|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /**************************************************************************** | 
|  | * Driver for Solarflare network controllers and boards | 
|  | * Copyright 2011-2013 Solarflare Communications Inc. | 
|  | */ | 
|  |  | 
|  | /* Theory of operation: | 
|  | * | 
|  | * PTP support is assisted by firmware running on the MC, which provides | 
|  | * the hardware timestamping capabilities.  Both transmitted and received | 
|  | * PTP event packets are queued onto internal queues for subsequent processing; | 
|  | * this is because the MC operations are relatively long and would block | 
|  | * block NAPI/interrupt operation. | 
|  | * | 
|  | * Receive event processing: | 
|  | *	The event contains the packet's UUID and sequence number, together | 
|  | *	with the hardware timestamp.  The PTP receive packet queue is searched | 
|  | *	for this UUID/sequence number and, if found, put on a pending queue. | 
|  | *	Packets not matching are delivered without timestamps (MCDI events will | 
|  | *	always arrive after the actual packet). | 
|  | *	It is important for the operation of the PTP protocol that the ordering | 
|  | *	of packets between the event and general port is maintained. | 
|  | * | 
|  | * Work queue processing: | 
|  | *	If work waiting, synchronise host/hardware time | 
|  | * | 
|  | *	Transmit: send packet through MC, which returns the transmission time | 
|  | *	that is converted to an appropriate timestamp. | 
|  | * | 
|  | *	Receive: the packet's reception time is converted to an appropriate | 
|  | *	timestamp. | 
|  | */ | 
|  | #include <linux/ip.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pps_kernel.h> | 
|  | #include <linux/ptp_clock_kernel.h> | 
|  | #include "net_driver.h" | 
|  | #include "efx.h" | 
|  | #include "mcdi.h" | 
|  | #include "mcdi_pcol.h" | 
|  | #include "io.h" | 
|  | #include "tx.h" | 
|  | #include "nic.h" /* indirectly includes ptp.h */ | 
|  | #include "efx_channels.h" | 
|  |  | 
|  | /* Maximum number of events expected to make up a PTP event */ | 
|  | #define	MAX_EVENT_FRAGS			3 | 
|  |  | 
|  | /* Maximum delay, ms, to begin synchronisation */ | 
|  | #define	MAX_SYNCHRONISE_WAIT_MS		2 | 
|  |  | 
|  | /* How long, at most, to spend synchronising */ | 
|  | #define	SYNCHRONISE_PERIOD_NS		250000 | 
|  |  | 
|  | /* How often to update the shared memory time */ | 
|  | #define	SYNCHRONISATION_GRANULARITY_NS	200 | 
|  |  | 
|  | /* Minimum permitted length of a (corrected) synchronisation time */ | 
|  | #define	DEFAULT_MIN_SYNCHRONISATION_NS	120 | 
|  |  | 
|  | /* Maximum permitted length of a (corrected) synchronisation time */ | 
|  | #define	MAX_SYNCHRONISATION_NS		1000 | 
|  |  | 
|  | /* How many (MC) receive events that can be queued */ | 
|  | #define	MAX_RECEIVE_EVENTS		8 | 
|  |  | 
|  | /* Length of (modified) moving average. */ | 
|  | #define	AVERAGE_LENGTH			16 | 
|  |  | 
|  | /* How long an unmatched event or packet can be held */ | 
|  | #define PKT_EVENT_LIFETIME_MS		10 | 
|  |  | 
|  | /* How long unused unicast filters can be held */ | 
|  | #define UCAST_FILTER_EXPIRY_JIFFIES	msecs_to_jiffies(30000) | 
|  |  | 
|  | /* Offsets into PTP packet for identification.  These offsets are from the | 
|  | * start of the IP header, not the MAC header.  Note that neither PTP V1 nor | 
|  | * PTP V2 permit the use of IPV4 options. | 
|  | */ | 
|  | #define PTP_DPORT_OFFSET	22 | 
|  |  | 
|  | #define PTP_V1_VERSION_LENGTH	2 | 
|  | #define PTP_V1_VERSION_OFFSET	28 | 
|  |  | 
|  | #define PTP_V1_SEQUENCE_LENGTH	2 | 
|  | #define PTP_V1_SEQUENCE_OFFSET	58 | 
|  |  | 
|  | /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: | 
|  | * includes IP header. | 
|  | */ | 
|  | #define	PTP_V1_MIN_LENGTH	64 | 
|  |  | 
|  | #define PTP_V2_VERSION_LENGTH	1 | 
|  | #define PTP_V2_VERSION_OFFSET	29 | 
|  |  | 
|  | #define PTP_V2_SEQUENCE_LENGTH	2 | 
|  | #define PTP_V2_SEQUENCE_OFFSET	58 | 
|  |  | 
|  | /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: | 
|  | * includes IP header. | 
|  | */ | 
|  | #define	PTP_V2_MIN_LENGTH	63 | 
|  |  | 
|  | #define	PTP_MIN_LENGTH		63 | 
|  |  | 
|  | #define PTP_ADDR_IPV4		0xe0000181	/* 224.0.1.129 */ | 
|  |  | 
|  | /* ff0e::181 */ | 
|  | static const struct in6_addr ptp_addr_ipv6 = { { { | 
|  | 0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0x81 } } }; | 
|  |  | 
|  | /* 01-1B-19-00-00-00 */ | 
|  | static const u8 ptp_addr_ether[ETH_ALEN] __aligned(2) = { | 
|  | 0x01, 0x1b, 0x19, 0x00, 0x00, 0x00 }; | 
|  |  | 
|  | #define PTP_EVENT_PORT		319 | 
|  | #define PTP_GENERAL_PORT	320 | 
|  |  | 
|  | /* Annoyingly the format of the version numbers are different between | 
|  | * versions 1 and 2 so it isn't possible to simply look for 1 or 2. | 
|  | */ | 
|  | #define	PTP_VERSION_V1		1 | 
|  |  | 
|  | #define	PTP_VERSION_V2		2 | 
|  | #define	PTP_VERSION_V2_MASK	0x0f | 
|  |  | 
|  | enum ptp_packet_state { | 
|  | PTP_PACKET_STATE_UNMATCHED = 0, | 
|  | PTP_PACKET_STATE_MATCHED, | 
|  | PTP_PACKET_STATE_TIMED_OUT, | 
|  | PTP_PACKET_STATE_MATCH_UNWANTED | 
|  | }; | 
|  |  | 
|  | /* NIC synchronised with single word of time only comprising | 
|  | * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. | 
|  | */ | 
|  | #define	MC_NANOSECOND_BITS	30 | 
|  | #define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1) | 
|  | #define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1) | 
|  |  | 
|  | /* Maximum parts-per-billion adjustment that is acceptable */ | 
|  | #define MAX_PPB			1000000 | 
|  |  | 
|  | /* Precalculate scale word to avoid long long division at runtime */ | 
|  | /* This is equivalent to 2^66 / 10^9. */ | 
|  | #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL) | 
|  |  | 
|  | /* How much to shift down after scaling to convert to FP40 */ | 
|  | #define PPB_SHIFT_FP40		26 | 
|  | /* ... and FP44. */ | 
|  | #define PPB_SHIFT_FP44		22 | 
|  |  | 
|  | #define PTP_SYNC_ATTEMPTS	4 | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. | 
|  | * @expiry: Time after which the packet should be delivered irrespective of | 
|  | *            event arrival. | 
|  | * @state: The state of the packet - whether it is ready for processing or | 
|  | *         whether that is of no interest. | 
|  | */ | 
|  | struct efx_ptp_match { | 
|  | unsigned long expiry; | 
|  | enum ptp_packet_state state; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_event_rx - A PTP receive event (from MC) | 
|  | * @link: list of events | 
|  | * @seq0: First part of (PTP) UUID | 
|  | * @seq1: Second part of (PTP) UUID and sequence number | 
|  | * @hwtimestamp: Event timestamp | 
|  | * @expiry: Time which the packet arrived | 
|  | */ | 
|  | struct efx_ptp_event_rx { | 
|  | struct list_head link; | 
|  | u32 seq0; | 
|  | u32 seq1; | 
|  | ktime_t hwtimestamp; | 
|  | unsigned long expiry; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_timeset - Synchronisation between host and MC | 
|  | * @host_start: Host time immediately before hardware timestamp taken | 
|  | * @major: Hardware timestamp, major | 
|  | * @minor: Hardware timestamp, minor | 
|  | * @host_end: Host time immediately after hardware timestamp taken | 
|  | * @wait: Number of NIC clock ticks between hardware timestamp being read and | 
|  | *          host end time being seen | 
|  | * @window: Difference of host_end and host_start | 
|  | * @valid: Whether this timeset is valid | 
|  | */ | 
|  | struct efx_ptp_timeset { | 
|  | u32 host_start; | 
|  | u32 major; | 
|  | u32 minor; | 
|  | u32 host_end; | 
|  | u32 wait; | 
|  | u32 window;	/* Derived: end - start, allowing for wrap */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_rxfilter - Filter for PTP packets | 
|  | * @list: Node of the list where the filter is added | 
|  | * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6) | 
|  | * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT) | 
|  | * @loc_host: IPv4/v6 address of the filter | 
|  | * @expiry: time when the filter expires, in jiffies | 
|  | * @handle: Handle ID for the MCDI filters table | 
|  | */ | 
|  | struct efx_ptp_rxfilter { | 
|  | struct list_head list; | 
|  | __be16 ether_type; | 
|  | __be16 loc_port; | 
|  | __be32 loc_host[4]; | 
|  | unsigned long expiry; | 
|  | int handle; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_data - Precision Time Protocol (PTP) state | 
|  | * @efx: The NIC context | 
|  | * @channel: The PTP channel (for Medford and Medford2) | 
|  | * @rxq: Receive SKB queue (awaiting timestamps) | 
|  | * @txq: Transmit SKB queue | 
|  | * @workwq: Work queue for processing pending PTP operations | 
|  | * @work: Work task | 
|  | * @cleanup_work: Work task for periodic cleanup | 
|  | * @reset_required: A serious error has occurred and the PTP task needs to be | 
|  | *                  reset (disable, enable). | 
|  | * @rxfilters_mcast: Receive filters for multicast PTP packets | 
|  | * @rxfilters_ucast: Receive filters for unicast PTP packets | 
|  | * @config: Current timestamp configuration | 
|  | * @enabled: PTP operation enabled | 
|  | * @mode: Mode in which PTP operating (PTP version) | 
|  | * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time | 
|  | * @nic_to_kernel_time: Function to convert from NIC to kernel time | 
|  | * @nic_time: contains time details | 
|  | * @nic_time.minor_max: Wrap point for NIC minor times | 
|  | * @nic_time.sync_event_diff_min: Minimum acceptable difference between time | 
|  | * in packet prefix and last MCDI time sync event i.e. how much earlier than | 
|  | * the last sync event time a packet timestamp can be. | 
|  | * @nic_time.sync_event_diff_max: Maximum acceptable difference between time | 
|  | * in packet prefix and last MCDI time sync event i.e. how much later than | 
|  | * the last sync event time a packet timestamp can be. | 
|  | * @nic_time.sync_event_minor_shift: Shift required to make minor time from | 
|  | * field in MCDI time sync event. | 
|  | * @min_synchronisation_ns: Minimum acceptable corrected sync window | 
|  | * @capabilities: Capabilities flags from the NIC | 
|  | * @ts_corrections: contains corrections details | 
|  | * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit | 
|  | *                         timestamps | 
|  | * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive | 
|  | *                         timestamps | 
|  | * @ts_corrections.pps_out: PPS output error (information only) | 
|  | * @ts_corrections.pps_in: Required driver correction of PPS input timestamps | 
|  | * @ts_corrections.general_tx: Required driver correction of general packet | 
|  | *                             transmit timestamps | 
|  | * @ts_corrections.general_rx: Required driver correction of general packet | 
|  | *                             receive timestamps | 
|  | * @evt_frags: Partly assembled PTP events | 
|  | * @evt_frag_idx: Current fragment number | 
|  | * @evt_code: Last event code | 
|  | * @start: Address at which MC indicates ready for synchronisation | 
|  | * @host_time_pps: Host time at last PPS | 
|  | * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion | 
|  | * frequency adjustment into a fixed point fractional nanosecond format. | 
|  | * @current_adjfreq: Current ppb adjustment. | 
|  | * @phc_clock: Pointer to registered phc device (if primary function) | 
|  | * @phc_clock_info: Registration structure for phc device | 
|  | * @pps_work: pps work task for handling pps events | 
|  | * @pps_workwq: pps work queue | 
|  | * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled | 
|  | * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids | 
|  | *         allocations in main data path). | 
|  | * @good_syncs: Number of successful synchronisations. | 
|  | * @fast_syncs: Number of synchronisations requiring short delay | 
|  | * @bad_syncs: Number of failed synchronisations. | 
|  | * @sync_timeouts: Number of synchronisation timeouts | 
|  | * @no_time_syncs: Number of synchronisations with no good times. | 
|  | * @invalid_sync_windows: Number of sync windows with bad durations. | 
|  | * @undersize_sync_windows: Number of corrected sync windows that are too small | 
|  | * @oversize_sync_windows: Number of corrected sync windows that are too large | 
|  | * @rx_no_timestamp: Number of packets received without a timestamp. | 
|  | * @timeset: Last set of synchronisation statistics. | 
|  | * @xmit_skb: Transmit SKB function. | 
|  | */ | 
|  | struct efx_ptp_data { | 
|  | struct efx_nic *efx; | 
|  | struct efx_channel *channel; | 
|  | struct sk_buff_head rxq; | 
|  | struct sk_buff_head txq; | 
|  | struct workqueue_struct *workwq; | 
|  | struct work_struct work; | 
|  | struct delayed_work cleanup_work; | 
|  | bool reset_required; | 
|  | struct list_head rxfilters_mcast; | 
|  | struct list_head rxfilters_ucast; | 
|  | struct kernel_hwtstamp_config config; | 
|  | bool enabled; | 
|  | unsigned int mode; | 
|  | void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); | 
|  | ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, | 
|  | s32 correction); | 
|  | struct { | 
|  | u32 minor_max; | 
|  | u32 sync_event_diff_min; | 
|  | u32 sync_event_diff_max; | 
|  | unsigned int sync_event_minor_shift; | 
|  | } nic_time; | 
|  | unsigned int min_synchronisation_ns; | 
|  | unsigned int capabilities; | 
|  | struct { | 
|  | s32 ptp_tx; | 
|  | s32 ptp_rx; | 
|  | s32 pps_out; | 
|  | s32 pps_in; | 
|  | s32 general_tx; | 
|  | s32 general_rx; | 
|  | } ts_corrections; | 
|  | efx_qword_t evt_frags[MAX_EVENT_FRAGS]; | 
|  | int evt_frag_idx; | 
|  | int evt_code; | 
|  | struct efx_buffer start; | 
|  | struct pps_event_time host_time_pps; | 
|  | unsigned int adjfreq_ppb_shift; | 
|  | s64 current_adjfreq; | 
|  | struct ptp_clock *phc_clock; | 
|  | struct ptp_clock_info phc_clock_info; | 
|  | struct work_struct pps_work; | 
|  | struct workqueue_struct *pps_workwq; | 
|  | bool nic_ts_enabled; | 
|  | efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)]; | 
|  |  | 
|  | unsigned int good_syncs; | 
|  | unsigned int fast_syncs; | 
|  | unsigned int bad_syncs; | 
|  | unsigned int sync_timeouts; | 
|  | unsigned int no_time_syncs; | 
|  | unsigned int invalid_sync_windows; | 
|  | unsigned int undersize_sync_windows; | 
|  | unsigned int oversize_sync_windows; | 
|  | unsigned int rx_no_timestamp; | 
|  | struct efx_ptp_timeset | 
|  | timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; | 
|  | void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); | 
|  | }; | 
|  |  | 
|  | static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm); | 
|  | static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); | 
|  | static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); | 
|  | static int efx_phc_settime(struct ptp_clock_info *ptp, | 
|  | const struct timespec64 *e_ts); | 
|  | static int efx_phc_enable(struct ptp_clock_info *ptp, | 
|  | struct ptp_clock_request *request, int on); | 
|  | static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, | 
|  | struct sk_buff *skb); | 
|  |  | 
|  | bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) | 
|  | { | 
|  | return efx_has_cap(efx, TX_MAC_TIMESTAMPING); | 
|  | } | 
|  |  | 
|  | /* PTP 'extra' channel is still a traffic channel, but we only create TX queues | 
|  | * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. | 
|  | */ | 
|  | static bool efx_ptp_want_txqs(struct efx_channel *channel) | 
|  | { | 
|  | return efx_ptp_use_mac_tx_timestamps(channel->efx); | 
|  | } | 
|  |  | 
|  | #define PTP_SW_STAT(ext_name, field_name)				\ | 
|  | { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } | 
|  | #define PTP_MC_STAT(ext_name, mcdi_name)				\ | 
|  | { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } | 
|  | static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { | 
|  | PTP_SW_STAT(ptp_good_syncs, good_syncs), | 
|  | PTP_SW_STAT(ptp_fast_syncs, fast_syncs), | 
|  | PTP_SW_STAT(ptp_bad_syncs, bad_syncs), | 
|  | PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), | 
|  | PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), | 
|  | PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), | 
|  | PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), | 
|  | PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), | 
|  | PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), | 
|  | PTP_MC_STAT(ptp_tx_timestamp_packets, TX), | 
|  | PTP_MC_STAT(ptp_rx_timestamp_packets, RX), | 
|  | PTP_MC_STAT(ptp_timestamp_packets, TS), | 
|  | PTP_MC_STAT(ptp_filter_matches, FM), | 
|  | PTP_MC_STAT(ptp_non_filter_matches, NFM), | 
|  | }; | 
|  | #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) | 
|  | static const unsigned long efx_ptp_stat_mask[] = { | 
|  | [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, | 
|  | }; | 
|  |  | 
|  | size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) | 
|  | { | 
|  | if (!efx->ptp_data) | 
|  | return 0; | 
|  |  | 
|  | return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, | 
|  | efx_ptp_stat_mask, strings); | 
|  | } | 
|  |  | 
|  | size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); | 
|  | size_t i; | 
|  | int rc; | 
|  |  | 
|  | if (!efx->ptp_data) | 
|  | return 0; | 
|  |  | 
|  | /* Copy software statistics */ | 
|  | for (i = 0; i < PTP_STAT_COUNT; i++) { | 
|  | if (efx_ptp_stat_desc[i].dma_width) | 
|  | continue; | 
|  | stats[i] = *(unsigned int *)((char *)efx->ptp_data + | 
|  | efx_ptp_stat_desc[i].offset); | 
|  | } | 
|  |  | 
|  | /* Fetch MC statistics.  We *must* fill in all statistics or | 
|  | * risk leaking kernel memory to userland, so if the MCDI | 
|  | * request fails we pretend we got zeroes. | 
|  | */ | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), NULL); | 
|  | if (rc) | 
|  | memset(outbuf, 0, sizeof(outbuf)); | 
|  | efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, | 
|  | efx_ptp_stat_mask, | 
|  | stats, _MCDI_PTR(outbuf, 0), false); | 
|  |  | 
|  | return PTP_STAT_COUNT; | 
|  | } | 
|  |  | 
|  | /* To convert from s27 format to ns we multiply then divide by a power of 2. | 
|  | * For the conversion from ns to s27, the operation is also converted to a | 
|  | * multiply and shift. | 
|  | */ | 
|  | #define S27_TO_NS_SHIFT	(27) | 
|  | #define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) | 
|  | #define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT) | 
|  | #define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT) | 
|  |  | 
|  | /* For Huntington platforms NIC time is in seconds and fractions of a second | 
|  | * where the minor register only uses 27 bits in units of 2^-27s. | 
|  | */ | 
|  | static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) | 
|  | { | 
|  | struct timespec64 ts = ns_to_timespec64(ns); | 
|  | u32 maj = (u32)ts.tv_sec; | 
|  | u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + | 
|  | (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); | 
|  |  | 
|  | /* The conversion can result in the minor value exceeding the maximum. | 
|  | * In this case, round up to the next second. | 
|  | */ | 
|  | if (min >= S27_MINOR_MAX) { | 
|  | min -= S27_MINOR_MAX; | 
|  | maj++; | 
|  | } | 
|  |  | 
|  | *nic_major = maj; | 
|  | *nic_minor = min; | 
|  | } | 
|  |  | 
|  | static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) | 
|  | { | 
|  | u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + | 
|  | (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); | 
|  | return ktime_set(nic_major, ns); | 
|  | } | 
|  |  | 
|  | static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, | 
|  | s32 correction) | 
|  | { | 
|  | /* Apply the correction and deal with carry */ | 
|  | nic_minor += correction; | 
|  | if ((s32)nic_minor < 0) { | 
|  | nic_minor += S27_MINOR_MAX; | 
|  | nic_major--; | 
|  | } else if (nic_minor >= S27_MINOR_MAX) { | 
|  | nic_minor -= S27_MINOR_MAX; | 
|  | nic_major++; | 
|  | } | 
|  |  | 
|  | return efx_ptp_s27_to_ktime(nic_major, nic_minor); | 
|  | } | 
|  |  | 
|  | /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ | 
|  | static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) | 
|  | { | 
|  | struct timespec64 ts = ns_to_timespec64(ns); | 
|  |  | 
|  | *nic_major = (u32)ts.tv_sec; | 
|  | *nic_minor = ts.tv_nsec * 4; | 
|  | } | 
|  |  | 
|  | static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, | 
|  | s32 correction) | 
|  | { | 
|  | ktime_t kt; | 
|  |  | 
|  | nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); | 
|  | correction = DIV_ROUND_CLOSEST(correction, 4); | 
|  |  | 
|  | kt = ktime_set(nic_major, nic_minor); | 
|  |  | 
|  | if (correction >= 0) | 
|  | kt = ktime_add_ns(kt, (u64)correction); | 
|  | else | 
|  | kt = ktime_sub_ns(kt, (u64)-correction); | 
|  | return kt; | 
|  | } | 
|  |  | 
|  | struct efx_channel *efx_ptp_channel(struct efx_nic *efx) | 
|  | { | 
|  | return efx->ptp_data ? efx->ptp_data->channel : NULL; | 
|  | } | 
|  |  | 
|  | void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel) | 
|  | { | 
|  | if (efx->ptp_data) | 
|  | efx->ptp_data->channel = channel; | 
|  | } | 
|  |  | 
|  | static u32 last_sync_timestamp_major(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel = efx_ptp_channel(efx); | 
|  | u32 major = 0; | 
|  |  | 
|  | if (channel) | 
|  | major = channel->sync_timestamp_major; | 
|  | return major; | 
|  | } | 
|  |  | 
|  | /* The 8000 series and later can provide the time from the MAC, which is only | 
|  | * 48 bits long and provides meta-information in the top 2 bits. | 
|  | */ | 
|  | static ktime_t | 
|  | efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, | 
|  | struct efx_ptp_data *ptp, | 
|  | u32 nic_major, u32 nic_minor, | 
|  | s32 correction) | 
|  | { | 
|  | u32 sync_timestamp; | 
|  | ktime_t kt = { 0 }; | 
|  | s16 delta; | 
|  |  | 
|  | if (!(nic_major & 0x80000000)) { | 
|  | WARN_ON_ONCE(nic_major >> 16); | 
|  |  | 
|  | /* Medford provides 48 bits of timestamp, so we must get the top | 
|  | * 16 bits from the timesync event state. | 
|  | * | 
|  | * We only have the lower 16 bits of the time now, but we do | 
|  | * have a full resolution timestamp at some point in past. As | 
|  | * long as the difference between the (real) now and the sync | 
|  | * is less than 2^15, then we can reconstruct the difference | 
|  | * between those two numbers using only the lower 16 bits of | 
|  | * each. | 
|  | * | 
|  | * Put another way | 
|  | * | 
|  | * a - b = ((a mod k) - b) mod k | 
|  | * | 
|  | * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know | 
|  | * (a mod k) and b, so can calculate the delta, a - b. | 
|  | * | 
|  | */ | 
|  | sync_timestamp = last_sync_timestamp_major(efx); | 
|  |  | 
|  | /* Because delta is s16 this does an implicit mask down to | 
|  | * 16 bits which is what we need, assuming | 
|  | * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that | 
|  | * we can deal with the (unlikely) case of sync timestamps | 
|  | * arriving from the future. | 
|  | */ | 
|  | delta = nic_major - sync_timestamp; | 
|  |  | 
|  | /* Recover the fully specified time now, by applying the offset | 
|  | * to the (fully specified) sync time. | 
|  | */ | 
|  | nic_major = sync_timestamp + delta; | 
|  |  | 
|  | kt = ptp->nic_to_kernel_time(nic_major, nic_minor, | 
|  | correction); | 
|  | } | 
|  | return kt; | 
|  | } | 
|  |  | 
|  | ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | ktime_t kt; | 
|  |  | 
|  | if (efx_ptp_use_mac_tx_timestamps(efx)) | 
|  | kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, | 
|  | tx_queue->completed_timestamp_major, | 
|  | tx_queue->completed_timestamp_minor, | 
|  | ptp->ts_corrections.general_tx); | 
|  | else | 
|  | kt = ptp->nic_to_kernel_time( | 
|  | tx_queue->completed_timestamp_major, | 
|  | tx_queue->completed_timestamp_minor, | 
|  | ptp->ts_corrections.general_tx); | 
|  | return kt; | 
|  | } | 
|  |  | 
|  | /* Get PTP attributes and set up time conversions */ | 
|  | static int efx_ptp_get_attributes(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int rc; | 
|  | u32 fmt; | 
|  | size_t out_len; | 
|  |  | 
|  | /* Get the PTP attributes. If the NIC doesn't support the operation we | 
|  | * use the default format for compatibility with older NICs i.e. | 
|  | * seconds and nanoseconds. | 
|  | */ | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), &out_len); | 
|  | if (rc == 0) { | 
|  | fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); | 
|  | } else if (rc == -EINVAL) { | 
|  | fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; | 
|  | } else if (rc == -EPERM) { | 
|  | pci_info(efx->pci_dev, "no PTP support\n"); | 
|  | return rc; | 
|  | } else { | 
|  | efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | switch (fmt) { | 
|  | case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: | 
|  | ptp->ns_to_nic_time = efx_ptp_ns_to_s27; | 
|  | ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; | 
|  | ptp->nic_time.minor_max = 1 << 27; | 
|  | ptp->nic_time.sync_event_minor_shift = 19; | 
|  | break; | 
|  | case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: | 
|  | ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; | 
|  | ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; | 
|  | ptp->nic_time.minor_max = 4000000000UL; | 
|  | ptp->nic_time.sync_event_minor_shift = 24; | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | /* Precalculate acceptable difference between the minor time in the | 
|  | * packet prefix and the last MCDI time sync event. We expect the | 
|  | * packet prefix timestamp to be after of sync event by up to one | 
|  | * sync event interval (0.25s) but we allow it to exceed this by a | 
|  | * fuzz factor of (0.1s) | 
|  | */ | 
|  | ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max | 
|  | - (ptp->nic_time.minor_max / 10); | 
|  | ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) | 
|  | + (ptp->nic_time.minor_max / 10); | 
|  |  | 
|  | /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older | 
|  | * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return | 
|  | * a value to use for the minimum acceptable corrected synchronization | 
|  | * window and may return further capabilities. | 
|  | * If we have the extra information store it. For older firmware that | 
|  | * does not implement the extended command use the default value. | 
|  | */ | 
|  | if (rc == 0 && | 
|  | out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) | 
|  | ptp->min_synchronisation_ns = | 
|  | MCDI_DWORD(outbuf, | 
|  | PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); | 
|  | else | 
|  | ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; | 
|  |  | 
|  | if (rc == 0 && | 
|  | out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) | 
|  | ptp->capabilities = MCDI_DWORD(outbuf, | 
|  | PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); | 
|  | else | 
|  | ptp->capabilities = 0; | 
|  |  | 
|  | /* Set up the shift for conversion between frequency | 
|  | * adjustments in parts-per-billion and the fixed-point | 
|  | * fractional ns format that the adapter uses. | 
|  | */ | 
|  | if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) | 
|  | ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; | 
|  | else | 
|  | ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get PTP timestamp corrections */ | 
|  | static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); | 
|  | int rc; | 
|  | size_t out_len; | 
|  |  | 
|  | /* Get the timestamp corrections from the NIC. If this operation is | 
|  | * not supported (older NICs) then no correction is required. | 
|  | */ | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, | 
|  | MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), &out_len); | 
|  | if (rc == 0) { | 
|  | efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, | 
|  | PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); | 
|  | efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, | 
|  | PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); | 
|  | efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, | 
|  | PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); | 
|  | efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, | 
|  | PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); | 
|  |  | 
|  | if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { | 
|  | efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( | 
|  | outbuf, | 
|  | PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); | 
|  | efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( | 
|  | outbuf, | 
|  | PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); | 
|  | } else { | 
|  | efx->ptp_data->ts_corrections.general_tx = | 
|  | efx->ptp_data->ts_corrections.ptp_tx; | 
|  | efx->ptp_data->ts_corrections.general_rx = | 
|  | efx->ptp_data->ts_corrections.ptp_rx; | 
|  | } | 
|  | } else if (rc == -EINVAL) { | 
|  | efx->ptp_data->ts_corrections.ptp_tx = 0; | 
|  | efx->ptp_data->ts_corrections.ptp_rx = 0; | 
|  | efx->ptp_data->ts_corrections.pps_out = 0; | 
|  | efx->ptp_data->ts_corrections.pps_in = 0; | 
|  | efx->ptp_data->ts_corrections.general_tx = 0; | 
|  | efx->ptp_data->ts_corrections.general_rx = 0; | 
|  | } else { | 
|  | efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, | 
|  | sizeof(outbuf), rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Enable MCDI PTP support. */ | 
|  | static int efx_ptp_enable(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); | 
|  | MCDI_DECLARE_BUF_ERR(outbuf); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, | 
|  | efx->ptp_data->channel ? | 
|  | efx->ptp_data->channel->channel : 0); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); | 
|  |  | 
|  | rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), NULL); | 
|  | rc = (rc == -EALREADY) ? 0 : rc; | 
|  | if (rc) | 
|  | efx_mcdi_display_error(efx, MC_CMD_PTP, | 
|  | MC_CMD_PTP_IN_ENABLE_LEN, | 
|  | outbuf, sizeof(outbuf), rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Disable MCDI PTP support. | 
|  | * | 
|  | * Note that this function should never rely on the presence of ptp_data - | 
|  | * may be called before that exists. | 
|  | */ | 
|  | static int efx_ptp_disable(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); | 
|  | MCDI_DECLARE_BUF_ERR(outbuf); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), NULL); | 
|  | rc = (rc == -EALREADY) ? 0 : rc; | 
|  | /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function | 
|  | * should only have been called during probe. | 
|  | */ | 
|  | if (rc == -ENOSYS || rc == -EPERM) | 
|  | pci_info(efx->pci_dev, "no PTP support\n"); | 
|  | else if (rc) | 
|  | efx_mcdi_display_error(efx, MC_CMD_PTP, | 
|  | MC_CMD_PTP_IN_DISABLE_LEN, | 
|  | outbuf, sizeof(outbuf), rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | while ((skb = skb_dequeue(q))) { | 
|  | local_bh_disable(); | 
|  | netif_receive_skb(skb); | 
|  | local_bh_enable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_ptp_handle_no_channel(struct efx_nic *efx) | 
|  | { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "ERROR: PTP requires MSI-X and 1 additional interrupt" | 
|  | "vector. PTP disabled\n"); | 
|  | } | 
|  |  | 
|  | /* Repeatedly send the host time to the MC which will capture the hardware | 
|  | * time. | 
|  | */ | 
|  | static void efx_ptp_send_times(struct efx_nic *efx, | 
|  | struct pps_event_time *last_time) | 
|  | { | 
|  | struct pps_event_time now; | 
|  | struct timespec64 limit; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int *mc_running = ptp->start.addr; | 
|  |  | 
|  | pps_get_ts(&now); | 
|  | limit = now.ts_real; | 
|  | timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); | 
|  |  | 
|  | /* Write host time for specified period or until MC is done */ | 
|  | while ((timespec64_compare(&now.ts_real, &limit) < 0) && | 
|  | READ_ONCE(*mc_running)) { | 
|  | struct timespec64 update_time; | 
|  | unsigned int host_time; | 
|  |  | 
|  | /* Don't update continuously to avoid saturating the PCIe bus */ | 
|  | update_time = now.ts_real; | 
|  | timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); | 
|  | do { | 
|  | pps_get_ts(&now); | 
|  | } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && | 
|  | READ_ONCE(*mc_running)); | 
|  |  | 
|  | /* Synchronise NIC with single word of time only */ | 
|  | host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | | 
|  | now.ts_real.tv_nsec); | 
|  | /* Update host time in NIC memory */ | 
|  | efx->type->ptp_write_host_time(efx, host_time); | 
|  | } | 
|  | *last_time = now; | 
|  | } | 
|  |  | 
|  | /* Read a timeset from the MC's results and partial process. */ | 
|  | static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), | 
|  | struct efx_ptp_timeset *timeset) | 
|  | { | 
|  | unsigned start_ns, end_ns; | 
|  |  | 
|  | timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); | 
|  | timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); | 
|  | timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); | 
|  | timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND); | 
|  | timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); | 
|  |  | 
|  | /* Ignore seconds */ | 
|  | start_ns = timeset->host_start & MC_NANOSECOND_MASK; | 
|  | end_ns = timeset->host_end & MC_NANOSECOND_MASK; | 
|  | /* Allow for rollover */ | 
|  | if (end_ns < start_ns) | 
|  | end_ns += NSEC_PER_SEC; | 
|  | /* Determine duration of operation */ | 
|  | timeset->window = end_ns - start_ns; | 
|  | } | 
|  |  | 
|  | /* Process times received from MC. | 
|  | * | 
|  | * Extract times from returned results, and establish the minimum value | 
|  | * seen.  The minimum value represents the "best" possible time and events | 
|  | * too much greater than this are rejected - the machine is, perhaps, too | 
|  | * busy. A number of readings are taken so that, hopefully, at least one good | 
|  | * synchronisation will be seen in the results. | 
|  | */ | 
|  | static int | 
|  | efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), | 
|  | size_t response_length, | 
|  | const struct pps_event_time *last_time) | 
|  | { | 
|  | unsigned number_readings = | 
|  | MCDI_VAR_ARRAY_LEN(response_length, | 
|  | PTP_OUT_SYNCHRONIZE_TIMESET); | 
|  | unsigned i; | 
|  | unsigned ngood = 0; | 
|  | unsigned last_good = 0; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | u32 last_sec; | 
|  | u32 start_sec; | 
|  | struct timespec64 delta; | 
|  | ktime_t mc_time; | 
|  |  | 
|  | if (number_readings == 0) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* Read the set of results and find the last good host-MC | 
|  | * synchronization result. The MC times when it finishes reading the | 
|  | * host time so the corrected window time should be fairly constant | 
|  | * for a given platform. Increment stats for any results that appear | 
|  | * to be erroneous. | 
|  | */ | 
|  | for (i = 0; i < number_readings; i++) { | 
|  | s32 window, corrected; | 
|  | struct timespec64 wait; | 
|  |  | 
|  | efx_ptp_read_timeset( | 
|  | MCDI_ARRAY_STRUCT_PTR(synch_buf, | 
|  | PTP_OUT_SYNCHRONIZE_TIMESET, i), | 
|  | &ptp->timeset[i]); | 
|  |  | 
|  | wait = ktime_to_timespec64( | 
|  | ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); | 
|  | window = ptp->timeset[i].window; | 
|  | corrected = window - wait.tv_nsec; | 
|  |  | 
|  | /* We expect the uncorrected synchronization window to be at | 
|  | * least as large as the interval between host start and end | 
|  | * times. If it is smaller than this then this is mostly likely | 
|  | * to be a consequence of the host's time being adjusted. | 
|  | * Check that the corrected sync window is in a reasonable | 
|  | * range. If it is out of range it is likely to be because an | 
|  | * interrupt or other delay occurred between reading the system | 
|  | * time and writing it to MC memory. | 
|  | */ | 
|  | if (window < SYNCHRONISATION_GRANULARITY_NS) { | 
|  | ++ptp->invalid_sync_windows; | 
|  | } else if (corrected >= MAX_SYNCHRONISATION_NS) { | 
|  | ++ptp->oversize_sync_windows; | 
|  | } else if (corrected < ptp->min_synchronisation_ns) { | 
|  | ++ptp->undersize_sync_windows; | 
|  | } else { | 
|  | ngood++; | 
|  | last_good = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ngood == 0) { | 
|  | netif_warn(efx, drv, efx->net_dev, | 
|  | "PTP no suitable synchronisations\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Calculate delay from last good sync (host time) to last_time. | 
|  | * It is possible that the seconds rolled over between taking | 
|  | * the start reading and the last value written by the host.  The | 
|  | * timescales are such that a gap of more than one second is never | 
|  | * expected.  delta is *not* normalised. | 
|  | */ | 
|  | start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; | 
|  | last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; | 
|  | if (start_sec != last_sec && | 
|  | ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { | 
|  | netif_warn(efx, hw, efx->net_dev, | 
|  | "PTP bad synchronisation seconds\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  | delta.tv_sec = (last_sec - start_sec) & 1; | 
|  | delta.tv_nsec = | 
|  | last_time->ts_real.tv_nsec - | 
|  | (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); | 
|  |  | 
|  | /* Convert the NIC time at last good sync into kernel time. | 
|  | * No correction is required - this time is the output of a | 
|  | * firmware process. | 
|  | */ | 
|  | mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, | 
|  | ptp->timeset[last_good].minor, 0); | 
|  |  | 
|  | /* Calculate delay from NIC top of second to last_time */ | 
|  | delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; | 
|  |  | 
|  | /* Set PPS timestamp to match NIC top of second */ | 
|  | ptp->host_time_pps = *last_time; | 
|  | pps_sub_ts(&ptp->host_time_pps, delta); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Synchronize times between the host and the MC */ | 
|  | static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); | 
|  | size_t response_length; | 
|  | int rc; | 
|  | unsigned long timeout; | 
|  | struct pps_event_time last_time = {}; | 
|  | unsigned int loops = 0; | 
|  | int *start = ptp->start.addr; | 
|  |  | 
|  | MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); | 
|  | MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, | 
|  | num_readings); | 
|  | MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, | 
|  | ptp->start.dma_addr); | 
|  |  | 
|  | /* Clear flag that signals MC ready */ | 
|  | WRITE_ONCE(*start, 0); | 
|  | rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, | 
|  | MC_CMD_PTP_IN_SYNCHRONIZE_LEN); | 
|  | EFX_WARN_ON_ONCE_PARANOID(rc); | 
|  |  | 
|  | /* Wait for start from MCDI (or timeout) */ | 
|  | timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); | 
|  | while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { | 
|  | udelay(20);	/* Usually start MCDI execution quickly */ | 
|  | loops++; | 
|  | } | 
|  |  | 
|  | if (loops <= 1) | 
|  | ++ptp->fast_syncs; | 
|  | if (!time_before(jiffies, timeout)) | 
|  | ++ptp->sync_timeouts; | 
|  |  | 
|  | if (READ_ONCE(*start)) | 
|  | efx_ptp_send_times(efx, &last_time); | 
|  |  | 
|  | /* Collect results */ | 
|  | rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, | 
|  | MC_CMD_PTP_IN_SYNCHRONIZE_LEN, | 
|  | synch_buf, sizeof(synch_buf), | 
|  | &response_length); | 
|  | if (rc == 0) { | 
|  | rc = efx_ptp_process_times(efx, synch_buf, response_length, | 
|  | &last_time); | 
|  | if (rc == 0) | 
|  | ++ptp->good_syncs; | 
|  | else | 
|  | ++ptp->no_time_syncs; | 
|  | } | 
|  |  | 
|  | /* Increment the bad syncs counter if the synchronize fails, whatever | 
|  | * the reason. | 
|  | */ | 
|  | if (rc != 0) | 
|  | ++ptp->bad_syncs; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ | 
|  | static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = efx->ptp_data; | 
|  | u8 type = efx_tx_csum_type_skb(skb); | 
|  | struct efx_tx_queue *tx_queue; | 
|  |  | 
|  | tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type); | 
|  | if (tx_queue && tx_queue->timestamping) { | 
|  | skb_get(skb); | 
|  |  | 
|  | /* This code invokes normal driver TX code which is always | 
|  | * protected from softirqs when called from generic TX code, | 
|  | * which in turn disables preemption. Look at __dev_queue_xmit | 
|  | * which uses rcu_read_lock_bh disabling preemption for RCU | 
|  | * plus disabling softirqs. We do not need RCU reader | 
|  | * protection here. | 
|  | * | 
|  | * Although it is theoretically safe for current PTP TX/RX code | 
|  | * running without disabling softirqs, there are three good | 
|  | * reasond for doing so: | 
|  | * | 
|  | *      1) The code invoked is mainly implemented for non-PTP | 
|  | *         packets and it is always executed with softirqs | 
|  | *         disabled. | 
|  | *      2) This being a single PTP packet, better to not | 
|  | *         interrupt its processing by softirqs which can lead | 
|  | *         to high latencies. | 
|  | *      3) netdev_xmit_more checks preemption is disabled and | 
|  | *         triggers a BUG_ON if not. | 
|  | */ | 
|  | local_bh_disable(); | 
|  | efx_enqueue_skb(tx_queue, skb); | 
|  | local_bh_enable(); | 
|  |  | 
|  | /* We need to add the filters after enqueuing the packet. | 
|  | * Otherwise, there's high latency in sending back the | 
|  | * timestamp, causing ptp4l timeouts | 
|  | */ | 
|  | efx_ptp_insert_unicast_filter(efx, skb); | 
|  | dev_consume_skb_any(skb); | 
|  | } else { | 
|  | WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Transmit a PTP packet, via the MCDI interface, to the wire. */ | 
|  | static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); | 
|  | struct efx_ptp_data *ptp_data = efx->ptp_data; | 
|  | struct skb_shared_hwtstamps timestamps; | 
|  | size_t len; | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); | 
|  | MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); | 
|  | if (skb_shinfo(skb)->nr_frags != 0) { | 
|  | rc = skb_linearize(skb); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | rc = skb_checksum_help(skb); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  | } | 
|  | skb_copy_from_linear_data(skb, | 
|  | MCDI_PTR(ptp_data->txbuf, | 
|  | PTP_IN_TRANSMIT_PACKET), | 
|  | skb->len); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_PTP, | 
|  | ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), | 
|  | txtime, sizeof(txtime), &len); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | memset(×tamps, 0, sizeof(timestamps)); | 
|  | timestamps.hwtstamp = ptp_data->nic_to_kernel_time( | 
|  | MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), | 
|  | MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), | 
|  | ptp_data->ts_corrections.ptp_tx); | 
|  |  | 
|  | skb_tstamp_tx(skb, ×tamps); | 
|  |  | 
|  | /* Add the filters after sending back the timestamp to avoid delaying it | 
|  | * or ptp4l may timeout. | 
|  | */ | 
|  | efx_ptp_insert_unicast_filter(efx, skb); | 
|  |  | 
|  | fail: | 
|  | dev_kfree_skb_any(skb); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Process any queued receive events and corresponding packets | 
|  | * | 
|  | * q is returned with all the packets that are ready for delivery. | 
|  | */ | 
|  | static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | while ((skb = skb_dequeue(&ptp->rxq))) { | 
|  | struct efx_ptp_match *match; | 
|  |  | 
|  | match = (struct efx_ptp_match *)skb->cb; | 
|  | if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { | 
|  | __skb_queue_tail(q, skb); | 
|  | } else if (time_after(jiffies, match->expiry)) { | 
|  | match->state = PTP_PACKET_STATE_TIMED_OUT; | 
|  | ++ptp->rx_no_timestamp; | 
|  | __skb_queue_tail(q, skb); | 
|  | } else { | 
|  | /* Replace unprocessed entry and stop */ | 
|  | skb_queue_head(&ptp->rxq, skb); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Complete processing of a received packet */ | 
|  | static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | local_bh_disable(); | 
|  | netif_receive_skb(skb); | 
|  | local_bh_enable(); | 
|  | } | 
|  |  | 
|  | static struct efx_ptp_rxfilter * | 
|  | efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec) | 
|  | { | 
|  | struct efx_ptp_rxfilter *rxfilter; | 
|  |  | 
|  | list_for_each_entry(rxfilter, filter_list, list) { | 
|  | if (rxfilter->ether_type == spec->ether_type && | 
|  | rxfilter->loc_port == spec->loc_port && | 
|  | !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host))) | 
|  | return rxfilter; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void efx_ptp_remove_one_filter(struct efx_nic *efx, | 
|  | struct efx_ptp_rxfilter *rxfilter) | 
|  | { | 
|  | efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, | 
|  | rxfilter->handle); | 
|  | list_del(&rxfilter->list); | 
|  | kfree(rxfilter); | 
|  | } | 
|  |  | 
|  | static void efx_ptp_remove_filters(struct efx_nic *efx, | 
|  | struct list_head *filter_list) | 
|  | { | 
|  | struct efx_ptp_rxfilter *rxfilter, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(rxfilter, tmp, filter_list, list) | 
|  | efx_ptp_remove_one_filter(efx, rxfilter); | 
|  | } | 
|  |  | 
|  | static void efx_ptp_init_filter(struct efx_nic *efx, | 
|  | struct efx_filter_spec *rxfilter) | 
|  | { | 
|  | struct efx_channel *channel = efx->ptp_data->channel; | 
|  | struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel); | 
|  |  | 
|  | efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0, | 
|  | efx_rx_queue_index(queue)); | 
|  | } | 
|  |  | 
|  | static int efx_ptp_insert_filter(struct efx_nic *efx, | 
|  | struct list_head *filter_list, | 
|  | struct efx_filter_spec *spec, | 
|  | unsigned long expiry) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct efx_ptp_rxfilter *rxfilter; | 
|  | int rc; | 
|  |  | 
|  | rxfilter = efx_ptp_find_filter(filter_list, spec); | 
|  | if (rxfilter) { | 
|  | rxfilter->expiry = expiry; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL); | 
|  | if (!rxfilter) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = efx_filter_insert_filter(efx, spec, true); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  |  | 
|  | rxfilter->handle = rc; | 
|  | rxfilter->ether_type = spec->ether_type; | 
|  | rxfilter->loc_port = spec->loc_port; | 
|  | memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)); | 
|  | rxfilter->expiry = expiry; | 
|  | list_add(&rxfilter->list, filter_list); | 
|  |  | 
|  | queue_delayed_work(ptp->workwq, &ptp->cleanup_work, | 
|  | UCAST_FILTER_EXPIRY_JIFFIES + 1); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | kfree(rxfilter); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx, | 
|  | struct list_head *filter_list, | 
|  | __be32 addr, u16 port, | 
|  | unsigned long expiry) | 
|  | { | 
|  | struct efx_filter_spec spec; | 
|  |  | 
|  | efx_ptp_init_filter(efx, &spec); | 
|  | efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port)); | 
|  | return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); | 
|  | } | 
|  |  | 
|  | static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx, | 
|  | struct list_head *filter_list, | 
|  | const struct in6_addr *addr, u16 port, | 
|  | unsigned long expiry) | 
|  | { | 
|  | struct efx_filter_spec spec; | 
|  |  | 
|  | efx_ptp_init_filter(efx, &spec); | 
|  | efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port)); | 
|  | return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); | 
|  | } | 
|  |  | 
|  | static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct efx_filter_spec spec; | 
|  |  | 
|  | efx_ptp_init_filter(efx, &spec); | 
|  | efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, ptp_addr_ether); | 
|  | spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; | 
|  | spec.ether_type = htons(ETH_P_1588); | 
|  | return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0); | 
|  | } | 
|  |  | 
|  | static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int rc; | 
|  |  | 
|  | if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast)) | 
|  | return 0; | 
|  |  | 
|  | /* Must filter on both event and general ports to ensure | 
|  | * that there is no packet re-ordering. | 
|  | */ | 
|  | rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, | 
|  | htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT, | 
|  | 0); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  |  | 
|  | rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, | 
|  | htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT, | 
|  | 0); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  |  | 
|  | /* if the NIC supports hw timestamps by the MAC, we can support | 
|  | * PTP over IPv6 and Ethernet | 
|  | */ | 
|  | if (efx_ptp_use_mac_tx_timestamps(efx)) { | 
|  | rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, | 
|  | &ptp_addr_ipv6, PTP_EVENT_PORT, 0); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  |  | 
|  | rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, | 
|  | &ptp_addr_ipv6, PTP_GENERAL_PORT, 0); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  |  | 
|  | rc = efx_ptp_insert_eth_multicast_filter(efx); | 
|  |  | 
|  | /* Not all firmware variants support this filter */ | 
|  | if (rc < 0 && rc != -EPROTONOSUPPORT) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb) | 
|  | { | 
|  | if (skb->protocol == htons(ETH_P_IP)) { | 
|  | return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) && | 
|  | ip_hdr(skb)->protocol == IPPROTO_UDP && | 
|  | udp_hdr(skb)->source == htons(PTP_EVENT_PORT); | 
|  | } else if (skb->protocol == htons(ETH_P_IPV6)) { | 
|  | return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &ptp_addr_ipv6) && | 
|  | ipv6_hdr(skb)->nexthdr == IPPROTO_UDP && | 
|  | udp_hdr(skb)->source == htons(PTP_EVENT_PORT); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | unsigned long expiry; | 
|  | int rc; | 
|  |  | 
|  | if (!efx_ptp_valid_unicast_event_pkt(skb)) | 
|  | return -EINVAL; | 
|  |  | 
|  | expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES; | 
|  |  | 
|  | if (skb->protocol == htons(ETH_P_IP)) { | 
|  | __be32 addr = ip_hdr(skb)->saddr; | 
|  |  | 
|  | rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, | 
|  | addr, PTP_EVENT_PORT, expiry); | 
|  | if (rc < 0) | 
|  | goto out; | 
|  |  | 
|  | rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, | 
|  | addr, PTP_GENERAL_PORT, expiry); | 
|  | } else if (efx_ptp_use_mac_tx_timestamps(efx)) { | 
|  | /* IPv6 PTP only supported by devices with MAC hw timestamp */ | 
|  | struct in6_addr *addr = &ipv6_hdr(skb)->saddr; | 
|  |  | 
|  | rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, | 
|  | addr, PTP_EVENT_PORT, expiry); | 
|  | if (rc < 0) | 
|  | goto out; | 
|  |  | 
|  | rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, | 
|  | addr, PTP_GENERAL_PORT, expiry); | 
|  | } else { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_start(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int rc; | 
|  |  | 
|  | ptp->reset_required = false; | 
|  |  | 
|  | rc = efx_ptp_insert_multicast_filters(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = efx_ptp_enable(efx); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | ptp->evt_frag_idx = 0; | 
|  | ptp->current_adjfreq = 0; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_stop(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int rc; | 
|  |  | 
|  | if (ptp == NULL) | 
|  | return 0; | 
|  |  | 
|  | rc = efx_ptp_disable(efx); | 
|  |  | 
|  | efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); | 
|  | efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast); | 
|  |  | 
|  | /* Make sure RX packets are really delivered */ | 
|  | efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); | 
|  | skb_queue_purge(&efx->ptp_data->txq); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_restart(struct efx_nic *efx) | 
|  | { | 
|  | if (efx->ptp_data && efx->ptp_data->enabled) | 
|  | return efx_ptp_start(efx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void efx_ptp_pps_worker(struct work_struct *work) | 
|  | { | 
|  | struct efx_ptp_data *ptp = | 
|  | container_of(work, struct efx_ptp_data, pps_work); | 
|  | struct efx_nic *efx = ptp->efx; | 
|  | struct ptp_clock_event ptp_evt; | 
|  |  | 
|  | if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) | 
|  | return; | 
|  |  | 
|  | ptp_evt.type = PTP_CLOCK_PPSUSR; | 
|  | ptp_evt.pps_times = ptp->host_time_pps; | 
|  | ptp_clock_event(ptp->phc_clock, &ptp_evt); | 
|  | } | 
|  |  | 
|  | static void efx_ptp_worker(struct work_struct *work) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = | 
|  | container_of(work, struct efx_ptp_data, work); | 
|  | struct efx_nic *efx = ptp_data->efx; | 
|  | struct sk_buff *skb; | 
|  | struct sk_buff_head tempq; | 
|  |  | 
|  | if (ptp_data->reset_required) { | 
|  | efx_ptp_stop(efx); | 
|  | efx_ptp_start(efx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | __skb_queue_head_init(&tempq); | 
|  | efx_ptp_process_events(efx, &tempq); | 
|  |  | 
|  | while ((skb = skb_dequeue(&ptp_data->txq))) | 
|  | ptp_data->xmit_skb(efx, skb); | 
|  |  | 
|  | while ((skb = __skb_dequeue(&tempq))) | 
|  | efx_ptp_process_rx(efx, skb); | 
|  | } | 
|  |  | 
|  | static void efx_ptp_cleanup_worker(struct work_struct *work) | 
|  | { | 
|  | struct efx_ptp_data *ptp = | 
|  | container_of(work, struct efx_ptp_data, cleanup_work.work); | 
|  | struct efx_ptp_rxfilter *rxfilter, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) { | 
|  | if (time_is_before_jiffies(rxfilter->expiry)) | 
|  | efx_ptp_remove_one_filter(ptp->efx, rxfilter); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&ptp->rxfilters_ucast)) { | 
|  | queue_delayed_work(ptp->workwq, &ptp->cleanup_work, | 
|  | UCAST_FILTER_EXPIRY_JIFFIES + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct ptp_clock_info efx_phc_clock_info = { | 
|  | .owner		= THIS_MODULE, | 
|  | .name		= "sfc", | 
|  | .max_adj	= MAX_PPB, | 
|  | .n_alarm	= 0, | 
|  | .n_ext_ts	= 0, | 
|  | .n_per_out	= 0, | 
|  | .n_pins		= 0, | 
|  | .pps		= 1, | 
|  | .adjfine	= efx_phc_adjfine, | 
|  | .adjtime	= efx_phc_adjtime, | 
|  | .gettime64	= efx_phc_gettime, | 
|  | .settime64	= efx_phc_settime, | 
|  | .enable		= efx_phc_enable, | 
|  | }; | 
|  |  | 
|  | /* Initialise PTP state. */ | 
|  | int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) | 
|  | { | 
|  | struct efx_ptp_data *ptp; | 
|  | int rc = 0; | 
|  |  | 
|  | if (efx->ptp_data) { | 
|  | efx->ptp_data->channel = channel; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); | 
|  | efx->ptp_data = ptp; | 
|  | if (!efx->ptp_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ptp->efx = efx; | 
|  | ptp->channel = channel; | 
|  |  | 
|  | rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); | 
|  | if (rc != 0) | 
|  | goto fail1; | 
|  |  | 
|  | skb_queue_head_init(&ptp->rxq); | 
|  | skb_queue_head_init(&ptp->txq); | 
|  | ptp->workwq = create_singlethread_workqueue("sfc_ptp"); | 
|  | if (!ptp->workwq) { | 
|  | rc = -ENOMEM; | 
|  | goto fail2; | 
|  | } | 
|  |  | 
|  | if (efx_ptp_use_mac_tx_timestamps(efx)) { | 
|  | ptp->xmit_skb = efx_ptp_xmit_skb_queue; | 
|  | /* Request sync events on this channel. */ | 
|  | channel->sync_events_state = SYNC_EVENTS_QUIESCENT; | 
|  | } else { | 
|  | ptp->xmit_skb = efx_ptp_xmit_skb_mc; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&ptp->work, efx_ptp_worker); | 
|  | INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker); | 
|  | ptp->config.flags = 0; | 
|  | ptp->config.tx_type = HWTSTAMP_TX_OFF; | 
|  | ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; | 
|  | INIT_LIST_HEAD(&ptp->rxfilters_mcast); | 
|  | INIT_LIST_HEAD(&ptp->rxfilters_ucast); | 
|  |  | 
|  | /* Get the NIC PTP attributes and set up time conversions */ | 
|  | rc = efx_ptp_get_attributes(efx); | 
|  | if (rc < 0) | 
|  | goto fail3; | 
|  |  | 
|  | /* Get the timestamp corrections */ | 
|  | rc = efx_ptp_get_timestamp_corrections(efx); | 
|  | if (rc < 0) | 
|  | goto fail3; | 
|  |  | 
|  | if (efx->mcdi->fn_flags & | 
|  | (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { | 
|  | ptp->phc_clock_info = efx_phc_clock_info; | 
|  | ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, | 
|  | &efx->pci_dev->dev); | 
|  | if (IS_ERR(ptp->phc_clock)) { | 
|  | rc = PTR_ERR(ptp->phc_clock); | 
|  | goto fail3; | 
|  | } else if (ptp->phc_clock) { | 
|  | INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); | 
|  | ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); | 
|  | if (!ptp->pps_workwq) { | 
|  | rc = -ENOMEM; | 
|  | goto fail4; | 
|  | } | 
|  | } | 
|  | } | 
|  | ptp->nic_ts_enabled = false; | 
|  |  | 
|  | return 0; | 
|  | fail4: | 
|  | ptp_clock_unregister(efx->ptp_data->phc_clock); | 
|  |  | 
|  | fail3: | 
|  | destroy_workqueue(efx->ptp_data->workwq); | 
|  |  | 
|  | fail2: | 
|  | efx_nic_free_buffer(efx, &ptp->start); | 
|  |  | 
|  | fail1: | 
|  | kfree(efx->ptp_data); | 
|  | efx->ptp_data = NULL; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Initialise PTP channel. | 
|  | * | 
|  | * Setting core_index to zero causes the queue to be initialised and doesn't | 
|  | * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. | 
|  | */ | 
|  | static int efx_ptp_probe_channel(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | int rc; | 
|  |  | 
|  | channel->irq_moderation_us = 0; | 
|  | channel->rx_queue.core_index = 0; | 
|  |  | 
|  | rc = efx_ptp_probe(efx, channel); | 
|  | /* Failure to probe PTP is not fatal; this channel will just not be | 
|  | * used for anything. | 
|  | * In the case of EPERM, efx_ptp_probe will print its own message (in | 
|  | * efx_ptp_get_attributes()), so we don't need to. | 
|  | */ | 
|  | if (rc && rc != -EPERM) | 
|  | netif_warn(efx, drv, efx->net_dev, | 
|  | "Failed to probe PTP, rc=%d\n", rc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_ptp_remove(struct efx_nic *efx) | 
|  | { | 
|  | if (!efx->ptp_data) | 
|  | return; | 
|  |  | 
|  | (void)efx_ptp_disable(efx); | 
|  |  | 
|  | cancel_work_sync(&efx->ptp_data->work); | 
|  | cancel_delayed_work_sync(&efx->ptp_data->cleanup_work); | 
|  | if (efx->ptp_data->pps_workwq) | 
|  | cancel_work_sync(&efx->ptp_data->pps_work); | 
|  |  | 
|  | skb_queue_purge(&efx->ptp_data->rxq); | 
|  | skb_queue_purge(&efx->ptp_data->txq); | 
|  |  | 
|  | if (efx->ptp_data->phc_clock) { | 
|  | destroy_workqueue(efx->ptp_data->pps_workwq); | 
|  | ptp_clock_unregister(efx->ptp_data->phc_clock); | 
|  | } | 
|  |  | 
|  | destroy_workqueue(efx->ptp_data->workwq); | 
|  |  | 
|  | efx_nic_free_buffer(efx, &efx->ptp_data->start); | 
|  | kfree(efx->ptp_data); | 
|  | efx->ptp_data = NULL; | 
|  | } | 
|  |  | 
|  | static void efx_ptp_remove_channel(struct efx_channel *channel) | 
|  | { | 
|  | efx_ptp_remove(channel->efx); | 
|  | } | 
|  |  | 
|  | static void efx_ptp_get_channel_name(struct efx_channel *channel, | 
|  | char *buf, size_t len) | 
|  | { | 
|  | snprintf(buf, len, "%s-ptp", channel->efx->name); | 
|  | } | 
|  |  | 
|  | /* Determine whether this packet should be processed by the PTP module | 
|  | * or transmitted conventionally. | 
|  | */ | 
|  | bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | return efx->ptp_data && | 
|  | efx->ptp_data->enabled && | 
|  | skb->len >= PTP_MIN_LENGTH && | 
|  | skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && | 
|  | likely(skb->protocol == htons(ETH_P_IP)) && | 
|  | skb_transport_header_was_set(skb) && | 
|  | skb_network_header_len(skb) >= sizeof(struct iphdr) && | 
|  | ip_hdr(skb)->protocol == IPPROTO_UDP && | 
|  | skb_headlen(skb) >= | 
|  | skb_transport_offset(skb) + sizeof(struct udphdr) && | 
|  | udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); | 
|  | } | 
|  |  | 
|  | /* Receive a PTP packet.  Packets are queued until the arrival of | 
|  | * the receive timestamp from the MC - this will probably occur after the | 
|  | * packet arrival because of the processing in the MC. | 
|  | */ | 
|  | static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; | 
|  | unsigned int version; | 
|  | u8 *data; | 
|  |  | 
|  | match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); | 
|  |  | 
|  | /* Correct version? */ | 
|  | if (ptp->mode == MC_CMD_PTP_MODE_V1) { | 
|  | if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { | 
|  | return false; | 
|  | } | 
|  | data = skb->data; | 
|  | version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); | 
|  | if (version != PTP_VERSION_V1) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { | 
|  | return false; | 
|  | } | 
|  | data = skb->data; | 
|  | version = data[PTP_V2_VERSION_OFFSET]; | 
|  | if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Does this packet require timestamping? */ | 
|  | if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { | 
|  | match->state = PTP_PACKET_STATE_UNMATCHED; | 
|  |  | 
|  | /* We expect the sequence number to be in the same position in | 
|  | * the packet for PTP V1 and V2 | 
|  | */ | 
|  | BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); | 
|  | BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); | 
|  | } else { | 
|  | match->state = PTP_PACKET_STATE_MATCH_UNWANTED; | 
|  | } | 
|  |  | 
|  | skb_queue_tail(&ptp->rxq, skb); | 
|  | queue_work(ptp->workwq, &ptp->work); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Transmit a PTP packet.  This has to be transmitted by the MC | 
|  | * itself, through an MCDI call.  MCDI calls aren't permitted | 
|  | * in the transmit path so defer the actual transmission to a suitable worker. | 
|  | */ | 
|  | int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  |  | 
|  | skb_queue_tail(&ptp->txq, skb); | 
|  |  | 
|  | if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && | 
|  | (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) | 
|  | efx_xmit_hwtstamp_pending(skb); | 
|  | queue_work(ptp->workwq, &ptp->work); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | int efx_ptp_get_mode(struct efx_nic *efx) | 
|  | { | 
|  | return efx->ptp_data->mode; | 
|  | } | 
|  |  | 
|  | int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, | 
|  | unsigned int new_mode) | 
|  | { | 
|  | if ((enable_wanted != efx->ptp_data->enabled) || | 
|  | (enable_wanted && (efx->ptp_data->mode != new_mode))) { | 
|  | int rc = 0; | 
|  |  | 
|  | if (enable_wanted) { | 
|  | /* Change of mode requires disable */ | 
|  | if (efx->ptp_data->enabled && | 
|  | (efx->ptp_data->mode != new_mode)) { | 
|  | efx->ptp_data->enabled = false; | 
|  | rc = efx_ptp_stop(efx); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Set new operating mode and establish | 
|  | * baseline synchronisation, which must | 
|  | * succeed. | 
|  | */ | 
|  | efx->ptp_data->mode = new_mode; | 
|  | if (netif_running(efx->net_dev)) | 
|  | rc = efx_ptp_start(efx); | 
|  | if (rc == 0) { | 
|  | rc = efx_ptp_synchronize(efx, | 
|  | PTP_SYNC_ATTEMPTS * 2); | 
|  | if (rc != 0) | 
|  | efx_ptp_stop(efx); | 
|  | } | 
|  | } else { | 
|  | rc = efx_ptp_stop(efx); | 
|  | } | 
|  |  | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | efx->ptp_data->enabled = enable_wanted; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_ts_init(struct efx_nic *efx, struct kernel_hwtstamp_config *init) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | if ((init->tx_type != HWTSTAMP_TX_OFF) && | 
|  | (init->tx_type != HWTSTAMP_TX_ON)) | 
|  | return -ERANGE; | 
|  |  | 
|  | rc = efx->type->ptp_set_ts_config(efx, init); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | efx->ptp_data->config = *init; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_ptp_get_ts_info(struct efx_nic *efx, struct kernel_ethtool_ts_info *ts_info) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct efx_nic *primary = efx->primary; | 
|  |  | 
|  | ASSERT_RTNL(); | 
|  |  | 
|  | if (!ptp) | 
|  | return; | 
|  |  | 
|  | ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | | 
|  | SOF_TIMESTAMPING_RX_HARDWARE | | 
|  | SOF_TIMESTAMPING_RAW_HARDWARE); | 
|  | /* Check licensed features.  If we don't have the license for TX | 
|  | * timestamps, the NIC will not support them. | 
|  | */ | 
|  | if (efx_ptp_use_mac_tx_timestamps(efx)) { | 
|  | struct efx_ef10_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | if (!(nic_data->licensed_features & | 
|  | (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) | 
|  | ts_info->so_timestamping &= | 
|  | ~SOF_TIMESTAMPING_TX_HARDWARE; | 
|  | } | 
|  | if (primary && primary->ptp_data && primary->ptp_data->phc_clock) | 
|  | ts_info->phc_index = | 
|  | ptp_clock_index(primary->ptp_data->phc_clock); | 
|  | ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; | 
|  | ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; | 
|  | } | 
|  |  | 
|  | int efx_ptp_set_ts_config(struct efx_nic *efx, | 
|  | struct kernel_hwtstamp_config *config, | 
|  | struct netlink_ext_ack __always_unused *extack) | 
|  | { | 
|  | /* Not a PTP enabled port */ | 
|  | if (!efx->ptp_data) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return efx_ptp_ts_init(efx, config); | 
|  | } | 
|  |  | 
|  | int efx_ptp_get_ts_config(struct efx_nic *efx, | 
|  | struct kernel_hwtstamp_config *config) | 
|  | { | 
|  | /* Not a PTP enabled port */ | 
|  | if (!efx->ptp_data) | 
|  | return -EOPNOTSUPP; | 
|  | *config = efx->ptp_data->config; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  |  | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP unexpected event length: got %d expected %d\n", | 
|  | ptp->evt_frag_idx, expected_frag_len); | 
|  | ptp->reset_required = true; | 
|  | queue_work(ptp->workwq, &ptp->work); | 
|  | } | 
|  |  | 
|  | static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) | 
|  | { | 
|  | int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); | 
|  | if (ptp->evt_frag_idx != 1) { | 
|  | ptp_event_failure(efx, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); | 
|  | } | 
|  |  | 
|  | static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) | 
|  | { | 
|  | if (ptp->nic_ts_enabled) | 
|  | queue_work(ptp->pps_workwq, &ptp->pps_work); | 
|  | } | 
|  |  | 
|  | void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); | 
|  |  | 
|  | if (!ptp) { | 
|  | if (!efx->ptp_warned) { | 
|  | netif_warn(efx, drv, efx->net_dev, | 
|  | "Received PTP event but PTP not set up\n"); | 
|  | efx->ptp_warned = true; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!ptp->enabled) | 
|  | return; | 
|  |  | 
|  | if (ptp->evt_frag_idx == 0) { | 
|  | ptp->evt_code = code; | 
|  | } else if (ptp->evt_code != code) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP out of sequence event %d\n", code); | 
|  | ptp->evt_frag_idx = 0; | 
|  | } | 
|  |  | 
|  | ptp->evt_frags[ptp->evt_frag_idx++] = *ev; | 
|  | if (!MCDI_EVENT_FIELD(*ev, CONT)) { | 
|  | /* Process resulting event */ | 
|  | switch (code) { | 
|  | case MCDI_EVENT_CODE_PTP_FAULT: | 
|  | ptp_event_fault(efx, ptp); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_PTP_PPS: | 
|  | ptp_event_pps(efx, ptp); | 
|  | break; | 
|  | default: | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP unknown event %d\n", code); | 
|  | break; | 
|  | } | 
|  | ptp->evt_frag_idx = 0; | 
|  | } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP too many event fragments\n"); | 
|  | ptp->evt_frag_idx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  |  | 
|  | /* When extracting the sync timestamp minor value, we should discard | 
|  | * the least significant two bits. These are not required in order | 
|  | * to reconstruct full-range timestamps and they are optionally used | 
|  | * to report status depending on the options supplied when subscribing | 
|  | * for sync events. | 
|  | */ | 
|  | channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); | 
|  | channel->sync_timestamp_minor = | 
|  | (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) | 
|  | << ptp->nic_time.sync_event_minor_shift; | 
|  |  | 
|  | /* if sync events have been disabled then we want to silently ignore | 
|  | * this event, so throw away result. | 
|  | */ | 
|  | (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, | 
|  | SYNC_EVENTS_VALID); | 
|  | } | 
|  |  | 
|  | static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) | 
|  | { | 
|  | #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) | 
|  | return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); | 
|  | #else | 
|  | const u8 *data = eh + efx->rx_packet_ts_offset; | 
|  | return (u32)data[0]       | | 
|  | (u32)data[1] << 8  | | 
|  | (u32)data[2] << 16 | | 
|  | (u32)data[3] << 24; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | u32 pkt_timestamp_major, pkt_timestamp_minor; | 
|  | u32 diff, carry; | 
|  | struct skb_shared_hwtstamps *timestamps; | 
|  |  | 
|  | if (channel->sync_events_state != SYNC_EVENTS_VALID) | 
|  | return; | 
|  |  | 
|  | pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); | 
|  |  | 
|  | /* get the difference between the packet and sync timestamps, | 
|  | * modulo one second | 
|  | */ | 
|  | diff = pkt_timestamp_minor - channel->sync_timestamp_minor; | 
|  | if (pkt_timestamp_minor < channel->sync_timestamp_minor) | 
|  | diff += ptp->nic_time.minor_max; | 
|  |  | 
|  | /* do we roll over a second boundary and need to carry the one? */ | 
|  | carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? | 
|  | 1 : 0; | 
|  |  | 
|  | if (diff <= ptp->nic_time.sync_event_diff_max) { | 
|  | /* packet is ahead of the sync event by a quarter of a second or | 
|  | * less (allowing for fuzz) | 
|  | */ | 
|  | pkt_timestamp_major = channel->sync_timestamp_major + carry; | 
|  | } else if (diff >= ptp->nic_time.sync_event_diff_min) { | 
|  | /* packet is behind the sync event but within the fuzz factor. | 
|  | * This means the RX packet and sync event crossed as they were | 
|  | * placed on the event queue, which can sometimes happen. | 
|  | */ | 
|  | pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; | 
|  | } else { | 
|  | /* it's outside tolerance in both directions. this might be | 
|  | * indicative of us missing sync events for some reason, so | 
|  | * we'll call it an error rather than risk giving a bogus | 
|  | * timestamp. | 
|  | */ | 
|  | netif_vdbg(efx, drv, efx->net_dev, | 
|  | "packet timestamp %x too far from sync event %x:%x\n", | 
|  | pkt_timestamp_minor, channel->sync_timestamp_major, | 
|  | channel->sync_timestamp_minor); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* attach the timestamps to the skb */ | 
|  | timestamps = skb_hwtstamps(skb); | 
|  | timestamps->hwtstamp = | 
|  | ptp->nic_to_kernel_time(pkt_timestamp_major, | 
|  | pkt_timestamp_minor, | 
|  | ptp->ts_corrections.general_rx); | 
|  | } | 
|  |  | 
|  | static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | s32 delta = scaled_ppm_to_ppb(scaled_ppm); | 
|  | struct efx_nic *efx = ptp_data->efx; | 
|  | MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); | 
|  | s64 adjustment_ns; | 
|  | int rc; | 
|  |  | 
|  | if (delta > MAX_PPB) | 
|  | delta = MAX_PPB; | 
|  | else if (delta < -MAX_PPB) | 
|  | delta = -MAX_PPB; | 
|  |  | 
|  | /* Convert ppb to fixed point ns taking care to round correctly. */ | 
|  | adjustment_ns = ((s64)delta * PPB_SCALE_WORD + | 
|  | (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> | 
|  | ptp_data->adjfreq_ppb_shift; | 
|  |  | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), | 
|  | NULL, 0, NULL); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | ptp_data->current_adjfreq = adjustment_ns; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) | 
|  | { | 
|  | u32 nic_major, nic_minor; | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | struct efx_nic *efx = ptp_data->efx; | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); | 
|  |  | 
|  | efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); | 
|  | return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | struct efx_nic *efx = ptp_data->efx; | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); | 
|  | int rc; | 
|  | ktime_t kt; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), NULL); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | kt = ptp_data->nic_to_kernel_time( | 
|  | MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), | 
|  | MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); | 
|  | *ts = ktime_to_timespec64(kt); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_phc_settime(struct ptp_clock_info *ptp, | 
|  | const struct timespec64 *e_ts) | 
|  | { | 
|  | /* Get the current NIC time, efx_phc_gettime. | 
|  | * Subtract from the desired time to get the offset | 
|  | * call efx_phc_adjtime with the offset | 
|  | */ | 
|  | int rc; | 
|  | struct timespec64 time_now; | 
|  | struct timespec64 delta; | 
|  |  | 
|  | rc = efx_phc_gettime(ptp, &time_now); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | delta = timespec64_sub(*e_ts, time_now); | 
|  |  | 
|  | rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_phc_enable(struct ptp_clock_info *ptp, | 
|  | struct ptp_clock_request *request, | 
|  | int enable) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | if (request->type != PTP_CLK_REQ_PPS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ptp_data->nic_ts_enabled = !!enable; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct efx_channel_type efx_ptp_channel_type = { | 
|  | .handle_no_channel	= efx_ptp_handle_no_channel, | 
|  | .pre_probe		= efx_ptp_probe_channel, | 
|  | .post_remove		= efx_ptp_remove_channel, | 
|  | .get_name		= efx_ptp_get_channel_name, | 
|  | .copy                   = efx_copy_channel, | 
|  | .receive_skb		= efx_ptp_rx, | 
|  | .want_txqs		= efx_ptp_want_txqs, | 
|  | .keep_eventq		= false, | 
|  | }; | 
|  |  | 
|  | void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) | 
|  | { | 
|  | /* Check whether PTP is implemented on this NIC.  The DISABLE | 
|  | * operation will succeed if and only if it is implemented. | 
|  | */ | 
|  | if (efx_ptp_disable(efx) == 0) | 
|  | efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = | 
|  | &efx_ptp_channel_type; | 
|  | } | 
|  |  | 
|  | void efx_ptp_start_datapath(struct efx_nic *efx) | 
|  | { | 
|  | if (efx_ptp_restart(efx)) | 
|  | netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); | 
|  | /* re-enable timestamping if it was previously enabled */ | 
|  | if (efx->type->ptp_set_ts_sync_events) | 
|  | efx->type->ptp_set_ts_sync_events(efx, true, true); | 
|  | } | 
|  |  | 
|  | void efx_ptp_stop_datapath(struct efx_nic *efx) | 
|  | { | 
|  | /* temporarily disable timestamping */ | 
|  | if (efx->type->ptp_set_ts_sync_events) | 
|  | efx->type->ptp_set_ts_sync_events(efx, false, true); | 
|  | efx_ptp_stop(efx); | 
|  | } |