLASH_HSFSTS, | 
 | 					  hsflctl.regval << 16); | 
 | 			else | 
 | 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
 |  | 
 | 			/* Write the last 24 bits of an index within the | 
 | 			 * block into Flash Linear address field in Flash | 
 | 			 * Address. | 
 | 			 */ | 
 | 			flash_linear_addr += (j * sector_size); | 
 | 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
 |  | 
 | 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout); | 
 | 			if (!ret_val) | 
 | 				break; | 
 |  | 
 | 			/* Check if FCERR is set to 1.  If 1, | 
 | 			 * clear it and try the whole sequence | 
 | 			 * a few more times else Done | 
 | 			 */ | 
 | 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
 | 			if (hsfsts.hsf_status.flcerr) | 
 | 				/* repeat for some time before giving up */ | 
 | 				continue; | 
 | 			else if (!hsfsts.hsf_status.flcdone) | 
 | 				return ret_val; | 
 | 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_valid_led_default_ich8lan - Set the default LED settings | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @data: Pointer to the LED settings | 
 |  * | 
 |  *  Reads the LED default settings from the NVM to data.  If the NVM LED | 
 |  *  settings is all 0's or F's, set the LED default to a valid LED default | 
 |  *  setting. | 
 |  **/ | 
 | static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) | 
 | { | 
 | 	s32 ret_val; | 
 |  | 
 | 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | 
 | 	if (ret_val) { | 
 | 		e_dbg("NVM Read Error\n"); | 
 | 		return ret_val; | 
 | 	} | 
 |  | 
 | 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | 
 | 		*data = ID_LED_DEFAULT_ICH8LAN; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_id_led_init_pchlan - store LED configurations | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  PCH does not control LEDs via the LEDCTL register, rather it uses | 
 |  *  the PHY LED configuration register. | 
 |  * | 
 |  *  PCH also does not have an "always on" or "always off" mode which | 
 |  *  complicates the ID feature.  Instead of using the "on" mode to indicate | 
 |  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), | 
 |  *  use "link_up" mode.  The LEDs will still ID on request if there is no | 
 |  *  link based on logic in e1000_led_[on|off]_pchlan(). | 
 |  **/ | 
 | static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	s32 ret_val; | 
 | 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; | 
 | 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; | 
 | 	u16 data, i, temp, shift; | 
 |  | 
 | 	/* Get default ID LED modes */ | 
 | 	ret_val = hw->nvm.ops.valid_led_default(hw, &data); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	mac->ledctl_default = er32(LEDCTL); | 
 | 	mac->ledctl_mode1 = mac->ledctl_default; | 
 | 	mac->ledctl_mode2 = mac->ledctl_default; | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; | 
 | 		shift = (i * 5); | 
 | 		switch (temp) { | 
 | 		case ID_LED_ON1_DEF2: | 
 | 		case ID_LED_ON1_ON2: | 
 | 		case ID_LED_ON1_OFF2: | 
 | 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); | 
 | 			mac->ledctl_mode1 |= (ledctl_on << shift); | 
 | 			break; | 
 | 		case ID_LED_OFF1_DEF2: | 
 | 		case ID_LED_OFF1_ON2: | 
 | 		case ID_LED_OFF1_OFF2: | 
 | 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); | 
 | 			mac->ledctl_mode1 |= (ledctl_off << shift); | 
 | 			break; | 
 | 		default: | 
 | 			/* Do nothing */ | 
 | 			break; | 
 | 		} | 
 | 		switch (temp) { | 
 | 		case ID_LED_DEF1_ON2: | 
 | 		case ID_LED_ON1_ON2: | 
 | 		case ID_LED_OFF1_ON2: | 
 | 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); | 
 | 			mac->ledctl_mode2 |= (ledctl_on << shift); | 
 | 			break; | 
 | 		case ID_LED_DEF1_OFF2: | 
 | 		case ID_LED_ON1_OFF2: | 
 | 		case ID_LED_OFF1_OFF2: | 
 | 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); | 
 | 			mac->ledctl_mode2 |= (ledctl_off << shift); | 
 | 			break; | 
 | 		default: | 
 | 			/* Do nothing */ | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability | 
 |  *  register, so the bus width is hard coded. | 
 |  **/ | 
 | static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_bus_info *bus = &hw->bus; | 
 | 	s32 ret_val; | 
 |  | 
 | 	ret_val = e1000e_get_bus_info_pcie(hw); | 
 |  | 
 | 	/* ICH devices are "PCI Express"-ish.  They have | 
 | 	 * a configuration space, but do not contain | 
 | 	 * PCI Express Capability registers, so bus width | 
 | 	 * must be hardcoded. | 
 | 	 */ | 
 | 	if (bus->width == e1000_bus_width_unknown) | 
 | 		bus->width = e1000_bus_width_pcie_x1; | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_reset_hw_ich8lan - Reset the hardware | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Does a full reset of the hardware which includes a reset of the PHY and | 
 |  *  MAC. | 
 |  **/ | 
 | static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u16 kum_cfg; | 
 | 	u32 ctrl, reg; | 
 | 	s32 ret_val; | 
 |  | 
 | 	/* Prevent the PCI-E bus from sticking if there is no TLP connection | 
 | 	 * on the last TLP read/write transaction when MAC is reset. | 
 | 	 */ | 
 | 	ret_val = e1000e_disable_pcie_master(hw); | 
 | 	if (ret_val) | 
 | 		e_dbg("PCI-E Master disable polling has failed.\n"); | 
 |  | 
 | 	e_dbg("Masking off all interrupts\n"); | 
 | 	ew32(IMC, 0xffffffff); | 
 |  | 
 | 	/* Disable the Transmit and Receive units.  Then delay to allow | 
 | 	 * any pending transactions to complete before we hit the MAC | 
 | 	 * with the global reset. | 
 | 	 */ | 
 | 	ew32(RCTL, 0); | 
 | 	ew32(TCTL, E1000_TCTL_PSP); | 
 | 	e1e_flush(); | 
 |  | 
 | 	usleep_range(10000, 11000); | 
 |  | 
 | 	/* Workaround for ICH8 bit corruption issue in FIFO memory */ | 
 | 	if (hw->mac.type == e1000_ich8lan) { | 
 | 		/* Set Tx and Rx buffer allocation to 8k apiece. */ | 
 | 		ew32(PBA, E1000_PBA_8K); | 
 | 		/* Set Packet Buffer Size to 16k. */ | 
 | 		ew32(PBS, E1000_PBS_16K); | 
 | 	} | 
 |  | 
 | 	if (hw->mac.type == e1000_pchlan) { | 
 | 		/* Save the NVM K1 bit setting */ | 
 | 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		if (kum_cfg & E1000_NVM_K1_ENABLE) | 
 | 			dev_spec->nvm_k1_enabled = true; | 
 | 		else | 
 | 			dev_spec->nvm_k1_enabled = false; | 
 | 	} | 
 |  | 
 | 	ctrl = er32(CTRL); | 
 |  | 
 | 	if (!hw->phy.ops.check_reset_block(hw)) { | 
 | 		/* Full-chip reset requires MAC and PHY reset at the same | 
 | 		 * time to make sure the interface between MAC and the | 
 | 		 * external PHY is reset. | 
 | 		 */ | 
 | 		ctrl |= E1000_CTRL_PHY_RST; | 
 |  | 
 | 		/* Gate automatic PHY configuration by hardware on | 
 | 		 * non-managed 82579 | 
 | 		 */ | 
 | 		if ((hw->mac.type == e1000_pch2lan) && | 
 | 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | 
 | 			e1000_gate_hw_phy_config_ich8lan(hw, true); | 
 | 	} | 
 | 	ret_val = e1000_acquire_swflag_ich8lan(hw); | 
 | 	e_dbg("Issuing a global reset to ich8lan\n"); | 
 | 	ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 
 | 	/* cannot issue a flush here because it hangs the hardware */ | 
 | 	msleep(20); | 
 |  | 
 | 	/* Set Phy Config Counter to 50msec */ | 
 | 	if (hw->mac.type == e1000_pch2lan) { | 
 | 		reg = er32(FEXTNVM3); | 
 | 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; | 
 | 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; | 
 | 		ew32(FEXTNVM3, reg); | 
 | 	} | 
 |  | 
 | 	if (!ret_val) | 
 | 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); | 
 |  | 
 | 	if (ctrl & E1000_CTRL_PHY_RST) { | 
 | 		ret_val = hw->phy.ops.get_cfg_done(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		ret_val = e1000_post_phy_reset_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	/* For PCH, this write will make sure that any noise | 
 | 	 * will be detected as a CRC error and be dropped rather than show up | 
 | 	 * as a bad packet to the DMA engine. | 
 | 	 */ | 
 | 	if (hw->mac.type == e1000_pchlan) | 
 | 		ew32(CRC_OFFSET, 0x65656565); | 
 |  | 
 | 	ew32(IMC, 0xffffffff); | 
 | 	er32(ICR); | 
 |  | 
 | 	reg = er32(KABGTXD); | 
 | 	reg |= E1000_KABGTXD_BGSQLBIAS; | 
 | 	ew32(KABGTXD, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_init_hw_ich8lan - Initialize the hardware | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Prepares the hardware for transmit and receive by doing the following: | 
 |  *   - initialize hardware bits | 
 |  *   - initialize LED identification | 
 |  *   - setup receive address registers | 
 |  *   - setup flow control | 
 |  *   - setup transmit descriptors | 
 |  *   - clear statistics | 
 |  **/ | 
 | static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	u32 ctrl_ext, txdctl, snoop, fflt_dbg; | 
 | 	s32 ret_val; | 
 | 	u16 i; | 
 |  | 
 | 	e1000_initialize_hw_bits_ich8lan(hw); | 
 | 	if (hw->mac.type >= e1000_pch_mtp) { | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		ret_val = e1000_reconfigure_k1_exit_timeout(hw); | 
 | 		hw->phy.ops.release(hw); | 
 | 		if (ret_val) { | 
 | 			e_dbg("Error failed to reconfigure K1 exit timeout\n"); | 
 | 			return ret_val; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Initialize identification LED */ | 
 | 	ret_val = mac->ops.id_led_init(hw); | 
 | 	/* An error is not fatal and we should not stop init due to this */ | 
 | 	if (ret_val) | 
 | 		e_dbg("Error initializing identification LED\n"); | 
 |  | 
 | 	/* Setup the receive address. */ | 
 | 	e1000e_init_rx_addrs(hw, mac->rar_entry_count); | 
 |  | 
 | 	/* Zero out the Multicast HASH table */ | 
 | 	e_dbg("Zeroing the MTA\n"); | 
 | 	for (i = 0; i < mac->mta_reg_count; i++) | 
 | 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | 
 |  | 
 | 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and | 
 | 	 * the ME.  Disable wakeup by clearing the host wakeup bit. | 
 | 	 * Reset the phy after disabling host wakeup to reset the Rx buffer. | 
 | 	 */ | 
 | 	if (hw->phy.type == e1000_phy_82578) { | 
 | 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i); | 
 | 		i &= ~BM_WUC_HOST_WU_BIT; | 
 | 		e1e_wphy(hw, BM_PORT_GEN_CFG, i); | 
 | 		ret_val = e1000_phy_hw_reset_ich8lan(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	/* Setup link and flow control */ | 
 | 	ret_val = mac->ops.setup_link(hw); | 
 |  | 
 | 	/* Set the transmit descriptor write-back policy for both queues */ | 
 | 	txdctl = er32(TXDCTL(0)); | 
 | 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | | 
 | 		  E1000_TXDCTL_FULL_TX_DESC_WB); | 
 | 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | | 
 | 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH); | 
 | 	ew32(TXDCTL(0), txdctl); | 
 | 	txdctl = er32(TXDCTL(1)); | 
 | 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | | 
 | 		  E1000_TXDCTL_FULL_TX_DESC_WB); | 
 | 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | | 
 | 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH); | 
 | 	ew32(TXDCTL(1), txdctl); | 
 |  | 
 | 	/* ICH8 has opposite polarity of no_snoop bits. | 
 | 	 * By default, we should use snoop behavior. | 
 | 	 */ | 
 | 	if (mac->type == e1000_ich8lan) | 
 | 		snoop = PCIE_ICH8_SNOOP_ALL; | 
 | 	else | 
 | 		snoop = (u32)~(PCIE_NO_SNOOP_ALL); | 
 | 	e1000e_set_pcie_no_snoop(hw, snoop); | 
 |  | 
 | 	/* Enable workaround for packet loss issue on TGP PCH | 
 | 	 * Do not gate DMA clock from the modPHY block | 
 | 	 */ | 
 | 	if (mac->type >= e1000_pch_tgp) { | 
 | 		fflt_dbg = er32(FFLT_DBG); | 
 | 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK; | 
 | 		ew32(FFLT_DBG, fflt_dbg); | 
 | 	} | 
 |  | 
 | 	ctrl_ext = er32(CTRL_EXT); | 
 | 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | 
 | 	ew32(CTRL_EXT, ctrl_ext); | 
 |  | 
 | 	/* Clear all of the statistics registers (clear on read).  It is | 
 | 	 * important that we do this after we have tried to establish link | 
 | 	 * because the symbol error count will increment wildly if there | 
 | 	 * is no link. | 
 | 	 */ | 
 | 	e1000_clear_hw_cntrs_ich8lan(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Sets/Clears required hardware bits necessary for correctly setting up the | 
 |  *  hardware for transmit and receive. | 
 |  **/ | 
 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* Extended Device Control */ | 
 | 	reg = er32(CTRL_EXT); | 
 | 	reg |= BIT(22); | 
 | 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */ | 
 | 	if (hw->mac.type >= e1000_pchlan) | 
 | 		reg |= E1000_CTRL_EXT_PHYPDEN; | 
 | 	ew32(CTRL_EXT, reg); | 
 |  | 
 | 	/* Transmit Descriptor Control 0 */ | 
 | 	reg = er32(TXDCTL(0)); | 
 | 	reg |= BIT(22); | 
 | 	ew32(TXDCTL(0), reg); | 
 |  | 
 | 	/* Transmit Descriptor Control 1 */ | 
 | 	reg = er32(TXDCTL(1)); | 
 | 	reg |= BIT(22); | 
 | 	ew32(TXDCTL(1), reg); | 
 |  | 
 | 	/* Transmit Arbitration Control 0 */ | 
 | 	reg = er32(TARC(0)); | 
 | 	if (hw->mac.type == e1000_ich8lan) | 
 | 		reg |= BIT(28) | BIT(29); | 
 | 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); | 
 | 	ew32(TARC(0), reg); | 
 |  | 
 | 	/* Transmit Arbitration Control 1 */ | 
 | 	reg = er32(TARC(1)); | 
 | 	if (er32(TCTL) & E1000_TCTL_MULR) | 
 | 		reg &= ~BIT(28); | 
 | 	else | 
 | 		reg |= BIT(28); | 
 | 	reg |= BIT(24) | BIT(26) | BIT(30); | 
 | 	ew32(TARC(1), reg); | 
 |  | 
 | 	/* Device Status */ | 
 | 	if (hw->mac.type == e1000_ich8lan) { | 
 | 		reg = er32(STATUS); | 
 | 		reg &= ~BIT(31); | 
 | 		ew32(STATUS, reg); | 
 | 	} | 
 |  | 
 | 	/* work-around descriptor data corruption issue during nfs v2 udp | 
 | 	 * traffic, just disable the nfs filtering capability | 
 | 	 */ | 
 | 	reg = er32(RFCTL); | 
 | 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); | 
 |  | 
 | 	/* Disable IPv6 extension header parsing because some malformed | 
 | 	 * IPv6 headers can hang the Rx. | 
 | 	 */ | 
 | 	if (hw->mac.type == e1000_ich8lan) | 
 | 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); | 
 | 	ew32(RFCTL, reg); | 
 |  | 
 | 	/* Enable ECC on Lynxpoint */ | 
 | 	if (hw->mac.type >= e1000_pch_lpt) { | 
 | 		reg = er32(PBECCSTS); | 
 | 		reg |= E1000_PBECCSTS_ECC_ENABLE; | 
 | 		ew32(PBECCSTS, reg); | 
 |  | 
 | 		reg = er32(CTRL); | 
 | 		reg |= E1000_CTRL_MEHE; | 
 | 		ew32(CTRL, reg); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_setup_link_ich8lan - Setup flow control and link settings | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Determines which flow control settings to use, then configures flow | 
 |  *  control.  Calls the appropriate media-specific link configuration | 
 |  *  function.  Assuming the adapter has a valid link partner, a valid link | 
 |  *  should be established.  Assumes the hardware has previously been reset | 
 |  *  and the transmitter and receiver are not enabled. | 
 |  **/ | 
 | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 |  | 
 | 	if (hw->phy.ops.check_reset_block(hw)) | 
 | 		return 0; | 
 |  | 
 | 	/* ICH parts do not have a word in the NVM to determine | 
 | 	 * the default flow control setting, so we explicitly | 
 | 	 * set it to full. | 
 | 	 */ | 
 | 	if (hw->fc.requested_mode == e1000_fc_default) { | 
 | 		/* Workaround h/w hang when Tx flow control enabled */ | 
 | 		if (hw->mac.type == e1000_pchlan) | 
 | 			hw->fc.requested_mode = e1000_fc_rx_pause; | 
 | 		else | 
 | 			hw->fc.requested_mode = e1000_fc_full; | 
 | 	} | 
 |  | 
 | 	/* Save off the requested flow control mode for use later.  Depending | 
 | 	 * on the link partner's capabilities, we may or may not use this mode. | 
 | 	 */ | 
 | 	hw->fc.current_mode = hw->fc.requested_mode; | 
 |  | 
 | 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); | 
 |  | 
 | 	/* Continue to configure the copper link. */ | 
 | 	ret_val = hw->mac.ops.setup_physical_interface(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	ew32(FCTTV, hw->fc.pause_time); | 
 | 	if ((hw->phy.type == e1000_phy_82578) || | 
 | 	    (hw->phy.type == e1000_phy_82579) || | 
 | 	    (hw->phy.type == e1000_phy_i217) || | 
 | 	    (hw->phy.type == e1000_phy_82577)) { | 
 | 		ew32(FCRTV_PCH, hw->fc.refresh_time); | 
 |  | 
 | 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), | 
 | 				   hw->fc.pause_time); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 	} | 
 |  | 
 | 	return e1000e_set_fc_watermarks(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Configures the kumeran interface to the PHY to wait the appropriate time | 
 |  *  when polling the PHY, then call the generic setup_copper_link to finish | 
 |  *  configuring the copper link. | 
 |  **/ | 
 | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 ctrl; | 
 | 	s32 ret_val; | 
 | 	u16 reg_data; | 
 |  | 
 | 	ctrl = er32(CTRL); | 
 | 	ctrl |= E1000_CTRL_SLU; | 
 | 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
 | 	ew32(CTRL, ctrl); | 
 |  | 
 | 	/* Set the mac to wait the maximum time between each iteration | 
 | 	 * and increase the max iterations when polling the phy; | 
 | 	 * this fixes erroneous timeouts at 10Mbps. | 
 | 	 */ | 
 | 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 | 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, | 
 | 				       ®_data); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 | 	reg_data |= 0x3F; | 
 | 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, | 
 | 					reg_data); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	switch (hw->phy.type) { | 
 | 	case e1000_phy_igp_3: | 
 | 		ret_val = e1000e_copper_link_setup_igp(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		break; | 
 | 	case e1000_phy_bm: | 
 | 	case e1000_phy_82578: | 
 | 		ret_val = e1000e_copper_link_setup_m88(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		break; | 
 | 	case e1000_phy_82577: | 
 | 	case e1000_phy_82579: | 
 | 		ret_val = e1000_copper_link_setup_82577(hw); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		break; | 
 | 	case e1000_phy_ife: | 
 | 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		reg_data &= ~IFE_PMC_AUTO_MDIX; | 
 |  | 
 | 		switch (hw->phy.mdix) { | 
 | 		case 1: | 
 | 			reg_data &= ~IFE_PMC_FORCE_MDIX; | 
 | 			break; | 
 | 		case 2: | 
 | 			reg_data |= IFE_PMC_FORCE_MDIX; | 
 | 			break; | 
 | 		case 0: | 
 | 		default: | 
 | 			reg_data |= IFE_PMC_AUTO_MDIX; | 
 | 			break; | 
 | 		} | 
 | 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return e1000e_setup_copper_link(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Calls the PHY specific link setup function and then calls the | 
 |  *  generic setup_copper_link to finish configuring the link for | 
 |  *  Lynxpoint PCH devices | 
 |  **/ | 
 | static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) | 
 | { | 
 | 	u32 ctrl; | 
 | 	s32 ret_val; | 
 |  | 
 | 	ctrl = er32(CTRL); | 
 | 	ctrl |= E1000_CTRL_SLU; | 
 | 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
 | 	ew32(CTRL, ctrl); | 
 |  | 
 | 	ret_val = e1000_copper_link_setup_82577(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	return e1000e_setup_copper_link(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @speed: pointer to store current link speed | 
 |  *  @duplex: pointer to store the current link duplex | 
 |  * | 
 |  *  Calls the generic get_speed_and_duplex to retrieve the current link | 
 |  *  information and then calls the Kumeran lock loss workaround for links at | 
 |  *  gigabit speeds. | 
 |  **/ | 
 | static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, | 
 | 					  u16 *duplex) | 
 | { | 
 | 	s32 ret_val; | 
 |  | 
 | 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	if ((hw->mac.type == e1000_ich8lan) && | 
 | 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { | 
 | 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Work-around for 82566 Kumeran PCS lock loss: | 
 |  *  On link status change (i.e. PCI reset, speed change) and link is up and | 
 |  *  speed is gigabit- | 
 |  *    0) if workaround is optionally disabled do nothing | 
 |  *    1) wait 1ms for Kumeran link to come up | 
 |  *    2) check Kumeran Diagnostic register PCS lock loss bit | 
 |  *    3) if not set the link is locked (all is good), otherwise... | 
 |  *    4) reset the PHY | 
 |  *    5) repeat up to 10 times | 
 |  *  Note: this is only called for IGP3 copper when speed is 1gb. | 
 |  **/ | 
 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u32 phy_ctrl; | 
 | 	s32 ret_val; | 
 | 	u16 i, data; | 
 | 	bool link; | 
 |  | 
 | 	if (!dev_spec->kmrn_lock_loss_workaround_enabled) | 
 | 		return 0; | 
 |  | 
 | 	/* Make sure link is up before proceeding.  If not just return. | 
 | 	 * Attempting this while link is negotiating fouled up link | 
 | 	 * stability | 
 | 	 */ | 
 | 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
 | 	if (!link) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		/* read once to clear */ | 
 | 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 | 		/* and again to get new status */ | 
 | 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | 
 | 		if (ret_val) | 
 | 			return ret_val; | 
 |  | 
 | 		/* check for PCS lock */ | 
 | 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | 
 | 			return 0; | 
 |  | 
 | 		/* Issue PHY reset */ | 
 | 		e1000_phy_hw_reset(hw); | 
 | 		mdelay(5); | 
 | 	} | 
 | 	/* Disable GigE link negotiation */ | 
 | 	phy_ctrl = er32(PHY_CTRL); | 
 | 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | | 
 | 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | 
 | 	ew32(PHY_CTRL, phy_ctrl); | 
 |  | 
 | 	/* Call gig speed drop workaround on Gig disable before accessing | 
 | 	 * any PHY registers | 
 | 	 */ | 
 | 	e1000e_gig_downshift_workaround_ich8lan(hw); | 
 |  | 
 | 	/* unable to acquire PCS lock */ | 
 | 	return -E1000_ERR_PHY; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @state: boolean value used to set the current Kumeran workaround state | 
 |  * | 
 |  *  If ICH8, set the current Kumeran workaround state (enabled - true | 
 |  *  /disabled - false). | 
 |  **/ | 
 | void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, | 
 | 						  bool state) | 
 | { | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 |  | 
 | 	if (hw->mac.type != e1000_ich8lan) { | 
 | 		e_dbg("Workaround applies to ICH8 only.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	dev_spec->kmrn_lock_loss_workaround_enabled = state; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Workaround for 82566 power-down on D3 entry: | 
 |  *    1) disable gigabit link | 
 |  *    2) write VR power-down enable | 
 |  *    3) read it back | 
 |  *  Continue if successful, else issue LCD reset and repeat | 
 |  **/ | 
 | void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u32 reg; | 
 | 	u16 data; | 
 | 	u8 retry = 0; | 
 |  | 
 | 	if (hw->phy.type != e1000_phy_igp_3) | 
 | 		return; | 
 |  | 
 | 	/* Try the workaround twice (if needed) */ | 
 | 	do { | 
 | 		/* Disable link */ | 
 | 		reg = er32(PHY_CTRL); | 
 | 		reg |= (E1000_PHY_CTRL_GBE_DISABLE | | 
 | 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | 
 | 		ew32(PHY_CTRL, reg); | 
 |  | 
 | 		/* Call gig speed drop workaround on Gig disable before | 
 | 		 * accessing any PHY registers | 
 | 		 */ | 
 | 		if (hw->mac.type == e1000_ich8lan) | 
 | 			e1000e_gig_downshift_workaround_ich8lan(hw); | 
 |  | 
 | 		/* Write VR power-down enable */ | 
 | 		e1e_rphy(hw, IGP3_VR_CTRL, &data); | 
 | 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | 
 | 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); | 
 |  | 
 | 		/* Read it back and test */ | 
 | 		e1e_rphy(hw, IGP3_VR_CTRL, &data); | 
 | 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | 
 | 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) | 
 | 			break; | 
 |  | 
 | 		/* Issue PHY reset and repeat at most one more time */ | 
 | 		reg = er32(CTRL); | 
 | 		ew32(CTRL, reg | E1000_CTRL_PHY_RST); | 
 | 		retry++; | 
 | 	} while (retry); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), | 
 |  *  LPLU, Gig disable, MDIC PHY reset): | 
 |  *    1) Set Kumeran Near-end loopback | 
 |  *    2) Clear Kumeran Near-end loopback | 
 |  *  Should only be called for ICH8[m] devices with any 1G Phy. | 
 |  **/ | 
 | void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 reg_data; | 
 |  | 
 | 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) | 
 | 		return; | 
 |  | 
 | 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | 
 | 				       ®_data); | 
 | 	if (ret_val) | 
 | 		return; | 
 | 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; | 
 | 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | 
 | 					reg_data); | 
 | 	if (ret_val) | 
 | 		return; | 
 | 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; | 
 | 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  During S0 to Sx transition, it is possible the link remains at gig | 
 |  *  instead of negotiating to a lower speed.  Before going to Sx, set | 
 |  *  'Gig Disable' to force link speed negotiation to a lower speed based on | 
 |  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts, | 
 |  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also | 
 |  *  needs to be written. | 
 |  *  Parts that support (and are linked to a partner which support) EEE in | 
 |  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power | 
 |  *  than 10Mbps w/o EEE. | 
 |  **/ | 
 | void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
 | 	u32 phy_ctrl; | 
 | 	s32 ret_val; | 
 |  | 
 | 	phy_ctrl = er32(PHY_CTRL); | 
 | 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; | 
 |  | 
 | 	if (hw->phy.type == e1000_phy_i217) { | 
 | 		u16 phy_reg, device_id = hw->adapter->pdev->device; | 
 |  | 
 | 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || | 
 | 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || | 
 | 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) || | 
 | 		    (device_id == E1000_DEV_ID_PCH_I218_V3) || | 
 | 		    (hw->mac.type >= e1000_pch_spt)) { | 
 | 			u32 fextnvm6 = er32(FEXTNVM6); | 
 |  | 
 | 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); | 
 | 		} | 
 |  | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		if (!dev_spec->eee_disable) { | 
 | 			u16 eee_advert; | 
 |  | 
 | 			ret_val = | 
 | 			    e1000_read_emi_reg_locked(hw, | 
 | 						      I217_EEE_ADVERTISEMENT, | 
 | 						      &eee_advert); | 
 | 			if (ret_val) | 
 | 				goto release; | 
 |  | 
 | 			/* Disable LPLU if both link partners support 100BaseT | 
 | 			 * EEE and 100Full is advertised on both ends of the | 
 | 			 * link, and enable Auto Enable LPI since there will | 
 | 			 * be no driver to enable LPI while in Sx. | 
 | 			 */ | 
 | 			if ((eee_advert & I82579_EEE_100_SUPPORTED) && | 
 | 			    (dev_spec->eee_lp_ability & | 
 | 			     I82579_EEE_100_SUPPORTED) && | 
 | 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { | 
 | 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | | 
 | 					      E1000_PHY_CTRL_NOND0A_LPLU); | 
 |  | 
 | 				/* Set Auto Enable LPI after link up */ | 
 | 				e1e_rphy_locked(hw, | 
 | 						I217_LPI_GPIO_CTRL, &phy_reg); | 
 | 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; | 
 | 				e1e_wphy_locked(hw, | 
 | 						I217_LPI_GPIO_CTRL, phy_reg); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* For i217 Intel Rapid Start Technology support, | 
 | 		 * when the system is going into Sx and no manageability engine | 
 | 		 * is present, the driver must configure proxy to reset only on | 
 | 		 * power good.  LPI (Low Power Idle) state must also reset only | 
 | 		 * on power good, as well as the MTA (Multicast table array). | 
 | 		 * The SMBus release must also be disabled on LCD reset. | 
 | 		 */ | 
 | 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { | 
 | 			/* Enable proxy to reset only on power good. */ | 
 | 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); | 
 | 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; | 
 | 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); | 
 |  | 
 | 			/* Set bit enable LPI (EEE) to reset only on | 
 | 			 * power good. | 
 | 			 */ | 
 | 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); | 
 | 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; | 
 | 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); | 
 |  | 
 | 			/* Disable the SMB release on LCD reset. */ | 
 | 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); | 
 | 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; | 
 | 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); | 
 | 		} | 
 |  | 
 | 		/* Enable MTA to reset for Intel Rapid Start Technology | 
 | 		 * Support | 
 | 		 */ | 
 | 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); | 
 | 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; | 
 | 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg); | 
 |  | 
 | release: | 
 | 		hw->phy.ops.release(hw); | 
 | 	} | 
 | out: | 
 | 	ew32(PHY_CTRL, phy_ctrl); | 
 |  | 
 | 	if (hw->mac.type == e1000_ich8lan) | 
 | 		e1000e_gig_downshift_workaround_ich8lan(hw); | 
 |  | 
 | 	if (hw->mac.type >= e1000_pchlan) { | 
 | 		e1000_oem_bits_config_ich8lan(hw, false); | 
 |  | 
 | 		/* Reset PHY to activate OEM bits on 82577/8 */ | 
 | 		if (hw->mac.type == e1000_pchlan) | 
 | 			e1000e_phy_hw_reset_generic(hw); | 
 |  | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) | 
 | 			return; | 
 | 		e1000_write_smbus_addr(hw); | 
 | 		hw->phy.ops.release(hw); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  During Sx to S0 transitions on non-managed devices or managed devices | 
 |  *  on which PHY resets are not blocked, if the PHY registers cannot be | 
 |  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle | 
 |  *  the PHY. | 
 |  *  On i217, setup Intel Rapid Start Technology. | 
 |  **/ | 
 | void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 |  | 
 | 	if (hw->mac.type < e1000_pch2lan) | 
 | 		return; | 
 |  | 
 | 	ret_val = e1000_init_phy_workarounds_pchlan(hw); | 
 | 	if (ret_val) { | 
 | 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* For i217 Intel Rapid Start Technology support when the system | 
 | 	 * is transitioning from Sx and no manageability engine is present | 
 | 	 * configure SMBus to restore on reset, disable proxy, and enable | 
 | 	 * the reset on MTA (Multicast table array). | 
 | 	 */ | 
 | 	if (hw->phy.type == e1000_phy_i217) { | 
 | 		u16 phy_reg; | 
 |  | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) { | 
 | 			e_dbg("Failed to setup iRST\n"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* Clear Auto Enable LPI after link up */ | 
 | 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); | 
 | 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; | 
 | 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); | 
 |  | 
 | 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { | 
 | 			/* Restore clear on SMB if no manageability engine | 
 | 			 * is present | 
 | 			 */ | 
 | 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); | 
 | 			if (ret_val) | 
 | 				goto release; | 
 | 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; | 
 | 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); | 
 |  | 
 | 			/* Disable Proxy */ | 
 | 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); | 
 | 		} | 
 | 		/* Enable reset on MTA */ | 
 | 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; | 
 | 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg); | 
 | release: | 
 | 		if (ret_val) | 
 | 			e_dbg("Error %d in resume workarounds\n", ret_val); | 
 | 		hw->phy.ops.release(hw); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_cleanup_led_ich8lan - Restore the default LED operation | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Return the LED back to the default configuration. | 
 |  **/ | 
 | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	if (hw->phy.type == e1000_phy_ife) | 
 | 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | 
 |  | 
 | 	ew32(LEDCTL, hw->mac.ledctl_default); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_led_on_ich8lan - Turn LEDs on | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Turn on the LEDs. | 
 |  **/ | 
 | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	if (hw->phy.type == e1000_phy_ife) | 
 | 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 
 | 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | 
 |  | 
 | 	ew32(LEDCTL, hw->mac.ledctl_mode2); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_led_off_ich8lan - Turn LEDs off | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Turn off the LEDs. | 
 |  **/ | 
 | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	if (hw->phy.type == e1000_phy_ife) | 
 | 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 
 | 				(IFE_PSCL_PROBE_MODE | | 
 | 				 IFE_PSCL_PROBE_LEDS_OFF)); | 
 |  | 
 | 	ew32(LEDCTL, hw->mac.ledctl_mode1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_setup_led_pchlan - Configures SW controllable LED | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  This prepares the SW controllable LED for use. | 
 |  **/ | 
 | static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_cleanup_led_pchlan - Restore the default LED operation | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Return the LED back to the default configuration. | 
 |  **/ | 
 | static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_led_on_pchlan - Turn LEDs on | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Turn on the LEDs. | 
 |  **/ | 
 | static s32 e1000_led_on_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	u16 data = (u16)hw->mac.ledctl_mode2; | 
 | 	u32 i, led; | 
 |  | 
 | 	/* If no link, then turn LED on by setting the invert bit | 
 | 	 * for each LED that's mode is "link_up" in ledctl_mode2. | 
 | 	 */ | 
 | 	if (!(er32(STATUS) & E1000_STATUS_LU)) { | 
 | 		for (i = 0; i < 3; i++) { | 
 | 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; | 
 | 			if ((led & E1000_PHY_LED0_MODE_MASK) != | 
 | 			    E1000_LEDCTL_MODE_LINK_UP) | 
 | 				continue; | 
 | 			if (led & E1000_PHY_LED0_IVRT) | 
 | 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); | 
 | 			else | 
 | 				data |= (E1000_PHY_LED0_IVRT << (i * 5)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return e1e_wphy(hw, HV_LED_CONFIG, data); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_led_off_pchlan - Turn LEDs off | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Turn off the LEDs. | 
 |  **/ | 
 | static s32 e1000_led_off_pchlan(struct e1000_hw *hw) | 
 | { | 
 | 	u16 data = (u16)hw->mac.ledctl_mode1; | 
 | 	u32 i, led; | 
 |  | 
 | 	/* If no link, then turn LED off by clearing the invert bit | 
 | 	 * for each LED that's mode is "link_up" in ledctl_mode1. | 
 | 	 */ | 
 | 	if (!(er32(STATUS) & E1000_STATUS_LU)) { | 
 | 		for (i = 0; i < 3; i++) { | 
 | 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; | 
 | 			if ((led & E1000_PHY_LED0_MODE_MASK) != | 
 | 			    E1000_LEDCTL_MODE_LINK_UP) | 
 | 				continue; | 
 | 			if (led & E1000_PHY_LED0_IVRT) | 
 | 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); | 
 | 			else | 
 | 				data |= (E1000_PHY_LED0_IVRT << (i * 5)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return e1e_wphy(hw, HV_LED_CONFIG, data); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Read appropriate register for the config done bit for completion status | 
 |  *  and configure the PHY through s/w for EEPROM-less parts. | 
 |  * | 
 |  *  NOTE: some silicon which is EEPROM-less will fail trying to read the | 
 |  *  config done bit, so only an error is logged and continues.  If we were | 
 |  *  to return with error, EEPROM-less silicon would not be able to be reset | 
 |  *  or change link. | 
 |  **/ | 
 | static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val = 0; | 
 | 	u32 bank = 0; | 
 | 	u32 status; | 
 |  | 
 | 	e1000e_get_cfg_done_generic(hw); | 
 |  | 
 | 	/* Wait for indication from h/w that it has completed basic config */ | 
 | 	if (hw->mac.type >= e1000_ich10lan) { | 
 | 		e1000_lan_init_done_ich8lan(hw); | 
 | 	} else { | 
 | 		ret_val = e1000e_get_auto_rd_done(hw); | 
 | 		if (ret_val) { | 
 | 			/* When auto config read does not complete, do not | 
 | 			 * return with an error. This can happen in situations | 
 | 			 * where there is no eeprom and prevents getting link. | 
 | 			 */ | 
 | 			e_dbg("Auto Read Done did not complete\n"); | 
 | 			ret_val = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Clear PHY Reset Asserted bit */ | 
 | 	status = er32(STATUS); | 
 | 	if (status & E1000_STATUS_PHYRA) | 
 | 		ew32(STATUS, status & ~E1000_STATUS_PHYRA); | 
 | 	else | 
 | 		e_dbg("PHY Reset Asserted not set - needs delay\n"); | 
 |  | 
 | 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */ | 
 | 	if (hw->mac.type <= e1000_ich9lan) { | 
 | 		if (!(er32(EECD) & E1000_EECD_PRES) && | 
 | 		    (hw->phy.type == e1000_phy_igp_3)) { | 
 | 			e1000e_phy_init_script_igp3(hw); | 
 | 		} | 
 | 	} else { | 
 | 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { | 
 | 			/* Maybe we should do a basic PHY config */ | 
 | 			e_dbg("EEPROM not present\n"); | 
 | 			ret_val = -E1000_ERR_CONFIG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down | 
 |  * @hw: pointer to the HW structure | 
 |  * | 
 |  * In the case of a PHY power down to save power, or to turn off link during a | 
 |  * driver unload, or wake on lan is not enabled, remove the link. | 
 |  **/ | 
 | static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	/* If the management interface is not enabled, then power down */ | 
 | 	if (!(hw->mac.ops.check_mng_mode(hw) || | 
 | 	      hw->phy.ops.check_reset_block(hw))) | 
 | 		e1000_power_down_phy_copper(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Clears hardware counters specific to the silicon family and calls | 
 |  *  clear_hw_cntrs_generic to clear all general purpose counters. | 
 |  **/ | 
 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) | 
 | { | 
 | 	u16 phy_data; | 
 | 	s32 ret_val; | 
 |  | 
 | 	e1000e_clear_hw_cntrs_base(hw); | 
 |  | 
 | 	er32(ALGNERRC); | 
 | 	er32(RXERRC); | 
 | 	er32(TNCRS); | 
 | 	er32(CEXTERR); | 
 | 	er32(TSCTC); | 
 | 	er32(TSCTFC); | 
 |  | 
 | 	er32(MGTPRC); | 
 | 	er32(MGTPDC); | 
 | 	er32(MGTPTC); | 
 |  | 
 | 	er32(IAC); | 
 | 	er32(ICRXOC); | 
 |  | 
 | 	/* Clear PHY statistics registers */ | 
 | 	if ((hw->phy.type == e1000_phy_82578) || | 
 | 	    (hw->phy.type == e1000_phy_82579) || | 
 | 	    (hw->phy.type == e1000_phy_i217) || | 
 | 	    (hw->phy.type == e1000_phy_82577)) { | 
 | 		ret_val = hw->phy.ops.acquire(hw); | 
 | 		if (ret_val) | 
 | 			return; | 
 | 		ret_val = hw->phy.ops.set_page(hw, | 
 | 					       HV_STATS_PAGE << IGP_PAGE_SHIFT); | 
 | 		if (ret_val) | 
 | 			goto release; | 
 | 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); | 
 | 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); | 
 | release: | 
 | 		hw->phy.ops.release(hw); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct e1000_mac_operations ich8_mac_ops = { | 
 | 	/* check_mng_mode dependent on mac type */ | 
 | 	.check_for_link		= e1000_check_for_copper_link_ich8lan, | 
 | 	/* cleanup_led dependent on mac type */ | 
 | 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan, | 
 | 	.get_bus_info		= e1000_get_bus_info_ich8lan, | 
 | 	.set_lan_id		= e1000_set_lan_id_single_port, | 
 | 	.get_link_up_info	= e1000_get_link_up_info_ich8lan, | 
 | 	/* led_on dependent on mac type */ | 
 | 	/* led_off dependent on mac type */ | 
 | 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic, | 
 | 	.reset_hw		= e1000_reset_hw_ich8lan, | 
 | 	.init_hw		= e1000_init_hw_ich8lan, | 
 | 	.setup_link		= e1000_setup_link_ich8lan, | 
 | 	.setup_physical_interface = e1000_setup_copper_link_ich8lan, | 
 | 	/* id_led_init dependent on mac type */ | 
 | 	.config_collision_dist	= e1000e_config_collision_dist_generic, | 
 | 	.rar_set		= e1000e_rar_set_generic, | 
 | 	.rar_get_count		= e1000e_rar_get_count_generic, | 
 | }; | 
 |  | 
 | static const struct e1000_phy_operations ich8_phy_ops = { | 
 | 	.acquire		= e1000_acquire_swflag_ich8lan, | 
 | 	.check_reset_block	= e1000_check_reset_block_ich8lan, | 
 | 	.commit			= NULL, | 
 | 	.get_cfg_done		= e1000_get_cfg_done_ich8lan, | 
 | 	.get_cable_length	= e1000e_get_cable_length_igp_2, | 
 | 	.read_reg		= e1000e_read_phy_reg_igp, | 
 | 	.release		= e1000_release_swflag_ich8lan, | 
 | 	.reset			= e1000_phy_hw_reset_ich8lan, | 
 | 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan, | 
 | 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan, | 
 | 	.write_reg		= e1000e_write_phy_reg_igp, | 
 | }; | 
 |  | 
 | static const struct e1000_nvm_operations ich8_nvm_ops = { | 
 | 	.acquire		= e1000_acquire_nvm_ich8lan, | 
 | 	.read			= e1000_read_nvm_ich8lan, | 
 | 	.release		= e1000_release_nvm_ich8lan, | 
 | 	.reload			= e1000e_reload_nvm_generic, | 
 | 	.update			= e1000_update_nvm_checksum_ich8lan, | 
 | 	.valid_led_default	= e1000_valid_led_default_ich8lan, | 
 | 	.validate		= e1000_validate_nvm_checksum_ich8lan, | 
 | 	.write			= e1000_write_nvm_ich8lan, | 
 | }; | 
 |  | 
 | static const struct e1000_nvm_operations spt_nvm_ops = { | 
 | 	.acquire		= e1000_acquire_nvm_ich8lan, | 
 | 	.release		= e1000_release_nvm_ich8lan, | 
 | 	.read			= e1000_read_nvm_spt, | 
 | 	.update			= e1000_update_nvm_checksum_spt, | 
 | 	.reload			= e1000e_reload_nvm_generic, | 
 | 	.valid_led_default	= e1000_valid_led_default_ich8lan, | 
 | 	.validate		= e1000_validate_nvm_checksum_ich8lan, | 
 | 	.write			= e1000_write_nvm_ich8lan, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_ich8_info = { | 
 | 	.mac			= e1000_ich8lan, | 
 | 	.flags			= FLAG_HAS_WOL | 
 | 				  | FLAG_IS_ICH | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.pba			= 8, | 
 | 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &ich8_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_ich9_info = { | 
 | 	.mac			= e1000_ich9lan, | 
 | 	.flags			= FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.pba			= 18, | 
 | 	.max_hw_frame_size	= DEFAULT_JUMBO, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &ich8_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_ich10_info = { | 
 | 	.mac			= e1000_ich10lan, | 
 | 	.flags			= FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.pba			= 18, | 
 | 	.max_hw_frame_size	= DEFAULT_JUMBO, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &ich8_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch_info = { | 
 | 	.mac			= e1000_pchlan, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 4096, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &ich8_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch2_info = { | 
 | 	.mac			= e1000_pch2lan, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_HW_TIMESTAMP | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS | 
 | 				  | FLAG2_HAS_EEE | 
 | 				  | FLAG2_CHECK_SYSTIM_OVERFLOW, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 9022, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &ich8_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch_lpt_info = { | 
 | 	.mac			= e1000_pch_lpt, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_HW_TIMESTAMP | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS | 
 | 				  | FLAG2_HAS_EEE | 
 | 				  | FLAG2_CHECK_SYSTIM_OVERFLOW, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 9022, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &ich8_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch_spt_info = { | 
 | 	.mac			= e1000_pch_spt, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_HW_TIMESTAMP | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS | 
 | 				  | FLAG2_HAS_EEE, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 9022, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &spt_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch_cnp_info = { | 
 | 	.mac			= e1000_pch_cnp, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_HW_TIMESTAMP | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS | 
 | 				  | FLAG2_HAS_EEE, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 9022, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &spt_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch_tgp_info = { | 
 | 	.mac			= e1000_pch_tgp, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_HW_TIMESTAMP | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS | 
 | 				  | FLAG2_HAS_EEE, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 9022, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &spt_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch_adp_info = { | 
 | 	.mac			= e1000_pch_adp, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_HW_TIMESTAMP | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS | 
 | 				  | FLAG2_HAS_EEE, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 9022, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &spt_nvm_ops, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_pch_mtp_info = { | 
 | 	.mac			= e1000_pch_mtp, | 
 | 	.flags			= FLAG_IS_ICH | 
 | 				  | FLAG_HAS_WOL | 
 | 				  | FLAG_HAS_HW_TIMESTAMP | 
 | 				  | FLAG_HAS_CTRLEXT_ON_LOAD | 
 | 				  | FLAG_HAS_AMT | 
 | 				  | FLAG_HAS_FLASH | 
 | 				  | FLAG_HAS_JUMBO_FRAMES | 
 | 				  | FLAG_APME_IN_WUC, | 
 | 	.flags2			= FLAG2_HAS_PHY_STATS | 
 | 				  | FLAG2_HAS_EEE, | 
 | 	.pba			= 26, | 
 | 	.max_hw_frame_size	= 9022, | 
 | 	.get_variants		= e1000_get_variants_ich8lan, | 
 | 	.mac_ops		= &ich8_mac_ops, | 
 | 	.phy_ops		= &ich8_phy_ops, | 
 | 	.nvm_ops		= &spt_nvm_ops, | 
 | }; |