|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/gpio/consumer.h> | 
|  | #include <linux/hwmon.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/mdio/mdio-i2c.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/phy.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/workqueue.h> | 
|  |  | 
|  | #include "sfp.h" | 
|  | #include "swphy.h" | 
|  |  | 
|  | enum { | 
|  | GPIO_MODDEF0, | 
|  | GPIO_LOS, | 
|  | GPIO_TX_FAULT, | 
|  | GPIO_TX_DISABLE, | 
|  | GPIO_RS0, | 
|  | GPIO_RS1, | 
|  | GPIO_MAX, | 
|  |  | 
|  | SFP_F_PRESENT = BIT(GPIO_MODDEF0), | 
|  | SFP_F_LOS = BIT(GPIO_LOS), | 
|  | SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), | 
|  | SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), | 
|  | SFP_F_RS0 = BIT(GPIO_RS0), | 
|  | SFP_F_RS1 = BIT(GPIO_RS1), | 
|  |  | 
|  | SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, | 
|  |  | 
|  | SFP_E_INSERT = 0, | 
|  | SFP_E_REMOVE, | 
|  | SFP_E_DEV_ATTACH, | 
|  | SFP_E_DEV_DETACH, | 
|  | SFP_E_DEV_DOWN, | 
|  | SFP_E_DEV_UP, | 
|  | SFP_E_TX_FAULT, | 
|  | SFP_E_TX_CLEAR, | 
|  | SFP_E_LOS_HIGH, | 
|  | SFP_E_LOS_LOW, | 
|  | SFP_E_TIMEOUT, | 
|  |  | 
|  | SFP_MOD_EMPTY = 0, | 
|  | SFP_MOD_ERROR, | 
|  | SFP_MOD_PROBE, | 
|  | SFP_MOD_WAITDEV, | 
|  | SFP_MOD_HPOWER, | 
|  | SFP_MOD_WAITPWR, | 
|  | SFP_MOD_PRESENT, | 
|  |  | 
|  | SFP_DEV_DETACHED = 0, | 
|  | SFP_DEV_DOWN, | 
|  | SFP_DEV_UP, | 
|  |  | 
|  | SFP_S_DOWN = 0, | 
|  | SFP_S_FAIL, | 
|  | SFP_S_WAIT, | 
|  | SFP_S_INIT, | 
|  | SFP_S_INIT_PHY, | 
|  | SFP_S_INIT_TX_FAULT, | 
|  | SFP_S_WAIT_LOS, | 
|  | SFP_S_LINK_UP, | 
|  | SFP_S_TX_FAULT, | 
|  | SFP_S_REINIT, | 
|  | SFP_S_TX_DISABLE, | 
|  | }; | 
|  |  | 
|  | static const char  * const mod_state_strings[] = { | 
|  | [SFP_MOD_EMPTY] = "empty", | 
|  | [SFP_MOD_ERROR] = "error", | 
|  | [SFP_MOD_PROBE] = "probe", | 
|  | [SFP_MOD_WAITDEV] = "waitdev", | 
|  | [SFP_MOD_HPOWER] = "hpower", | 
|  | [SFP_MOD_WAITPWR] = "waitpwr", | 
|  | [SFP_MOD_PRESENT] = "present", | 
|  | }; | 
|  |  | 
|  | static const char *mod_state_to_str(unsigned short mod_state) | 
|  | { | 
|  | if (mod_state >= ARRAY_SIZE(mod_state_strings)) | 
|  | return "Unknown module state"; | 
|  | return mod_state_strings[mod_state]; | 
|  | } | 
|  |  | 
|  | static const char * const dev_state_strings[] = { | 
|  | [SFP_DEV_DETACHED] = "detached", | 
|  | [SFP_DEV_DOWN] = "down", | 
|  | [SFP_DEV_UP] = "up", | 
|  | }; | 
|  |  | 
|  | static const char *dev_state_to_str(unsigned short dev_state) | 
|  | { | 
|  | if (dev_state >= ARRAY_SIZE(dev_state_strings)) | 
|  | return "Unknown device state"; | 
|  | return dev_state_strings[dev_state]; | 
|  | } | 
|  |  | 
|  | static const char * const event_strings[] = { | 
|  | [SFP_E_INSERT] = "insert", | 
|  | [SFP_E_REMOVE] = "remove", | 
|  | [SFP_E_DEV_ATTACH] = "dev_attach", | 
|  | [SFP_E_DEV_DETACH] = "dev_detach", | 
|  | [SFP_E_DEV_DOWN] = "dev_down", | 
|  | [SFP_E_DEV_UP] = "dev_up", | 
|  | [SFP_E_TX_FAULT] = "tx_fault", | 
|  | [SFP_E_TX_CLEAR] = "tx_clear", | 
|  | [SFP_E_LOS_HIGH] = "los_high", | 
|  | [SFP_E_LOS_LOW] = "los_low", | 
|  | [SFP_E_TIMEOUT] = "timeout", | 
|  | }; | 
|  |  | 
|  | static const char *event_to_str(unsigned short event) | 
|  | { | 
|  | if (event >= ARRAY_SIZE(event_strings)) | 
|  | return "Unknown event"; | 
|  | return event_strings[event]; | 
|  | } | 
|  |  | 
|  | static const char * const sm_state_strings[] = { | 
|  | [SFP_S_DOWN] = "down", | 
|  | [SFP_S_FAIL] = "fail", | 
|  | [SFP_S_WAIT] = "wait", | 
|  | [SFP_S_INIT] = "init", | 
|  | [SFP_S_INIT_PHY] = "init_phy", | 
|  | [SFP_S_INIT_TX_FAULT] = "init_tx_fault", | 
|  | [SFP_S_WAIT_LOS] = "wait_los", | 
|  | [SFP_S_LINK_UP] = "link_up", | 
|  | [SFP_S_TX_FAULT] = "tx_fault", | 
|  | [SFP_S_REINIT] = "reinit", | 
|  | [SFP_S_TX_DISABLE] = "tx_disable", | 
|  | }; | 
|  |  | 
|  | static const char *sm_state_to_str(unsigned short sm_state) | 
|  | { | 
|  | if (sm_state >= ARRAY_SIZE(sm_state_strings)) | 
|  | return "Unknown state"; | 
|  | return sm_state_strings[sm_state]; | 
|  | } | 
|  |  | 
|  | static const char *gpio_names[] = { | 
|  | "mod-def0", | 
|  | "los", | 
|  | "tx-fault", | 
|  | "tx-disable", | 
|  | "rate-select0", | 
|  | "rate-select1", | 
|  | }; | 
|  |  | 
|  | static const enum gpiod_flags gpio_flags[] = { | 
|  | GPIOD_IN, | 
|  | GPIOD_IN, | 
|  | GPIOD_IN, | 
|  | GPIOD_ASIS, | 
|  | GPIOD_ASIS, | 
|  | GPIOD_ASIS, | 
|  | }; | 
|  |  | 
|  | /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a | 
|  | * non-cooled module to initialise its laser safety circuitry. We wait | 
|  | * an initial T_WAIT period before we check the tx fault to give any PHY | 
|  | * on board (for a copper SFP) time to initialise. | 
|  | */ | 
|  | #define T_WAIT			msecs_to_jiffies(50) | 
|  | #define T_START_UP		msecs_to_jiffies(300) | 
|  | #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000) | 
|  |  | 
|  | /* t_reset is the time required to assert the TX_DISABLE signal to reset | 
|  | * an indicated TX_FAULT. | 
|  | */ | 
|  | #define T_RESET_US		10 | 
|  | #define T_FAULT_RECOVER		msecs_to_jiffies(1000) | 
|  |  | 
|  | /* N_FAULT_INIT is the number of recovery attempts at module initialisation | 
|  | * time. If the TX_FAULT signal is not deasserted after this number of | 
|  | * attempts at clearing it, we decide that the module is faulty. | 
|  | * N_FAULT is the same but after the module has initialised. | 
|  | */ | 
|  | #define N_FAULT_INIT		5 | 
|  | #define N_FAULT			5 | 
|  |  | 
|  | /* T_PHY_RETRY is the time interval between attempts to probe the PHY. | 
|  | * R_PHY_RETRY is the number of attempts. | 
|  | */ | 
|  | #define T_PHY_RETRY		msecs_to_jiffies(50) | 
|  | #define R_PHY_RETRY		25 | 
|  |  | 
|  | /* SFP module presence detection is poor: the three MOD DEF signals are | 
|  | * the same length on the PCB, which means it's possible for MOD DEF 0 to | 
|  | * connect before the I2C bus on MOD DEF 1/2. | 
|  | * | 
|  | * The SFF-8472 specifies t_serial ("Time from power on until module is | 
|  | * ready for data transmission over the two wire serial bus.") as 300ms. | 
|  | */ | 
|  | #define T_SERIAL		msecs_to_jiffies(300) | 
|  | #define T_HPOWER_LEVEL		msecs_to_jiffies(300) | 
|  | #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100) | 
|  | #define R_PROBE_RETRY_INIT	10 | 
|  | #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000) | 
|  | #define R_PROBE_RETRY_SLOW	12 | 
|  |  | 
|  | /* SFP modules appear to always have their PHY configured for bus address | 
|  | * 0x56 (which with mdio-i2c, translates to a PHY address of 22). | 
|  | * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface | 
|  | * via address 0x51 (mdio-i2c will use RollBall protocol on this address). | 
|  | */ | 
|  | #define SFP_PHY_ADDR		22 | 
|  | #define SFP_PHY_ADDR_ROLLBALL	17 | 
|  |  | 
|  | /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM | 
|  | * at a time. Some SFP modules and also some Linux I2C drivers do not like | 
|  | * reads longer than 16 bytes. | 
|  | */ | 
|  | #define SFP_EEPROM_BLOCK_SIZE	16 | 
|  |  | 
|  | struct sff_data { | 
|  | unsigned int gpios; | 
|  | bool (*module_supported)(const struct sfp_eeprom_id *id); | 
|  | }; | 
|  |  | 
|  | struct sfp { | 
|  | struct device *dev; | 
|  | struct i2c_adapter *i2c; | 
|  | struct mii_bus *i2c_mii; | 
|  | struct sfp_bus *sfp_bus; | 
|  | enum mdio_i2c_proto mdio_protocol; | 
|  | struct phy_device *mod_phy; | 
|  | const struct sff_data *type; | 
|  | size_t i2c_block_size; | 
|  | u32 max_power_mW; | 
|  |  | 
|  | unsigned int (*get_state)(struct sfp *); | 
|  | void (*set_state)(struct sfp *, unsigned int); | 
|  | int (*read)(struct sfp *, bool, u8, void *, size_t); | 
|  | int (*write)(struct sfp *, bool, u8, void *, size_t); | 
|  |  | 
|  | struct gpio_desc *gpio[GPIO_MAX]; | 
|  | int gpio_irq[GPIO_MAX]; | 
|  |  | 
|  | bool need_poll; | 
|  |  | 
|  | /* Access rules: | 
|  | * state_hw_drive: st_mutex held | 
|  | * state_hw_mask: st_mutex held | 
|  | * state_soft_mask: st_mutex held | 
|  | * state: st_mutex held unless reading input bits | 
|  | */ | 
|  | struct mutex st_mutex;			/* Protects state */ | 
|  | unsigned int state_hw_drive; | 
|  | unsigned int state_hw_mask; | 
|  | unsigned int state_soft_mask; | 
|  | unsigned int state_ignore_mask; | 
|  | unsigned int state; | 
|  |  | 
|  | struct delayed_work poll; | 
|  | struct delayed_work timeout; | 
|  | struct mutex sm_mutex;			/* Protects state machine */ | 
|  | unsigned char sm_mod_state; | 
|  | unsigned char sm_mod_tries_init; | 
|  | unsigned char sm_mod_tries; | 
|  | unsigned char sm_dev_state; | 
|  | unsigned short sm_state; | 
|  | unsigned char sm_fault_retries; | 
|  | unsigned char sm_phy_retries; | 
|  |  | 
|  | struct sfp_eeprom_id id; | 
|  | unsigned int module_power_mW; | 
|  | unsigned int module_t_start_up; | 
|  | unsigned int module_t_wait; | 
|  | unsigned int phy_t_retry; | 
|  |  | 
|  | unsigned int rate_kbd; | 
|  | unsigned int rs_threshold_kbd; | 
|  | unsigned int rs_state_mask; | 
|  |  | 
|  | bool have_a2; | 
|  |  | 
|  | const struct sfp_quirk *quirk; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_HWMON) | 
|  | struct sfp_diag diag; | 
|  | struct delayed_work hwmon_probe; | 
|  | unsigned int hwmon_tries; | 
|  | struct device *hwmon_dev; | 
|  | char *hwmon_name; | 
|  | #endif | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_DEBUG_FS) | 
|  | struct dentry *debugfs_dir; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static bool sff_module_supported(const struct sfp_eeprom_id *id) | 
|  | { | 
|  | return id->base.phys_id == SFF8024_ID_SFF_8472 && | 
|  | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; | 
|  | } | 
|  |  | 
|  | static const struct sff_data sff_data = { | 
|  | .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, | 
|  | .module_supported = sff_module_supported, | 
|  | }; | 
|  |  | 
|  | static bool sfp_module_supported(const struct sfp_eeprom_id *id) | 
|  | { | 
|  | if (id->base.phys_id == SFF8024_ID_SFP && | 
|  | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) | 
|  | return true; | 
|  |  | 
|  | /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored | 
|  | * phys id SFF instead of SFP. Therefore mark this module explicitly | 
|  | * as supported based on vendor name and pn match. | 
|  | */ | 
|  | if (id->base.phys_id == SFF8024_ID_SFF_8472 && | 
|  | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && | 
|  | !memcmp(id->base.vendor_name, "UBNT            ", 16) && | 
|  | !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const struct sff_data sfp_data = { | 
|  | .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | | 
|  | SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, | 
|  | .module_supported = sfp_module_supported, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id sfp_of_match[] = { | 
|  | { .compatible = "sff,sff", .data = &sff_data, }, | 
|  | { .compatible = "sff,sfp", .data = &sfp_data, }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, sfp_of_match); | 
|  |  | 
|  | static void sfp_fixup_long_startup(struct sfp *sfp) | 
|  | { | 
|  | sfp->module_t_start_up = T_START_UP_BAD_GPON; | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_ignore_los(struct sfp *sfp) | 
|  | { | 
|  | /* This forces LOS to zero, so we ignore transitions */ | 
|  | sfp->state_ignore_mask |= SFP_F_LOS; | 
|  | /* Make sure that LOS options are clear */ | 
|  | sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | | 
|  | SFP_OPTIONS_LOS_NORMAL); | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) | 
|  | { | 
|  | sfp->state_ignore_mask |= SFP_F_TX_FAULT; | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_ignore_hw(struct sfp *sfp, unsigned int mask) | 
|  | { | 
|  | sfp->state_hw_mask &= ~mask; | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_nokia(struct sfp *sfp) | 
|  | { | 
|  | sfp_fixup_long_startup(sfp); | 
|  | sfp_fixup_ignore_los(sfp); | 
|  | } | 
|  |  | 
|  | // For 10GBASE-T short-reach modules | 
|  | static void sfp_fixup_10gbaset_30m(struct sfp *sfp) | 
|  | { | 
|  | sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; | 
|  | sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_rollball(struct sfp *sfp) | 
|  | { | 
|  | sfp->mdio_protocol = MDIO_I2C_ROLLBALL; | 
|  |  | 
|  | /* RollBall modules may disallow access to PHY registers for up to 25 | 
|  | * seconds, and the reads return 0xffff before that. Increase the time | 
|  | * between PHY probe retries from 50ms to 1s so that we will wait for | 
|  | * the PHY for a sufficient amount of time. | 
|  | */ | 
|  | sfp->phy_t_retry = msecs_to_jiffies(1000); | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_rollball_wait4s(struct sfp *sfp) | 
|  | { | 
|  | sfp_fixup_rollball(sfp); | 
|  |  | 
|  | /* The RollBall fixup is not enough for FS modules, the PHY chip inside | 
|  | * them does not return 0xffff for PHY ID registers in all MMDs for the | 
|  | * while initializing. They need a 4 second wait before accessing PHY. | 
|  | */ | 
|  | sfp->module_t_wait = msecs_to_jiffies(4000); | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_fs_10gt(struct sfp *sfp) | 
|  | { | 
|  | sfp_fixup_10gbaset_30m(sfp); | 
|  | sfp_fixup_rollball_wait4s(sfp); | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_halny_gsfp(struct sfp *sfp) | 
|  | { | 
|  | /* Ignore the TX_FAULT and LOS signals on this module. | 
|  | * these are possibly used for other purposes on this | 
|  | * module, e.g. a serial port. | 
|  | */ | 
|  | sfp_fixup_ignore_hw(sfp, SFP_F_TX_FAULT | SFP_F_LOS); | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_potron(struct sfp *sfp) | 
|  | { | 
|  | /* | 
|  | * The TX_FAULT and LOS pins on this device are used for serial | 
|  | * communication, so ignore them. Additionally, provide extra | 
|  | * time for this device to fully start up. | 
|  | */ | 
|  |  | 
|  | sfp_fixup_long_startup(sfp); | 
|  | sfp_fixup_ignore_hw(sfp, SFP_F_TX_FAULT | SFP_F_LOS); | 
|  | } | 
|  |  | 
|  | static void sfp_fixup_rollball_cc(struct sfp *sfp) | 
|  | { | 
|  | sfp_fixup_rollball(sfp); | 
|  |  | 
|  | /* Some RollBall SFPs may have wrong (zero) extended compliance code | 
|  | * burned in EEPROM. For PHY probing we need the correct one. | 
|  | */ | 
|  | sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; | 
|  | } | 
|  |  | 
|  | static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, | 
|  | unsigned long *modes, | 
|  | unsigned long *interfaces) | 
|  | { | 
|  | linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); | 
|  | __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); | 
|  | } | 
|  |  | 
|  | static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, | 
|  | unsigned long *modes, | 
|  | unsigned long *interfaces) | 
|  | { | 
|  | linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); | 
|  | } | 
|  |  | 
|  | static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, | 
|  | unsigned long *modes, | 
|  | unsigned long *interfaces) | 
|  | { | 
|  | /* Copper 2.5G SFP */ | 
|  | linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); | 
|  | __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); | 
|  | sfp_quirk_disable_autoneg(id, modes, interfaces); | 
|  | } | 
|  |  | 
|  | static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, | 
|  | unsigned long *modes, | 
|  | unsigned long *interfaces) | 
|  | { | 
|  | /* Ubiquiti U-Fiber Instant module claims that support all transceiver | 
|  | * types including 10G Ethernet which is not truth. So clear all claimed | 
|  | * modes and set only one mode which module supports: 1000baseX_Full. | 
|  | */ | 
|  | linkmode_zero(modes); | 
|  | linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); | 
|  | } | 
|  |  | 
|  | #define SFP_QUIRK(_v, _p, _m, _f) \ | 
|  | { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } | 
|  | #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) | 
|  | #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) | 
|  |  | 
|  | static const struct sfp_quirk sfp_quirks[] = { | 
|  | // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly | 
|  | // report 2500MBd NRZ in their EEPROM | 
|  | SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex, | 
|  | sfp_fixup_ignore_tx_fault), | 
|  |  | 
|  | // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd | 
|  | // NRZ in their EEPROM | 
|  | SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, | 
|  | sfp_fixup_nokia), | 
|  |  | 
|  | // FLYPRO SFP-10GT-CS-30M uses Rollball protocol to talk to the PHY. | 
|  | SFP_QUIRK_F("FLYPRO", "SFP-10GT-CS-30M", sfp_fixup_rollball), | 
|  |  | 
|  | // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball | 
|  | // protocol to talk to the PHY and needs 4 sec wait before probing the | 
|  | // PHY. | 
|  | SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), | 
|  |  | 
|  | // Fiberstore SFP-2.5G-T and SFP-10GM-T uses Rollball protocol to talk | 
|  | // to the PHY and needs 4 sec wait before probing the PHY. | 
|  | SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_rollball_wait4s), | 
|  | SFP_QUIRK_F("FS", "SFP-10GM-T", sfp_fixup_rollball_wait4s), | 
|  |  | 
|  | // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd | 
|  | // NRZ in their EEPROM | 
|  | SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, | 
|  | sfp_fixup_ignore_tx_fault), | 
|  |  | 
|  | SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), | 
|  |  | 
|  | // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports | 
|  | // 2600MBd in their EERPOM | 
|  | SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), | 
|  |  | 
|  | // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in | 
|  | // their EEPROM | 
|  | SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, | 
|  | sfp_fixup_ignore_tx_fault), | 
|  |  | 
|  | // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report | 
|  | // 2500MBd NRZ in their EEPROM | 
|  | SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), | 
|  |  | 
|  | SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), | 
|  |  | 
|  | // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the | 
|  | // Rollball protocol to talk to the PHY. | 
|  | SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), | 
|  | SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), | 
|  |  | 
|  | SFP_QUIRK_F("YV", "SFP+ONU-XGSPON", sfp_fixup_potron), | 
|  |  | 
|  | // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator | 
|  | SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), | 
|  |  | 
|  | SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), | 
|  | SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), | 
|  | SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-D", sfp_quirk_2500basex), | 
|  | SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-U", sfp_quirk_2500basex), | 
|  | SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), | 
|  | SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), | 
|  | SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), | 
|  | SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), | 
|  | SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), | 
|  | }; | 
|  |  | 
|  | static size_t sfp_strlen(const char *str, size_t maxlen) | 
|  | { | 
|  | size_t size, i; | 
|  |  | 
|  | /* Trailing characters should be filled with space chars, but | 
|  | * some manufacturers can't read SFF-8472 and use NUL. | 
|  | */ | 
|  | for (i = 0, size = 0; i < maxlen; i++) | 
|  | if (str[i] != ' ' && str[i] != '\0') | 
|  | size = i + 1; | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static bool sfp_match(const char *qs, const char *str, size_t len) | 
|  | { | 
|  | if (!qs) | 
|  | return true; | 
|  | if (strlen(qs) != len) | 
|  | return false; | 
|  | return !strncmp(qs, str, len); | 
|  | } | 
|  |  | 
|  | static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) | 
|  | { | 
|  | const struct sfp_quirk *q; | 
|  | unsigned int i; | 
|  | size_t vs, ps; | 
|  |  | 
|  | vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); | 
|  | ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); | 
|  |  | 
|  | for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) | 
|  | if (sfp_match(q->vendor, id->base.vendor_name, vs) && | 
|  | sfp_match(q->part, id->base.vendor_pn, ps)) | 
|  | return q; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long poll_jiffies; | 
|  |  | 
|  | static unsigned int sfp_gpio_get_state(struct sfp *sfp) | 
|  | { | 
|  | unsigned int i, state, v; | 
|  |  | 
|  | for (i = state = 0; i < GPIO_MAX; i++) { | 
|  | if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) | 
|  | continue; | 
|  |  | 
|  | v = gpiod_get_value_cansleep(sfp->gpio[i]); | 
|  | if (v) | 
|  | state |= BIT(i); | 
|  | } | 
|  |  | 
|  | return state; | 
|  | } | 
|  |  | 
|  | static unsigned int sff_gpio_get_state(struct sfp *sfp) | 
|  | { | 
|  | return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; | 
|  | } | 
|  |  | 
|  | static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) | 
|  | { | 
|  | unsigned int drive; | 
|  |  | 
|  | if (state & SFP_F_PRESENT) | 
|  | /* If the module is present, drive the requested signals */ | 
|  | drive = sfp->state_hw_drive; | 
|  | else | 
|  | /* Otherwise, let them float to the pull-ups */ | 
|  | drive = 0; | 
|  |  | 
|  | if (sfp->gpio[GPIO_TX_DISABLE]) { | 
|  | if (drive & SFP_F_TX_DISABLE) | 
|  | gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], | 
|  | state & SFP_F_TX_DISABLE); | 
|  | else | 
|  | gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); | 
|  | } | 
|  |  | 
|  | if (sfp->gpio[GPIO_RS0]) { | 
|  | if (drive & SFP_F_RS0) | 
|  | gpiod_direction_output(sfp->gpio[GPIO_RS0], | 
|  | state & SFP_F_RS0); | 
|  | else | 
|  | gpiod_direction_input(sfp->gpio[GPIO_RS0]); | 
|  | } | 
|  |  | 
|  | if (sfp->gpio[GPIO_RS1]) { | 
|  | if (drive & SFP_F_RS1) | 
|  | gpiod_direction_output(sfp->gpio[GPIO_RS1], | 
|  | state & SFP_F_RS1); | 
|  | else | 
|  | gpiod_direction_input(sfp->gpio[GPIO_RS1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, | 
|  | size_t len) | 
|  | { | 
|  | struct i2c_msg msgs[2]; | 
|  | u8 bus_addr = a2 ? 0x51 : 0x50; | 
|  | size_t block_size = sfp->i2c_block_size; | 
|  | size_t this_len; | 
|  | int ret; | 
|  |  | 
|  | msgs[0].addr = bus_addr; | 
|  | msgs[0].flags = 0; | 
|  | msgs[0].len = 1; | 
|  | msgs[0].buf = &dev_addr; | 
|  | msgs[1].addr = bus_addr; | 
|  | msgs[1].flags = I2C_M_RD; | 
|  | msgs[1].len = len; | 
|  | msgs[1].buf = buf; | 
|  |  | 
|  | while (len) { | 
|  | this_len = len; | 
|  | if (this_len > block_size) | 
|  | this_len = block_size; | 
|  |  | 
|  | msgs[1].len = this_len; | 
|  |  | 
|  | ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret != ARRAY_SIZE(msgs)) | 
|  | break; | 
|  |  | 
|  | msgs[1].buf += this_len; | 
|  | dev_addr += this_len; | 
|  | len -= this_len; | 
|  | } | 
|  |  | 
|  | return msgs[1].buf - (u8 *)buf; | 
|  | } | 
|  |  | 
|  | static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, | 
|  | size_t len) | 
|  | { | 
|  | struct i2c_msg msgs[1]; | 
|  | u8 bus_addr = a2 ? 0x51 : 0x50; | 
|  | int ret; | 
|  |  | 
|  | msgs[0].addr = bus_addr; | 
|  | msgs[0].flags = 0; | 
|  | msgs[0].len = 1 + len; | 
|  | msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); | 
|  | if (!msgs[0].buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | msgs[0].buf[0] = dev_addr; | 
|  | memcpy(&msgs[0].buf[1], buf, len); | 
|  |  | 
|  | ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); | 
|  |  | 
|  | kfree(msgs[0].buf); | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return ret == ARRAY_SIZE(msgs) ? len : 0; | 
|  | } | 
|  |  | 
|  | static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) | 
|  | { | 
|  | if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) | 
|  | return -EINVAL; | 
|  |  | 
|  | sfp->i2c = i2c; | 
|  | sfp->read = sfp_i2c_read; | 
|  | sfp->write = sfp_i2c_write; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_i2c_mdiobus_create(struct sfp *sfp) | 
|  | { | 
|  | struct mii_bus *i2c_mii; | 
|  | int ret; | 
|  |  | 
|  | i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); | 
|  | if (IS_ERR(i2c_mii)) | 
|  | return PTR_ERR(i2c_mii); | 
|  |  | 
|  | i2c_mii->name = "SFP I2C Bus"; | 
|  | i2c_mii->phy_mask = ~0; | 
|  |  | 
|  | ret = mdiobus_register(i2c_mii); | 
|  | if (ret < 0) { | 
|  | mdiobus_free(i2c_mii); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sfp->i2c_mii = i2c_mii; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) | 
|  | { | 
|  | mdiobus_unregister(sfp->i2c_mii); | 
|  | sfp->i2c_mii = NULL; | 
|  | } | 
|  |  | 
|  | /* Interface */ | 
|  | static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) | 
|  | { | 
|  | return sfp->read(sfp, a2, addr, buf, len); | 
|  | } | 
|  |  | 
|  | static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) | 
|  | { | 
|  | return sfp->write(sfp, a2, addr, buf, len); | 
|  | } | 
|  |  | 
|  | static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) | 
|  | { | 
|  | int ret; | 
|  | u8 old, v; | 
|  |  | 
|  | ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); | 
|  | if (ret != sizeof(old)) | 
|  | return ret; | 
|  |  | 
|  | v = (old & ~mask) | (val & mask); | 
|  | if (v == old) | 
|  | return sizeof(v); | 
|  |  | 
|  | return sfp_write(sfp, a2, addr, &v, sizeof(v)); | 
|  | } | 
|  |  | 
|  | static unsigned int sfp_soft_get_state(struct sfp *sfp) | 
|  | { | 
|  | unsigned int state = 0; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); | 
|  | if (ret == sizeof(status)) { | 
|  | if (status & SFP_STATUS_RX_LOS) | 
|  | state |= SFP_F_LOS; | 
|  | if (status & SFP_STATUS_TX_FAULT) | 
|  | state |= SFP_F_TX_FAULT; | 
|  | } else { | 
|  | dev_err_ratelimited(sfp->dev, | 
|  | "failed to read SFP soft status: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | /* Preserve the current state */ | 
|  | state = sfp->state; | 
|  | } | 
|  |  | 
|  | return state & sfp->state_soft_mask; | 
|  | } | 
|  |  | 
|  | static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, | 
|  | unsigned int soft) | 
|  | { | 
|  | u8 mask = 0; | 
|  | u8 val = 0; | 
|  |  | 
|  | if (soft & SFP_F_TX_DISABLE) | 
|  | mask |= SFP_STATUS_TX_DISABLE_FORCE; | 
|  | if (state & SFP_F_TX_DISABLE) | 
|  | val |= SFP_STATUS_TX_DISABLE_FORCE; | 
|  |  | 
|  | if (soft & SFP_F_RS0) | 
|  | mask |= SFP_STATUS_RS0_SELECT; | 
|  | if (state & SFP_F_RS0) | 
|  | val |= SFP_STATUS_RS0_SELECT; | 
|  |  | 
|  | if (mask) | 
|  | sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); | 
|  |  | 
|  | val = mask = 0; | 
|  | if (soft & SFP_F_RS1) | 
|  | mask |= SFP_EXT_STATUS_RS1_SELECT; | 
|  | if (state & SFP_F_RS1) | 
|  | val |= SFP_EXT_STATUS_RS1_SELECT; | 
|  |  | 
|  | if (mask) | 
|  | sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); | 
|  | } | 
|  |  | 
|  | static void sfp_soft_start_poll(struct sfp *sfp) | 
|  | { | 
|  | const struct sfp_eeprom_id *id = &sfp->id; | 
|  | unsigned int mask = 0; | 
|  |  | 
|  | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) | 
|  | mask |= SFP_F_TX_DISABLE; | 
|  | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) | 
|  | mask |= SFP_F_TX_FAULT; | 
|  | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) | 
|  | mask |= SFP_F_LOS; | 
|  | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) | 
|  | mask |= sfp->rs_state_mask; | 
|  |  | 
|  | mutex_lock(&sfp->st_mutex); | 
|  | // Poll the soft state for hardware pins we want to ignore | 
|  | sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & | 
|  | mask; | 
|  |  | 
|  | if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && | 
|  | !sfp->need_poll) | 
|  | mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); | 
|  | mutex_unlock(&sfp->st_mutex); | 
|  | } | 
|  |  | 
|  | static void sfp_soft_stop_poll(struct sfp *sfp) | 
|  | { | 
|  | mutex_lock(&sfp->st_mutex); | 
|  | sfp->state_soft_mask = 0; | 
|  | mutex_unlock(&sfp->st_mutex); | 
|  | } | 
|  |  | 
|  | /* sfp_get_state() - must be called with st_mutex held, or in the | 
|  | * initialisation path. | 
|  | */ | 
|  | static unsigned int sfp_get_state(struct sfp *sfp) | 
|  | { | 
|  | unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); | 
|  | unsigned int state; | 
|  |  | 
|  | state = sfp->get_state(sfp) & sfp->state_hw_mask; | 
|  | if (state & SFP_F_PRESENT && soft) | 
|  | state |= sfp_soft_get_state(sfp); | 
|  |  | 
|  | return state; | 
|  | } | 
|  |  | 
|  | /* sfp_set_state() - must be called with st_mutex held, or in the | 
|  | * initialisation path. | 
|  | */ | 
|  | static void sfp_set_state(struct sfp *sfp, unsigned int state) | 
|  | { | 
|  | unsigned int soft; | 
|  |  | 
|  | sfp->set_state(sfp, state); | 
|  |  | 
|  | soft = sfp->state_soft_mask & SFP_F_OUTPUTS; | 
|  | if (state & SFP_F_PRESENT && soft) | 
|  | sfp_soft_set_state(sfp, state, soft); | 
|  | } | 
|  |  | 
|  | static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) | 
|  | { | 
|  | mutex_lock(&sfp->st_mutex); | 
|  | sfp->state = (sfp->state & ~mask) | set; | 
|  | sfp_set_state(sfp, sfp->state); | 
|  | mutex_unlock(&sfp->st_mutex); | 
|  | } | 
|  |  | 
|  | static unsigned int sfp_check(void *buf, size_t len) | 
|  | { | 
|  | u8 *p, check; | 
|  |  | 
|  | for (p = buf, check = 0; len; p++, len--) | 
|  | check += *p; | 
|  |  | 
|  | return check; | 
|  | } | 
|  |  | 
|  | /* hwmon */ | 
|  | #if IS_ENABLED(CONFIG_HWMON) | 
|  | static umode_t sfp_hwmon_is_visible(const void *data, | 
|  | enum hwmon_sensor_types type, | 
|  | u32 attr, int channel) | 
|  | { | 
|  | const struct sfp *sfp = data; | 
|  |  | 
|  | switch (type) { | 
|  | case hwmon_temp: | 
|  | switch (attr) { | 
|  | case hwmon_temp_min_alarm: | 
|  | case hwmon_temp_max_alarm: | 
|  | case hwmon_temp_lcrit_alarm: | 
|  | case hwmon_temp_crit_alarm: | 
|  | case hwmon_temp_min: | 
|  | case hwmon_temp_max: | 
|  | case hwmon_temp_lcrit: | 
|  | case hwmon_temp_crit: | 
|  | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) | 
|  | return 0; | 
|  | fallthrough; | 
|  | case hwmon_temp_input: | 
|  | case hwmon_temp_label: | 
|  | return 0444; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | case hwmon_in: | 
|  | switch (attr) { | 
|  | case hwmon_in_min_alarm: | 
|  | case hwmon_in_max_alarm: | 
|  | case hwmon_in_lcrit_alarm: | 
|  | case hwmon_in_crit_alarm: | 
|  | case hwmon_in_min: | 
|  | case hwmon_in_max: | 
|  | case hwmon_in_lcrit: | 
|  | case hwmon_in_crit: | 
|  | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) | 
|  | return 0; | 
|  | fallthrough; | 
|  | case hwmon_in_input: | 
|  | case hwmon_in_label: | 
|  | return 0444; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | case hwmon_curr: | 
|  | switch (attr) { | 
|  | case hwmon_curr_min_alarm: | 
|  | case hwmon_curr_max_alarm: | 
|  | case hwmon_curr_lcrit_alarm: | 
|  | case hwmon_curr_crit_alarm: | 
|  | case hwmon_curr_min: | 
|  | case hwmon_curr_max: | 
|  | case hwmon_curr_lcrit: | 
|  | case hwmon_curr_crit: | 
|  | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) | 
|  | return 0; | 
|  | fallthrough; | 
|  | case hwmon_curr_input: | 
|  | case hwmon_curr_label: | 
|  | return 0444; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | case hwmon_power: | 
|  | /* External calibration of receive power requires | 
|  | * floating point arithmetic. Doing that in the kernel | 
|  | * is not easy, so just skip it. If the module does | 
|  | * not require external calibration, we can however | 
|  | * show receiver power, since FP is then not needed. | 
|  | */ | 
|  | if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && | 
|  | channel == 1) | 
|  | return 0; | 
|  | switch (attr) { | 
|  | case hwmon_power_min_alarm: | 
|  | case hwmon_power_max_alarm: | 
|  | case hwmon_power_lcrit_alarm: | 
|  | case hwmon_power_crit_alarm: | 
|  | case hwmon_power_min: | 
|  | case hwmon_power_max: | 
|  | case hwmon_power_lcrit: | 
|  | case hwmon_power_crit: | 
|  | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) | 
|  | return 0; | 
|  | fallthrough; | 
|  | case hwmon_power_input: | 
|  | case hwmon_power_label: | 
|  | return 0444; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) | 
|  | { | 
|  | __be16 val; | 
|  | int err; | 
|  |  | 
|  | err = sfp_read(sfp, true, reg, &val, sizeof(val)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = be16_to_cpu(val); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_to_rx_power(long *value) | 
|  | { | 
|  | *value = DIV_ROUND_CLOSEST(*value, 10); | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, | 
|  | long *value) | 
|  | { | 
|  | if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) | 
|  | *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) | 
|  | { | 
|  | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), | 
|  | be16_to_cpu(sfp->diag.cal_t_offset), value); | 
|  |  | 
|  | if (*value >= 0x8000) | 
|  | *value -= 0x10000; | 
|  |  | 
|  | *value = DIV_ROUND_CLOSEST(*value * 1000, 256); | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) | 
|  | { | 
|  | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), | 
|  | be16_to_cpu(sfp->diag.cal_v_offset), value); | 
|  |  | 
|  | *value = DIV_ROUND_CLOSEST(*value, 10); | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) | 
|  | { | 
|  | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), | 
|  | be16_to_cpu(sfp->diag.cal_txi_offset), value); | 
|  |  | 
|  | *value = DIV_ROUND_CLOSEST(*value, 500); | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) | 
|  | { | 
|  | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), | 
|  | be16_to_cpu(sfp->diag.cal_txpwr_offset), value); | 
|  |  | 
|  | *value = DIV_ROUND_CLOSEST(*value, 10); | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sfp_hwmon_read_sensor(sfp, reg, value); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sfp_hwmon_calibrate_temp(sfp, value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sfp_hwmon_read_sensor(sfp, reg, value); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sfp_hwmon_calibrate_vcc(sfp, value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sfp_hwmon_read_sensor(sfp, reg, value); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sfp_hwmon_calibrate_bias(sfp, value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sfp_hwmon_read_sensor(sfp, reg, value); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sfp_hwmon_calibrate_tx_power(sfp, value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sfp_hwmon_read_sensor(sfp, reg, value); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sfp_hwmon_to_rx_power(value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) | 
|  | { | 
|  | u8 status; | 
|  | int err; | 
|  |  | 
|  | switch (attr) { | 
|  | case hwmon_temp_input: | 
|  | return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); | 
|  |  | 
|  | case hwmon_temp_lcrit: | 
|  | *value = be16_to_cpu(sfp->diag.temp_low_alarm); | 
|  | sfp_hwmon_calibrate_temp(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_temp_min: | 
|  | *value = be16_to_cpu(sfp->diag.temp_low_warn); | 
|  | sfp_hwmon_calibrate_temp(sfp, value); | 
|  | return 0; | 
|  | case hwmon_temp_max: | 
|  | *value = be16_to_cpu(sfp->diag.temp_high_warn); | 
|  | sfp_hwmon_calibrate_temp(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_temp_crit: | 
|  | *value = be16_to_cpu(sfp->diag.temp_high_alarm); | 
|  | sfp_hwmon_calibrate_temp(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_temp_lcrit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_TEMP_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_temp_min_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_TEMP_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_temp_max_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_TEMP_HIGH); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_temp_crit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_TEMP_HIGH); | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) | 
|  | { | 
|  | u8 status; | 
|  | int err; | 
|  |  | 
|  | switch (attr) { | 
|  | case hwmon_in_input: | 
|  | return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); | 
|  |  | 
|  | case hwmon_in_lcrit: | 
|  | *value = be16_to_cpu(sfp->diag.volt_low_alarm); | 
|  | sfp_hwmon_calibrate_vcc(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_in_min: | 
|  | *value = be16_to_cpu(sfp->diag.volt_low_warn); | 
|  | sfp_hwmon_calibrate_vcc(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_in_max: | 
|  | *value = be16_to_cpu(sfp->diag.volt_high_warn); | 
|  | sfp_hwmon_calibrate_vcc(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_in_crit: | 
|  | *value = be16_to_cpu(sfp->diag.volt_high_alarm); | 
|  | sfp_hwmon_calibrate_vcc(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_in_lcrit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_VCC_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_in_min_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_VCC_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_in_max_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_VCC_HIGH); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_in_crit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_VCC_HIGH); | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) | 
|  | { | 
|  | u8 status; | 
|  | int err; | 
|  |  | 
|  | switch (attr) { | 
|  | case hwmon_curr_input: | 
|  | return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); | 
|  |  | 
|  | case hwmon_curr_lcrit: | 
|  | *value = be16_to_cpu(sfp->diag.bias_low_alarm); | 
|  | sfp_hwmon_calibrate_bias(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_curr_min: | 
|  | *value = be16_to_cpu(sfp->diag.bias_low_warn); | 
|  | sfp_hwmon_calibrate_bias(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_curr_max: | 
|  | *value = be16_to_cpu(sfp->diag.bias_high_warn); | 
|  | sfp_hwmon_calibrate_bias(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_curr_crit: | 
|  | *value = be16_to_cpu(sfp->diag.bias_high_alarm); | 
|  | sfp_hwmon_calibrate_bias(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_curr_lcrit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_curr_min_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_TX_BIAS_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_curr_max_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_curr_crit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) | 
|  | { | 
|  | u8 status; | 
|  | int err; | 
|  |  | 
|  | switch (attr) { | 
|  | case hwmon_power_input: | 
|  | return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); | 
|  |  | 
|  | case hwmon_power_lcrit: | 
|  | *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); | 
|  | sfp_hwmon_calibrate_tx_power(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_min: | 
|  | *value = be16_to_cpu(sfp->diag.txpwr_low_warn); | 
|  | sfp_hwmon_calibrate_tx_power(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_max: | 
|  | *value = be16_to_cpu(sfp->diag.txpwr_high_warn); | 
|  | sfp_hwmon_calibrate_tx_power(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_crit: | 
|  | *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); | 
|  | sfp_hwmon_calibrate_tx_power(sfp, value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_lcrit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_TXPWR_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_min_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_TXPWR_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_max_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN0_TXPWR_HIGH); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_crit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM0_TXPWR_HIGH); | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) | 
|  | { | 
|  | u8 status; | 
|  | int err; | 
|  |  | 
|  | switch (attr) { | 
|  | case hwmon_power_input: | 
|  | return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); | 
|  |  | 
|  | case hwmon_power_lcrit: | 
|  | *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); | 
|  | sfp_hwmon_to_rx_power(value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_min: | 
|  | *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); | 
|  | sfp_hwmon_to_rx_power(value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_max: | 
|  | *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); | 
|  | sfp_hwmon_to_rx_power(value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_crit: | 
|  | *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); | 
|  | sfp_hwmon_to_rx_power(value); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_lcrit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM1_RXPWR_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_min_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN1_RXPWR_LOW); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_max_alarm: | 
|  | err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_WARN1_RXPWR_HIGH); | 
|  | return 0; | 
|  |  | 
|  | case hwmon_power_crit_alarm: | 
|  | err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | *value = !!(status & SFP_ALARM1_RXPWR_HIGH); | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, | 
|  | u32 attr, int channel, long *value) | 
|  | { | 
|  | struct sfp *sfp = dev_get_drvdata(dev); | 
|  |  | 
|  | switch (type) { | 
|  | case hwmon_temp: | 
|  | return sfp_hwmon_temp(sfp, attr, value); | 
|  | case hwmon_in: | 
|  | return sfp_hwmon_vcc(sfp, attr, value); | 
|  | case hwmon_curr: | 
|  | return sfp_hwmon_bias(sfp, attr, value); | 
|  | case hwmon_power: | 
|  | switch (channel) { | 
|  | case 0: | 
|  | return sfp_hwmon_tx_power(sfp, attr, value); | 
|  | case 1: | 
|  | return sfp_hwmon_rx_power(sfp, attr, value); | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *const sfp_hwmon_power_labels[] = { | 
|  | "TX_power", | 
|  | "RX_power", | 
|  | }; | 
|  |  | 
|  | static int sfp_hwmon_read_string(struct device *dev, | 
|  | enum hwmon_sensor_types type, | 
|  | u32 attr, int channel, const char **str) | 
|  | { | 
|  | switch (type) { | 
|  | case hwmon_curr: | 
|  | switch (attr) { | 
|  | case hwmon_curr_label: | 
|  | *str = "bias"; | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | break; | 
|  | case hwmon_temp: | 
|  | switch (attr) { | 
|  | case hwmon_temp_label: | 
|  | *str = "temperature"; | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | break; | 
|  | case hwmon_in: | 
|  | switch (attr) { | 
|  | case hwmon_in_label: | 
|  | *str = "VCC"; | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | break; | 
|  | case hwmon_power: | 
|  | switch (attr) { | 
|  | case hwmon_power_label: | 
|  | *str = sfp_hwmon_power_labels[channel]; | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static const struct hwmon_ops sfp_hwmon_ops = { | 
|  | .is_visible = sfp_hwmon_is_visible, | 
|  | .read = sfp_hwmon_read, | 
|  | .read_string = sfp_hwmon_read_string, | 
|  | }; | 
|  |  | 
|  | static const struct hwmon_channel_info * const sfp_hwmon_info[] = { | 
|  | HWMON_CHANNEL_INFO(chip, | 
|  | HWMON_C_REGISTER_TZ), | 
|  | HWMON_CHANNEL_INFO(in, | 
|  | HWMON_I_INPUT | | 
|  | HWMON_I_MAX | HWMON_I_MIN | | 
|  | HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | | 
|  | HWMON_I_CRIT | HWMON_I_LCRIT | | 
|  | HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | | 
|  | HWMON_I_LABEL), | 
|  | HWMON_CHANNEL_INFO(temp, | 
|  | HWMON_T_INPUT | | 
|  | HWMON_T_MAX | HWMON_T_MIN | | 
|  | HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | | 
|  | HWMON_T_CRIT | HWMON_T_LCRIT | | 
|  | HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | | 
|  | HWMON_T_LABEL), | 
|  | HWMON_CHANNEL_INFO(curr, | 
|  | HWMON_C_INPUT | | 
|  | HWMON_C_MAX | HWMON_C_MIN | | 
|  | HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | | 
|  | HWMON_C_CRIT | HWMON_C_LCRIT | | 
|  | HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | | 
|  | HWMON_C_LABEL), | 
|  | HWMON_CHANNEL_INFO(power, | 
|  | /* Transmit power */ | 
|  | HWMON_P_INPUT | | 
|  | HWMON_P_MAX | HWMON_P_MIN | | 
|  | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | | 
|  | HWMON_P_CRIT | HWMON_P_LCRIT | | 
|  | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | | 
|  | HWMON_P_LABEL, | 
|  | /* Receive power */ | 
|  | HWMON_P_INPUT | | 
|  | HWMON_P_MAX | HWMON_P_MIN | | 
|  | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | | 
|  | HWMON_P_CRIT | HWMON_P_LCRIT | | 
|  | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | | 
|  | HWMON_P_LABEL), | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct hwmon_chip_info sfp_hwmon_chip_info = { | 
|  | .ops = &sfp_hwmon_ops, | 
|  | .info = sfp_hwmon_info, | 
|  | }; | 
|  |  | 
|  | static void sfp_hwmon_probe(struct work_struct *work) | 
|  | { | 
|  | struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); | 
|  | int err; | 
|  |  | 
|  | /* hwmon interface needs to access 16bit registers in atomic way to | 
|  | * guarantee coherency of the diagnostic monitoring data. If it is not | 
|  | * possible to guarantee coherency because EEPROM is broken in such way | 
|  | * that does not support atomic 16bit read operation then we have to | 
|  | * skip registration of hwmon device. | 
|  | */ | 
|  | if (sfp->i2c_block_size < 2) { | 
|  | dev_info(sfp->dev, | 
|  | "skipping hwmon device registration due to broken EEPROM\n"); | 
|  | dev_info(sfp->dev, | 
|  | "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); | 
|  | if (err < 0) { | 
|  | if (sfp->hwmon_tries--) { | 
|  | mod_delayed_work(system_wq, &sfp->hwmon_probe, | 
|  | T_PROBE_RETRY_SLOW); | 
|  | } else { | 
|  | dev_warn(sfp->dev, "hwmon probe failed: %pe\n", | 
|  | ERR_PTR(err)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); | 
|  | if (IS_ERR(sfp->hwmon_name)) { | 
|  | dev_err(sfp->dev, "out of memory for hwmon name\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, | 
|  | sfp->hwmon_name, sfp, | 
|  | &sfp_hwmon_chip_info, | 
|  | NULL); | 
|  | if (IS_ERR(sfp->hwmon_dev)) | 
|  | dev_err(sfp->dev, "failed to register hwmon device: %ld\n", | 
|  | PTR_ERR(sfp->hwmon_dev)); | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_insert(struct sfp *sfp) | 
|  | { | 
|  | if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { | 
|  | mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); | 
|  | sfp->hwmon_tries = R_PROBE_RETRY_SLOW; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_remove(struct sfp *sfp) | 
|  | { | 
|  | cancel_delayed_work_sync(&sfp->hwmon_probe); | 
|  | if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { | 
|  | hwmon_device_unregister(sfp->hwmon_dev); | 
|  | sfp->hwmon_dev = NULL; | 
|  | kfree(sfp->hwmon_name); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_init(struct sfp *sfp) | 
|  | { | 
|  | INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_exit(struct sfp *sfp) | 
|  | { | 
|  | cancel_delayed_work_sync(&sfp->hwmon_probe); | 
|  | } | 
|  | #else | 
|  | static int sfp_hwmon_insert(struct sfp *sfp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_remove(struct sfp *sfp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int sfp_hwmon_init(struct sfp *sfp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_hwmon_exit(struct sfp *sfp) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Helpers */ | 
|  | static void sfp_module_tx_disable(struct sfp *sfp) | 
|  | { | 
|  | dev_dbg(sfp->dev, "tx disable %u -> %u\n", | 
|  | sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); | 
|  | sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); | 
|  | } | 
|  |  | 
|  | static void sfp_module_tx_enable(struct sfp *sfp) | 
|  | { | 
|  | dev_dbg(sfp->dev, "tx disable %u -> %u\n", | 
|  | sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); | 
|  | sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_DEBUG_FS) | 
|  | static int sfp_debug_state_show(struct seq_file *s, void *data) | 
|  | { | 
|  | struct sfp *sfp = s->private; | 
|  |  | 
|  | seq_printf(s, "Module state: %s\n", | 
|  | mod_state_to_str(sfp->sm_mod_state)); | 
|  | seq_printf(s, "Module probe attempts: %d %d\n", | 
|  | R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, | 
|  | R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); | 
|  | seq_printf(s, "Device state: %s\n", | 
|  | dev_state_to_str(sfp->sm_dev_state)); | 
|  | seq_printf(s, "Main state: %s\n", | 
|  | sm_state_to_str(sfp->sm_state)); | 
|  | seq_printf(s, "Fault recovery remaining retries: %d\n", | 
|  | sfp->sm_fault_retries); | 
|  | seq_printf(s, "PHY probe remaining retries: %d\n", | 
|  | sfp->sm_phy_retries); | 
|  | seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); | 
|  | seq_printf(s, "Rate select threshold: %u kBd\n", | 
|  | sfp->rs_threshold_kbd); | 
|  | seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); | 
|  | seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); | 
|  | seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); | 
|  | seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); | 
|  | seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); | 
|  | seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); | 
|  |  | 
|  | static void sfp_debugfs_init(struct sfp *sfp) | 
|  | { | 
|  | sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); | 
|  |  | 
|  | debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, | 
|  | &sfp_debug_state_fops); | 
|  | } | 
|  |  | 
|  | static void sfp_debugfs_exit(struct sfp *sfp) | 
|  | { | 
|  | debugfs_remove_recursive(sfp->debugfs_dir); | 
|  | } | 
|  | #else | 
|  | static void sfp_debugfs_init(struct sfp *sfp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void sfp_debugfs_exit(struct sfp *sfp) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void sfp_module_tx_fault_reset(struct sfp *sfp) | 
|  | { | 
|  | unsigned int state; | 
|  |  | 
|  | mutex_lock(&sfp->st_mutex); | 
|  | state = sfp->state; | 
|  | if (!(state & SFP_F_TX_DISABLE)) { | 
|  | sfp_set_state(sfp, state | SFP_F_TX_DISABLE); | 
|  |  | 
|  | udelay(T_RESET_US); | 
|  |  | 
|  | sfp_set_state(sfp, state); | 
|  | } | 
|  | mutex_unlock(&sfp->st_mutex); | 
|  | } | 
|  |  | 
|  | /* SFP state machine */ | 
|  | static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) | 
|  | { | 
|  | if (timeout) | 
|  | mod_delayed_work(system_power_efficient_wq, &sfp->timeout, | 
|  | timeout); | 
|  | else | 
|  | cancel_delayed_work(&sfp->timeout); | 
|  | } | 
|  |  | 
|  | static void sfp_sm_next(struct sfp *sfp, unsigned int state, | 
|  | unsigned int timeout) | 
|  | { | 
|  | sfp->sm_state = state; | 
|  | sfp_sm_set_timer(sfp, timeout); | 
|  | } | 
|  |  | 
|  | static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, | 
|  | unsigned int timeout) | 
|  | { | 
|  | sfp->sm_mod_state = state; | 
|  | sfp_sm_set_timer(sfp, timeout); | 
|  | } | 
|  |  | 
|  | static void sfp_sm_phy_detach(struct sfp *sfp) | 
|  | { | 
|  | sfp_remove_phy(sfp->sfp_bus); | 
|  | phy_device_remove(sfp->mod_phy); | 
|  | phy_device_free(sfp->mod_phy); | 
|  | sfp->mod_phy = NULL; | 
|  | } | 
|  |  | 
|  | static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) | 
|  | { | 
|  | struct phy_device *phy; | 
|  | int err; | 
|  |  | 
|  | phy = get_phy_device(sfp->i2c_mii, addr, is_c45); | 
|  | if (phy == ERR_PTR(-ENODEV)) | 
|  | return PTR_ERR(phy); | 
|  | if (IS_ERR(phy)) { | 
|  | dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); | 
|  | return PTR_ERR(phy); | 
|  | } | 
|  |  | 
|  | /* Mark this PHY as being on a SFP module */ | 
|  | phy->is_on_sfp_module = true; | 
|  |  | 
|  | err = phy_device_register(phy); | 
|  | if (err) { | 
|  | phy_device_free(phy); | 
|  | dev_err(sfp->dev, "phy_device_register failed: %pe\n", | 
|  | ERR_PTR(err)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = sfp_add_phy(sfp->sfp_bus, phy); | 
|  | if (err) { | 
|  | phy_device_remove(phy); | 
|  | phy_device_free(phy); | 
|  | dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | sfp->mod_phy = phy; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_sm_link_up(struct sfp *sfp) | 
|  | { | 
|  | sfp_link_up(sfp->sfp_bus); | 
|  | sfp_sm_next(sfp, SFP_S_LINK_UP, 0); | 
|  | } | 
|  |  | 
|  | static void sfp_sm_link_down(struct sfp *sfp) | 
|  | { | 
|  | sfp_link_down(sfp->sfp_bus); | 
|  | } | 
|  |  | 
|  | static void sfp_sm_link_check_los(struct sfp *sfp) | 
|  | { | 
|  | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); | 
|  | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); | 
|  | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); | 
|  | bool los = false; | 
|  |  | 
|  | /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL | 
|  | * are set, we assume that no LOS signal is available. If both are | 
|  | * set, we assume LOS is not implemented (and is meaningless.) | 
|  | */ | 
|  | if (los_options == los_inverted) | 
|  | los = !(sfp->state & SFP_F_LOS); | 
|  | else if (los_options == los_normal) | 
|  | los = !!(sfp->state & SFP_F_LOS); | 
|  |  | 
|  | if (los) | 
|  | sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); | 
|  | else | 
|  | sfp_sm_link_up(sfp); | 
|  | } | 
|  |  | 
|  | static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) | 
|  | { | 
|  | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); | 
|  | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); | 
|  | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); | 
|  |  | 
|  | return (los_options == los_inverted && event == SFP_E_LOS_LOW) || | 
|  | (los_options == los_normal && event == SFP_E_LOS_HIGH); | 
|  | } | 
|  |  | 
|  | static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) | 
|  | { | 
|  | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); | 
|  | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); | 
|  | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); | 
|  |  | 
|  | return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || | 
|  | (los_options == los_normal && event == SFP_E_LOS_LOW); | 
|  | } | 
|  |  | 
|  | static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) | 
|  | { | 
|  | if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { | 
|  | dev_err(sfp->dev, | 
|  | "module persistently indicates fault, disabling\n"); | 
|  | sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); | 
|  | } else { | 
|  | if (warn) | 
|  | dev_err(sfp->dev, "module transmit fault indicated\n"); | 
|  |  | 
|  | sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sfp_sm_add_mdio_bus(struct sfp *sfp) | 
|  | { | 
|  | if (sfp->mdio_protocol != MDIO_I2C_NONE) | 
|  | return sfp_i2c_mdiobus_create(sfp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Probe a SFP for a PHY device if the module supports copper - the PHY | 
|  | * normally sits at I2C bus address 0x56, and may either be a clause 22 | 
|  | * or clause 45 PHY. | 
|  | * | 
|  | * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with | 
|  | * negotiation enabled, but some may be in 1000base-X - which is for the | 
|  | * PHY driver to determine. | 
|  | * | 
|  | * Clause 45 copper SFP+ modules (10G) appear to switch their interface | 
|  | * mode according to the negotiated line speed. | 
|  | */ | 
|  | static int sfp_sm_probe_for_phy(struct sfp *sfp) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | switch (sfp->mdio_protocol) { | 
|  | case MDIO_I2C_NONE: | 
|  | break; | 
|  |  | 
|  | case MDIO_I2C_MARVELL_C22: | 
|  | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); | 
|  | break; | 
|  |  | 
|  | case MDIO_I2C_C45: | 
|  | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); | 
|  | break; | 
|  |  | 
|  | case MDIO_I2C_ROLLBALL: | 
|  | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sfp_module_parse_power(struct sfp *sfp) | 
|  | { | 
|  | u32 power_mW = 1000; | 
|  | bool supports_a2; | 
|  |  | 
|  | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && | 
|  | sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) | 
|  | power_mW = 1500; | 
|  | /* Added in Rev 11.9, but there is no compliance code for this */ | 
|  | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && | 
|  | sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) | 
|  | power_mW = 2000; | 
|  |  | 
|  | /* Power level 1 modules (max. 1W) are always supported. */ | 
|  | if (power_mW <= 1000) { | 
|  | sfp->module_power_mW = power_mW; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | supports_a2 = sfp->id.ext.sff8472_compliance != | 
|  | SFP_SFF8472_COMPLIANCE_NONE || | 
|  | sfp->id.ext.diagmon & SFP_DIAGMON_DDM; | 
|  |  | 
|  | if (power_mW > sfp->max_power_mW) { | 
|  | /* Module power specification exceeds the allowed maximum. */ | 
|  | if (!supports_a2) { | 
|  | /* The module appears not to implement bus address | 
|  | * 0xa2, so assume that the module powers up in the | 
|  | * indicated mode. | 
|  | */ | 
|  | dev_err(sfp->dev, | 
|  | "Host does not support %u.%uW modules\n", | 
|  | power_mW / 1000, (power_mW / 100) % 10); | 
|  | return -EINVAL; | 
|  | } else { | 
|  | dev_warn(sfp->dev, | 
|  | "Host does not support %u.%uW modules, module left in power mode 1\n", | 
|  | power_mW / 1000, (power_mW / 100) % 10); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!supports_a2) { | 
|  | /* The module power level is below the host maximum and the | 
|  | * module appears not to implement bus address 0xa2, so assume | 
|  | * that the module powers up in the indicated mode. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If the module requires a higher power mode, but also requires | 
|  | * an address change sequence, warn the user that the module may | 
|  | * not be functional. | 
|  | */ | 
|  | if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { | 
|  | dev_warn(sfp->dev, | 
|  | "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", | 
|  | power_mW / 1000, (power_mW / 100) % 10); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sfp->module_power_mW = power_mW; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, | 
|  | SFP_EXT_STATUS_PWRLVL_SELECT, | 
|  | enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); | 
|  | if (err != sizeof(u8)) { | 
|  | dev_err(sfp->dev, "failed to %sable high power: %pe\n", | 
|  | enable ? "en" : "dis", ERR_PTR(err)); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (enable) | 
|  | dev_info(sfp->dev, "Module switched to %u.%uW power level\n", | 
|  | sfp->module_power_mW / 1000, | 
|  | (sfp->module_power_mW / 100) % 10); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_module_parse_rate_select(struct sfp *sfp) | 
|  | { | 
|  | u8 rate_id; | 
|  |  | 
|  | sfp->rs_threshold_kbd = 0; | 
|  | sfp->rs_state_mask = 0; | 
|  |  | 
|  | if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) | 
|  | /* No support for RateSelect */ | 
|  | return; | 
|  |  | 
|  | /* Default to INF-8074 RateSelect operation. The signalling threshold | 
|  | * rate is not well specified, so always select "Full Bandwidth", but | 
|  | * SFF-8079 reveals that it is understood that RS0 will be low for | 
|  | * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. | 
|  | * This method exists prior to SFF-8472. | 
|  | */ | 
|  | sfp->rs_state_mask = SFP_F_RS0; | 
|  | sfp->rs_threshold_kbd = 1594; | 
|  |  | 
|  | /* Parse the rate identifier, which is complicated due to history: | 
|  | * SFF-8472 rev 9.5 marks this field as reserved. | 
|  | * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 | 
|  | *  compliance is not required. | 
|  | * SFF-8472 rev 10.2 defines this field using values 0..4 | 
|  | * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 | 
|  | * and even values. | 
|  | */ | 
|  | rate_id = sfp->id.base.rate_id; | 
|  | if (rate_id == 0) | 
|  | /* Unspecified */ | 
|  | return; | 
|  |  | 
|  | /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, | 
|  | * and allocated value 3 to SFF-8431 independent tx/rx rate select. | 
|  | * Convert this to a SFF-8472 rev 11.0 rate identifier. | 
|  | */ | 
|  | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && | 
|  | sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && | 
|  | rate_id == 3) | 
|  | rate_id = SFF_RID_8431; | 
|  |  | 
|  | if (rate_id & SFF_RID_8079) { | 
|  | /* SFF-8079 RateSelect / Application Select in conjunction with | 
|  | * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield | 
|  | * with only bit 0 used, which takes precedence over SFF-8472. | 
|  | */ | 
|  | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { | 
|  | /* SFF-8079 Part 1 - rate selection between Fibre | 
|  | * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 | 
|  | * is high for 2125, so we have to subtract 1 to | 
|  | * include it. | 
|  | */ | 
|  | sfp->rs_threshold_kbd = 2125 - 1; | 
|  | sfp->rs_state_mask = SFP_F_RS0; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* SFF-8472 rev 9.5 does not define the rate identifier */ | 
|  | if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) | 
|  | return; | 
|  |  | 
|  | /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will | 
|  | * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. | 
|  | */ | 
|  | switch (rate_id) { | 
|  | case SFF_RID_8431_RX_ONLY: | 
|  | sfp->rs_threshold_kbd = 4250; | 
|  | sfp->rs_state_mask = SFP_F_RS0; | 
|  | break; | 
|  |  | 
|  | case SFF_RID_8431_TX_ONLY: | 
|  | sfp->rs_threshold_kbd = 4250; | 
|  | sfp->rs_state_mask = SFP_F_RS1; | 
|  | break; | 
|  |  | 
|  | case SFF_RID_8431: | 
|  | sfp->rs_threshold_kbd = 4250; | 
|  | sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; | 
|  | break; | 
|  |  | 
|  | case SFF_RID_10G8G: | 
|  | sfp->rs_threshold_kbd = 9000; | 
|  | sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL | 
|  | * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do | 
|  | * not support multibyte reads from the EEPROM. Each multi-byte read | 
|  | * operation returns just one byte of EEPROM followed by zeros. There is | 
|  | * no way to identify which modules are using Realtek RTL8672 and RTL9601C | 
|  | * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor | 
|  | * name and vendor id into EEPROM, so there is even no way to detect if | 
|  | * module is V-SOL V2801F. Therefore check for those zeros in the read | 
|  | * data and then based on check switch to reading EEPROM to one byte | 
|  | * at a time. | 
|  | */ | 
|  | static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) | 
|  | { | 
|  | size_t i, block_size = sfp->i2c_block_size; | 
|  |  | 
|  | /* Already using byte IO */ | 
|  | if (block_size == 1) | 
|  | return false; | 
|  |  | 
|  | for (i = 1; i < len; i += block_size) { | 
|  | if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) | 
|  | { | 
|  | u8 check; | 
|  | int err; | 
|  |  | 
|  | if (id->base.phys_id != SFF8024_ID_SFF_8472 || | 
|  | id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || | 
|  | id->base.connector != SFF8024_CONNECTOR_LC) { | 
|  | dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); | 
|  | id->base.phys_id = SFF8024_ID_SFF_8472; | 
|  | id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; | 
|  | id->base.connector = SFF8024_CONNECTOR_LC; | 
|  | err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); | 
|  | if (err != 3) { | 
|  | dev_err(sfp->dev, | 
|  | "Failed to rewrite module EEPROM: %pe\n", | 
|  | ERR_PTR(err)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Cotsworks modules have been found to require a delay between write operations. */ | 
|  | mdelay(50); | 
|  |  | 
|  | /* Update base structure checksum */ | 
|  | check = sfp_check(&id->base, sizeof(id->base) - 1); | 
|  | err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); | 
|  | if (err != 1) { | 
|  | dev_err(sfp->dev, | 
|  | "Failed to update base structure checksum in fiber module EEPROM: %pe\n", | 
|  | ERR_PTR(err)); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_module_parse_sff8472(struct sfp *sfp) | 
|  | { | 
|  | /* If the module requires address swap mode, warn about it */ | 
|  | if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) | 
|  | dev_warn(sfp->dev, | 
|  | "module address swap to access page 0xA2 is not supported.\n"); | 
|  | else | 
|  | sfp->have_a2 = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_sm_mod_probe(struct sfp *sfp, bool report) | 
|  | { | 
|  | /* SFP module inserted - read I2C data */ | 
|  | struct sfp_eeprom_id id; | 
|  | bool cotsworks_sfbg; | 
|  | unsigned int mask; | 
|  | bool cotsworks; | 
|  | u8 check; | 
|  | int ret; | 
|  |  | 
|  | sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; | 
|  |  | 
|  | ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); | 
|  | if (ret < 0) { | 
|  | if (report) | 
|  | dev_err(sfp->dev, "failed to read EEPROM: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (ret != sizeof(id.base)) { | 
|  | dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from | 
|  | * address 0x51 is just one byte at a time. Also SFF-8472 requires | 
|  | * that EEPROM supports atomic 16bit read operation for diagnostic | 
|  | * fields, so do not switch to one byte reading at a time unless it | 
|  | * is really required and we have no other option. | 
|  | */ | 
|  | if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { | 
|  | dev_info(sfp->dev, | 
|  | "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); | 
|  | dev_info(sfp->dev, | 
|  | "Switching to reading EEPROM to one byte at a time\n"); | 
|  | sfp->i2c_block_size = 1; | 
|  |  | 
|  | ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); | 
|  | if (ret < 0) { | 
|  | if (report) | 
|  | dev_err(sfp->dev, | 
|  | "failed to read EEPROM: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (ret != sizeof(id.base)) { | 
|  | dev_err(sfp->dev, "EEPROM short read: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cotsworks do not seem to update the checksums when they | 
|  | * do the final programming with the final module part number, | 
|  | * serial number and date code. | 
|  | */ | 
|  | cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16); | 
|  | cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); | 
|  |  | 
|  | /* Cotsworks SFF module EEPROM do not always have valid phys_id, | 
|  | * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if | 
|  | * Cotsworks PN matches and bytes are not correct. | 
|  | */ | 
|  | if (cotsworks && cotsworks_sfbg) { | 
|  | ret = sfp_cotsworks_fixup_check(sfp, &id); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Validate the checksum over the base structure */ | 
|  | check = sfp_check(&id.base, sizeof(id.base) - 1); | 
|  | if (check != id.base.cc_base) { | 
|  | if (cotsworks) { | 
|  | dev_warn(sfp->dev, | 
|  | "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", | 
|  | check, id.base.cc_base); | 
|  | } else { | 
|  | dev_err(sfp->dev, | 
|  | "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", | 
|  | check, id.base.cc_base); | 
|  | print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, | 
|  | 16, 1, &id, sizeof(id), true); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); | 
|  | if (ret < 0) { | 
|  | if (report) | 
|  | dev_err(sfp->dev, "failed to read EEPROM: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (ret != sizeof(id.ext)) { | 
|  | dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | check = sfp_check(&id.ext, sizeof(id.ext) - 1); | 
|  | if (check != id.ext.cc_ext) { | 
|  | if (cotsworks) { | 
|  | dev_warn(sfp->dev, | 
|  | "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", | 
|  | check, id.ext.cc_ext); | 
|  | } else { | 
|  | dev_err(sfp->dev, | 
|  | "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", | 
|  | check, id.ext.cc_ext); | 
|  | print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, | 
|  | 16, 1, &id, sizeof(id), true); | 
|  | memset(&id.ext, 0, sizeof(id.ext)); | 
|  | } | 
|  | } | 
|  |  | 
|  | sfp->id = id; | 
|  |  | 
|  | dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", | 
|  | (int)sizeof(id.base.vendor_name), id.base.vendor_name, | 
|  | (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, | 
|  | (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, | 
|  | (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, | 
|  | (int)sizeof(id.ext.datecode), id.ext.datecode); | 
|  |  | 
|  | /* Check whether we support this module */ | 
|  | if (!sfp->type->module_supported(&id)) { | 
|  | dev_err(sfp->dev, | 
|  | "module is not supported - phys id 0x%02x 0x%02x\n", | 
|  | sfp->id.base.phys_id, sfp->id.base.phys_ext_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { | 
|  | ret = sfp_module_parse_sff8472(sfp); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Parse the module power requirement */ | 
|  | ret = sfp_module_parse_power(sfp); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | sfp_module_parse_rate_select(sfp); | 
|  |  | 
|  | mask = SFP_F_PRESENT; | 
|  | if (sfp->gpio[GPIO_TX_DISABLE]) | 
|  | mask |= SFP_F_TX_DISABLE; | 
|  | if (sfp->gpio[GPIO_TX_FAULT]) | 
|  | mask |= SFP_F_TX_FAULT; | 
|  | if (sfp->gpio[GPIO_LOS]) | 
|  | mask |= SFP_F_LOS; | 
|  | if (sfp->gpio[GPIO_RS0]) | 
|  | mask |= SFP_F_RS0; | 
|  | if (sfp->gpio[GPIO_RS1]) | 
|  | mask |= SFP_F_RS1; | 
|  |  | 
|  | sfp->module_t_start_up = T_START_UP; | 
|  | sfp->module_t_wait = T_WAIT; | 
|  | sfp->phy_t_retry = T_PHY_RETRY; | 
|  |  | 
|  | sfp->state_ignore_mask = 0; | 
|  |  | 
|  | if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || | 
|  | sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || | 
|  | sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || | 
|  | sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) | 
|  | sfp->mdio_protocol = MDIO_I2C_C45; | 
|  | else if (sfp->id.base.e1000_base_t) | 
|  | sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; | 
|  | else | 
|  | sfp->mdio_protocol = MDIO_I2C_NONE; | 
|  |  | 
|  | sfp->quirk = sfp_lookup_quirk(&id); | 
|  |  | 
|  | mutex_lock(&sfp->st_mutex); | 
|  | /* Initialise state bits to use from hardware */ | 
|  | sfp->state_hw_mask = mask; | 
|  |  | 
|  | /* We want to drive the rate select pins that the module is using */ | 
|  | sfp->state_hw_drive |= sfp->rs_state_mask; | 
|  |  | 
|  | if (sfp->quirk && sfp->quirk->fixup) | 
|  | sfp->quirk->fixup(sfp); | 
|  |  | 
|  | sfp->state_hw_mask &= ~sfp->state_ignore_mask; | 
|  | mutex_unlock(&sfp->st_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_sm_mod_remove(struct sfp *sfp) | 
|  | { | 
|  | if (sfp->sm_mod_state > SFP_MOD_WAITDEV) | 
|  | sfp_module_remove(sfp->sfp_bus); | 
|  |  | 
|  | sfp_hwmon_remove(sfp); | 
|  |  | 
|  | memset(&sfp->id, 0, sizeof(sfp->id)); | 
|  | sfp->module_power_mW = 0; | 
|  | sfp->state_hw_drive = SFP_F_TX_DISABLE; | 
|  | sfp->have_a2 = false; | 
|  |  | 
|  | dev_info(sfp->dev, "module removed\n"); | 
|  | } | 
|  |  | 
|  | /* This state machine tracks the upstream's state */ | 
|  | static void sfp_sm_device(struct sfp *sfp, unsigned int event) | 
|  | { | 
|  | switch (sfp->sm_dev_state) { | 
|  | default: | 
|  | if (event == SFP_E_DEV_ATTACH) | 
|  | sfp->sm_dev_state = SFP_DEV_DOWN; | 
|  | break; | 
|  |  | 
|  | case SFP_DEV_DOWN: | 
|  | if (event == SFP_E_DEV_DETACH) | 
|  | sfp->sm_dev_state = SFP_DEV_DETACHED; | 
|  | else if (event == SFP_E_DEV_UP) | 
|  | sfp->sm_dev_state = SFP_DEV_UP; | 
|  | break; | 
|  |  | 
|  | case SFP_DEV_UP: | 
|  | if (event == SFP_E_DEV_DETACH) | 
|  | sfp->sm_dev_state = SFP_DEV_DETACHED; | 
|  | else if (event == SFP_E_DEV_DOWN) | 
|  | sfp->sm_dev_state = SFP_DEV_DOWN; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This state machine tracks the insert/remove state of the module, probes | 
|  | * the on-board EEPROM, and sets up the power level. | 
|  | */ | 
|  | static void sfp_sm_module(struct sfp *sfp, unsigned int event) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* Handle remove event globally, it resets this state machine */ | 
|  | if (event == SFP_E_REMOVE) { | 
|  | sfp_sm_mod_remove(sfp); | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Handle device detach globally */ | 
|  | if (sfp->sm_dev_state < SFP_DEV_DOWN && | 
|  | sfp->sm_mod_state > SFP_MOD_WAITDEV) { | 
|  | if (sfp->module_power_mW > 1000 && | 
|  | sfp->sm_mod_state > SFP_MOD_HPOWER) | 
|  | sfp_sm_mod_hpower(sfp, false); | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (sfp->sm_mod_state) { | 
|  | default: | 
|  | if (event == SFP_E_INSERT) { | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); | 
|  | sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; | 
|  | sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SFP_MOD_PROBE: | 
|  | /* Wait for T_PROBE_INIT to time out */ | 
|  | if (event != SFP_E_TIMEOUT) | 
|  | break; | 
|  |  | 
|  | err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); | 
|  | if (err == -EAGAIN) { | 
|  | if (sfp->sm_mod_tries_init && | 
|  | --sfp->sm_mod_tries_init) { | 
|  | sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); | 
|  | break; | 
|  | } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { | 
|  | if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) | 
|  | dev_warn(sfp->dev, | 
|  | "please wait, module slow to respond\n"); | 
|  | sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (err < 0) { | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Force a poll to re-read the hardware signal state after | 
|  | * sfp_sm_mod_probe() changed state_hw_mask. | 
|  | */ | 
|  | mod_delayed_work(system_wq, &sfp->poll, 1); | 
|  |  | 
|  | err = sfp_hwmon_insert(sfp); | 
|  | if (err) | 
|  | dev_warn(sfp->dev, "hwmon probe failed: %pe\n", | 
|  | ERR_PTR(err)); | 
|  |  | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); | 
|  | fallthrough; | 
|  | case SFP_MOD_WAITDEV: | 
|  | /* Ensure that the device is attached before proceeding */ | 
|  | if (sfp->sm_dev_state < SFP_DEV_DOWN) | 
|  | break; | 
|  |  | 
|  | /* Report the module insertion to the upstream device */ | 
|  | err = sfp_module_insert(sfp->sfp_bus, &sfp->id, | 
|  | sfp->quirk); | 
|  | if (err < 0) { | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If this is a power level 1 module, we are done */ | 
|  | if (sfp->module_power_mW <= 1000) | 
|  | goto insert; | 
|  |  | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); | 
|  | fallthrough; | 
|  | case SFP_MOD_HPOWER: | 
|  | /* Enable high power mode */ | 
|  | err = sfp_sm_mod_hpower(sfp, true); | 
|  | if (err < 0) { | 
|  | if (err != -EAGAIN) { | 
|  | sfp_module_remove(sfp->sfp_bus); | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); | 
|  | } else { | 
|  | sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); | 
|  | break; | 
|  |  | 
|  | case SFP_MOD_WAITPWR: | 
|  | /* Wait for T_HPOWER_LEVEL to time out */ | 
|  | if (event != SFP_E_TIMEOUT) | 
|  | break; | 
|  |  | 
|  | insert: | 
|  | sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); | 
|  | break; | 
|  |  | 
|  | case SFP_MOD_PRESENT: | 
|  | case SFP_MOD_ERROR: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sfp_sm_main(struct sfp *sfp, unsigned int event) | 
|  | { | 
|  | unsigned long timeout; | 
|  | int ret; | 
|  |  | 
|  | /* Some events are global */ | 
|  | if (sfp->sm_state != SFP_S_DOWN && | 
|  | (sfp->sm_mod_state != SFP_MOD_PRESENT || | 
|  | sfp->sm_dev_state != SFP_DEV_UP)) { | 
|  | if (sfp->sm_state == SFP_S_LINK_UP && | 
|  | sfp->sm_dev_state == SFP_DEV_UP) | 
|  | sfp_sm_link_down(sfp); | 
|  | if (sfp->sm_state > SFP_S_INIT) | 
|  | sfp_module_stop(sfp->sfp_bus); | 
|  | if (sfp->mod_phy) | 
|  | sfp_sm_phy_detach(sfp); | 
|  | if (sfp->i2c_mii) | 
|  | sfp_i2c_mdiobus_destroy(sfp); | 
|  | sfp_module_tx_disable(sfp); | 
|  | sfp_soft_stop_poll(sfp); | 
|  | sfp_sm_next(sfp, SFP_S_DOWN, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The main state machine */ | 
|  | switch (sfp->sm_state) { | 
|  | case SFP_S_DOWN: | 
|  | if (sfp->sm_mod_state != SFP_MOD_PRESENT || | 
|  | sfp->sm_dev_state != SFP_DEV_UP) | 
|  | break; | 
|  |  | 
|  | /* Only use the soft state bits if we have access to the A2h | 
|  | * memory, which implies that we have some level of SFF-8472 | 
|  | * compliance. | 
|  | */ | 
|  | if (sfp->have_a2) | 
|  | sfp_soft_start_poll(sfp); | 
|  |  | 
|  | sfp_module_tx_enable(sfp); | 
|  |  | 
|  | /* Initialise the fault clearance retries */ | 
|  | sfp->sm_fault_retries = N_FAULT_INIT; | 
|  |  | 
|  | /* We need to check the TX_FAULT state, which is not defined | 
|  | * while TX_DISABLE is asserted. The earliest we want to do | 
|  | * anything (such as probe for a PHY) is 50ms (or more on | 
|  | * specific modules). | 
|  | */ | 
|  | sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); | 
|  | break; | 
|  |  | 
|  | case SFP_S_WAIT: | 
|  | if (event != SFP_E_TIMEOUT) | 
|  | break; | 
|  |  | 
|  | if (sfp->state & SFP_F_TX_FAULT) { | 
|  | /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) | 
|  | * from the TX_DISABLE deassertion for the module to | 
|  | * initialise, which is indicated by TX_FAULT | 
|  | * deasserting. | 
|  | */ | 
|  | timeout = sfp->module_t_start_up; | 
|  | if (timeout > sfp->module_t_wait) | 
|  | timeout -= sfp->module_t_wait; | 
|  | else | 
|  | timeout = 1; | 
|  |  | 
|  | sfp_sm_next(sfp, SFP_S_INIT, timeout); | 
|  | } else { | 
|  | /* TX_FAULT is not asserted, assume the module has | 
|  | * finished initialising. | 
|  | */ | 
|  | goto init_done; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SFP_S_INIT: | 
|  | if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { | 
|  | /* TX_FAULT is still asserted after t_init | 
|  | * or t_start_up, so assume there is a fault. | 
|  | */ | 
|  | sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, | 
|  | sfp->sm_fault_retries == N_FAULT_INIT); | 
|  | } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { | 
|  | init_done: | 
|  | /* Create mdiobus and start trying for PHY */ | 
|  | ret = sfp_sm_add_mdio_bus(sfp); | 
|  | if (ret < 0) { | 
|  | sfp_sm_next(sfp, SFP_S_FAIL, 0); | 
|  | break; | 
|  | } | 
|  | sfp->sm_phy_retries = R_PHY_RETRY; | 
|  | goto phy_probe; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SFP_S_INIT_PHY: | 
|  | if (event != SFP_E_TIMEOUT) | 
|  | break; | 
|  | phy_probe: | 
|  | /* TX_FAULT deasserted or we timed out with TX_FAULT | 
|  | * clear.  Probe for the PHY and check the LOS state. | 
|  | */ | 
|  | ret = sfp_sm_probe_for_phy(sfp); | 
|  | if (ret == -ENODEV) { | 
|  | if (--sfp->sm_phy_retries) { | 
|  | sfp_sm_next(sfp, SFP_S_INIT_PHY, | 
|  | sfp->phy_t_retry); | 
|  | dev_dbg(sfp->dev, | 
|  | "no PHY detected, %u tries left\n", | 
|  | sfp->sm_phy_retries); | 
|  | break; | 
|  | } else { | 
|  | dev_info(sfp->dev, "no PHY detected\n"); | 
|  | } | 
|  | } else if (ret) { | 
|  | sfp_sm_next(sfp, SFP_S_FAIL, 0); | 
|  | break; | 
|  | } | 
|  | if (sfp_module_start(sfp->sfp_bus)) { | 
|  | sfp_sm_next(sfp, SFP_S_FAIL, 0); | 
|  | break; | 
|  | } | 
|  | sfp_sm_link_check_los(sfp); | 
|  |  | 
|  | /* Reset the fault retry count */ | 
|  | sfp->sm_fault_retries = N_FAULT; | 
|  | break; | 
|  |  | 
|  | case SFP_S_INIT_TX_FAULT: | 
|  | if (event == SFP_E_TIMEOUT) { | 
|  | sfp_module_tx_fault_reset(sfp); | 
|  | sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SFP_S_WAIT_LOS: | 
|  | if (event == SFP_E_TX_FAULT) | 
|  | sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); | 
|  | else if (sfp_los_event_inactive(sfp, event)) | 
|  | sfp_sm_link_up(sfp); | 
|  | break; | 
|  |  | 
|  | case SFP_S_LINK_UP: | 
|  | if (event == SFP_E_TX_FAULT) { | 
|  | sfp_sm_link_down(sfp); | 
|  | sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); | 
|  | } else if (sfp_los_event_active(sfp, event)) { | 
|  | sfp_sm_link_down(sfp); | 
|  | sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SFP_S_TX_FAULT: | 
|  | if (event == SFP_E_TIMEOUT) { | 
|  | sfp_module_tx_fault_reset(sfp); | 
|  | sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SFP_S_REINIT: | 
|  | if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { | 
|  | sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); | 
|  | } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { | 
|  | dev_info(sfp->dev, "module transmit fault recovered\n"); | 
|  | sfp_sm_link_check_los(sfp); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SFP_S_TX_DISABLE: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __sfp_sm_event(struct sfp *sfp, unsigned int event) | 
|  | { | 
|  | dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", | 
|  | mod_state_to_str(sfp->sm_mod_state), | 
|  | dev_state_to_str(sfp->sm_dev_state), | 
|  | sm_state_to_str(sfp->sm_state), | 
|  | event_to_str(event)); | 
|  |  | 
|  | sfp_sm_device(sfp, event); | 
|  | sfp_sm_module(sfp, event); | 
|  | sfp_sm_main(sfp, event); | 
|  |  | 
|  | dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", | 
|  | mod_state_to_str(sfp->sm_mod_state), | 
|  | dev_state_to_str(sfp->sm_dev_state), | 
|  | sm_state_to_str(sfp->sm_state)); | 
|  | } | 
|  |  | 
|  | static void sfp_sm_event(struct sfp *sfp, unsigned int event) | 
|  | { | 
|  | mutex_lock(&sfp->sm_mutex); | 
|  | __sfp_sm_event(sfp, event); | 
|  | mutex_unlock(&sfp->sm_mutex); | 
|  | } | 
|  |  | 
|  | static void sfp_attach(struct sfp *sfp) | 
|  | { | 
|  | sfp_sm_event(sfp, SFP_E_DEV_ATTACH); | 
|  | } | 
|  |  | 
|  | static void sfp_detach(struct sfp *sfp) | 
|  | { | 
|  | sfp_sm_event(sfp, SFP_E_DEV_DETACH); | 
|  | } | 
|  |  | 
|  | static void sfp_start(struct sfp *sfp) | 
|  | { | 
|  | sfp_sm_event(sfp, SFP_E_DEV_UP); | 
|  | } | 
|  |  | 
|  | static void sfp_stop(struct sfp *sfp) | 
|  | { | 
|  | sfp_sm_event(sfp, SFP_E_DEV_DOWN); | 
|  | } | 
|  |  | 
|  | static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) | 
|  | { | 
|  | unsigned int set; | 
|  |  | 
|  | sfp->rate_kbd = rate_kbd; | 
|  |  | 
|  | if (rate_kbd > sfp->rs_threshold_kbd) | 
|  | set = sfp->rs_state_mask; | 
|  | else | 
|  | set = 0; | 
|  |  | 
|  | sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); | 
|  | } | 
|  |  | 
|  | static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) | 
|  | { | 
|  | /* locking... and check module is present */ | 
|  |  | 
|  | if (sfp->id.ext.sff8472_compliance && | 
|  | !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { | 
|  | modinfo->type = ETH_MODULE_SFF_8472; | 
|  | modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; | 
|  | } else { | 
|  | modinfo->type = ETH_MODULE_SFF_8079; | 
|  | modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, | 
|  | u8 *data) | 
|  | { | 
|  | unsigned int first, last, len; | 
|  | int ret; | 
|  |  | 
|  | if (!(sfp->state & SFP_F_PRESENT)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (ee->len == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | first = ee->offset; | 
|  | last = ee->offset + ee->len; | 
|  | if (first < ETH_MODULE_SFF_8079_LEN) { | 
|  | len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); | 
|  | len -= first; | 
|  |  | 
|  | ret = sfp_read(sfp, false, first, data, len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | first += len; | 
|  | data += len; | 
|  | } | 
|  | if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { | 
|  | len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); | 
|  | len -= first; | 
|  | first -= ETH_MODULE_SFF_8079_LEN; | 
|  |  | 
|  | ret = sfp_read(sfp, true, first, data, len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfp_module_eeprom_by_page(struct sfp *sfp, | 
|  | const struct ethtool_module_eeprom *page, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | if (!(sfp->state & SFP_F_PRESENT)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (page->bank) { | 
|  | NL_SET_ERR_MSG(extack, "Banks not supported"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (page->page) { | 
|  | NL_SET_ERR_MSG(extack, "Only page 0 supported"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (page->i2c_address != 0x50 && | 
|  | page->i2c_address != 0x51) { | 
|  | NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return sfp_read(sfp, page->i2c_address == 0x51, page->offset, | 
|  | page->data, page->length); | 
|  | }; | 
|  |  | 
|  | static const struct sfp_socket_ops sfp_module_ops = { | 
|  | .attach = sfp_attach, | 
|  | .detach = sfp_detach, | 
|  | .start = sfp_start, | 
|  | .stop = sfp_stop, | 
|  | .set_signal_rate = sfp_set_signal_rate, | 
|  | .module_info = sfp_module_info, | 
|  | .module_eeprom = sfp_module_eeprom, | 
|  | .module_eeprom_by_page = sfp_module_eeprom_by_page, | 
|  | }; | 
|  |  | 
|  | static void sfp_timeout(struct work_struct *work) | 
|  | { | 
|  | struct sfp *sfp = container_of(work, struct sfp, timeout.work); | 
|  |  | 
|  | rtnl_lock(); | 
|  | sfp_sm_event(sfp, SFP_E_TIMEOUT); | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | static void sfp_check_state(struct sfp *sfp) | 
|  | { | 
|  | unsigned int state, i, changed; | 
|  |  | 
|  | rtnl_lock(); | 
|  | mutex_lock(&sfp->st_mutex); | 
|  | state = sfp_get_state(sfp); | 
|  | changed = state ^ sfp->state; | 
|  | changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; | 
|  |  | 
|  | for (i = 0; i < GPIO_MAX; i++) | 
|  | if (changed & BIT(i)) | 
|  | dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], | 
|  | !!(sfp->state & BIT(i)), !!(state & BIT(i))); | 
|  |  | 
|  | state |= sfp->state & SFP_F_OUTPUTS; | 
|  | sfp->state = state; | 
|  | mutex_unlock(&sfp->st_mutex); | 
|  |  | 
|  | mutex_lock(&sfp->sm_mutex); | 
|  | if (changed & SFP_F_PRESENT) | 
|  | __sfp_sm_event(sfp, state & SFP_F_PRESENT ? | 
|  | SFP_E_INSERT : SFP_E_REMOVE); | 
|  |  | 
|  | if (changed & SFP_F_TX_FAULT) | 
|  | __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? | 
|  | SFP_E_TX_FAULT : SFP_E_TX_CLEAR); | 
|  |  | 
|  | if (changed & SFP_F_LOS) | 
|  | __sfp_sm_event(sfp, state & SFP_F_LOS ? | 
|  | SFP_E_LOS_HIGH : SFP_E_LOS_LOW); | 
|  | mutex_unlock(&sfp->sm_mutex); | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | static irqreturn_t sfp_irq(int irq, void *data) | 
|  | { | 
|  | struct sfp *sfp = data; | 
|  |  | 
|  | sfp_check_state(sfp); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void sfp_poll(struct work_struct *work) | 
|  | { | 
|  | struct sfp *sfp = container_of(work, struct sfp, poll.work); | 
|  |  | 
|  | sfp_check_state(sfp); | 
|  |  | 
|  | // st_mutex doesn't need to be held here for state_soft_mask, | 
|  | // it's unimportant if we race while reading this. | 
|  | if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || | 
|  | sfp->need_poll) | 
|  | mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); | 
|  | } | 
|  |  | 
|  | static struct sfp *sfp_alloc(struct device *dev) | 
|  | { | 
|  | struct sfp *sfp; | 
|  |  | 
|  | sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); | 
|  | if (!sfp) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | sfp->dev = dev; | 
|  | sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; | 
|  |  | 
|  | mutex_init(&sfp->sm_mutex); | 
|  | mutex_init(&sfp->st_mutex); | 
|  | INIT_DELAYED_WORK(&sfp->poll, sfp_poll); | 
|  | INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); | 
|  |  | 
|  | sfp_hwmon_init(sfp); | 
|  |  | 
|  | return sfp; | 
|  | } | 
|  |  | 
|  | static void sfp_cleanup(void *data) | 
|  | { | 
|  | struct sfp *sfp = data; | 
|  |  | 
|  | sfp_hwmon_exit(sfp); | 
|  |  | 
|  | cancel_delayed_work_sync(&sfp->poll); | 
|  | cancel_delayed_work_sync(&sfp->timeout); | 
|  | if (sfp->i2c_mii) { | 
|  | mdiobus_unregister(sfp->i2c_mii); | 
|  | mdiobus_free(sfp->i2c_mii); | 
|  | } | 
|  | if (sfp->i2c) | 
|  | i2c_put_adapter(sfp->i2c); | 
|  | kfree(sfp); | 
|  | } | 
|  |  | 
|  | static int sfp_i2c_get(struct sfp *sfp) | 
|  | { | 
|  | struct fwnode_handle *h; | 
|  | struct i2c_adapter *i2c; | 
|  | int err; | 
|  |  | 
|  | h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); | 
|  | if (IS_ERR(h)) { | 
|  | dev_err(sfp->dev, "missing 'i2c-bus' property\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | i2c = i2c_get_adapter_by_fwnode(h); | 
|  | if (!i2c) { | 
|  | err = -EPROBE_DEFER; | 
|  | goto put; | 
|  | } | 
|  |  | 
|  | err = sfp_i2c_configure(sfp, i2c); | 
|  | if (err) | 
|  | i2c_put_adapter(i2c); | 
|  | put: | 
|  | fwnode_handle_put(h); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sfp_probe(struct platform_device *pdev) | 
|  | { | 
|  | const struct sff_data *sff; | 
|  | char *sfp_irq_name; | 
|  | struct sfp *sfp; | 
|  | int err, i; | 
|  |  | 
|  | sfp = sfp_alloc(&pdev->dev); | 
|  | if (IS_ERR(sfp)) | 
|  | return PTR_ERR(sfp); | 
|  |  | 
|  | platform_set_drvdata(pdev, sfp); | 
|  |  | 
|  | err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sff = device_get_match_data(sfp->dev); | 
|  | if (!sff) | 
|  | sff = &sfp_data; | 
|  |  | 
|  | sfp->type = sff; | 
|  |  | 
|  | err = sfp_i2c_get(sfp); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < GPIO_MAX; i++) | 
|  | if (sff->gpios & BIT(i)) { | 
|  | sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, | 
|  | gpio_names[i], gpio_flags[i]); | 
|  | if (IS_ERR(sfp->gpio[i])) | 
|  | return PTR_ERR(sfp->gpio[i]); | 
|  | } | 
|  |  | 
|  | sfp->state_hw_mask = SFP_F_PRESENT; | 
|  | sfp->state_hw_drive = SFP_F_TX_DISABLE; | 
|  |  | 
|  | sfp->get_state = sfp_gpio_get_state; | 
|  | sfp->set_state = sfp_gpio_set_state; | 
|  |  | 
|  | /* Modules that have no detect signal are always present */ | 
|  | if (!(sfp->gpio[GPIO_MODDEF0])) | 
|  | sfp->get_state = sff_gpio_get_state; | 
|  |  | 
|  | device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", | 
|  | &sfp->max_power_mW); | 
|  | if (sfp->max_power_mW < 1000) { | 
|  | if (sfp->max_power_mW) | 
|  | dev_warn(sfp->dev, | 
|  | "Firmware bug: host maximum power should be at least 1W\n"); | 
|  | sfp->max_power_mW = 1000; | 
|  | } | 
|  |  | 
|  | dev_info(sfp->dev, "Host maximum power %u.%uW\n", | 
|  | sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); | 
|  |  | 
|  | /* Get the initial state, and always signal TX disable, | 
|  | * since the network interface will not be up. | 
|  | */ | 
|  | sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; | 
|  |  | 
|  | if (sfp->gpio[GPIO_RS0] && | 
|  | gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) | 
|  | sfp->state |= SFP_F_RS0; | 
|  | sfp_set_state(sfp, sfp->state); | 
|  | sfp_module_tx_disable(sfp); | 
|  | if (sfp->state & SFP_F_PRESENT) { | 
|  | rtnl_lock(); | 
|  | sfp_sm_event(sfp, SFP_E_INSERT); | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < GPIO_MAX; i++) { | 
|  | if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) | 
|  | continue; | 
|  |  | 
|  | sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); | 
|  | if (sfp->gpio_irq[i] < 0) { | 
|  | sfp->gpio_irq[i] = 0; | 
|  | sfp->need_poll = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, | 
|  | "%s-%s", dev_name(sfp->dev), | 
|  | gpio_names[i]); | 
|  |  | 
|  | if (!sfp_irq_name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], | 
|  | NULL, sfp_irq, | 
|  | IRQF_ONESHOT | | 
|  | IRQF_TRIGGER_RISING | | 
|  | IRQF_TRIGGER_FALLING, | 
|  | sfp_irq_name, sfp); | 
|  | if (err) { | 
|  | sfp->gpio_irq[i] = 0; | 
|  | sfp->need_poll = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sfp->need_poll) | 
|  | mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); | 
|  |  | 
|  | /* We could have an issue in cases no Tx disable pin is available or | 
|  | * wired as modules using a laser as their light source will continue to | 
|  | * be active when the fiber is removed. This could be a safety issue and | 
|  | * we should at least warn the user about that. | 
|  | */ | 
|  | if (!sfp->gpio[GPIO_TX_DISABLE]) | 
|  | dev_warn(sfp->dev, | 
|  | "No tx_disable pin: SFP modules will always be emitting.\n"); | 
|  |  | 
|  | sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); | 
|  | if (!sfp->sfp_bus) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sfp_debugfs_init(sfp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfp_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct sfp *sfp = platform_get_drvdata(pdev); | 
|  |  | 
|  | sfp_debugfs_exit(sfp); | 
|  | sfp_unregister_socket(sfp->sfp_bus); | 
|  |  | 
|  | rtnl_lock(); | 
|  | sfp_sm_event(sfp, SFP_E_REMOVE); | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | static void sfp_shutdown(struct platform_device *pdev) | 
|  | { | 
|  | struct sfp *sfp = platform_get_drvdata(pdev); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < GPIO_MAX; i++) { | 
|  | if (!sfp->gpio_irq[i]) | 
|  | continue; | 
|  |  | 
|  | devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); | 
|  | } | 
|  |  | 
|  | cancel_delayed_work_sync(&sfp->poll); | 
|  | cancel_delayed_work_sync(&sfp->timeout); | 
|  | } | 
|  |  | 
|  | static struct platform_driver sfp_driver = { | 
|  | .probe = sfp_probe, | 
|  | .remove_new = sfp_remove, | 
|  | .shutdown = sfp_shutdown, | 
|  | .driver = { | 
|  | .name = "sfp", | 
|  | .of_match_table = sfp_of_match, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int sfp_init(void) | 
|  | { | 
|  | poll_jiffies = msecs_to_jiffies(100); | 
|  |  | 
|  | return platform_driver_register(&sfp_driver); | 
|  | } | 
|  | module_init(sfp_init); | 
|  |  | 
|  | static void sfp_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&sfp_driver); | 
|  | } | 
|  | module_exit(sfp_exit); | 
|  |  | 
|  | MODULE_ALIAS("platform:sfp"); | 
|  | MODULE_AUTHOR("Russell King"); | 
|  | MODULE_LICENSE("GPL v2"); | 
|  | MODULE_DESCRIPTION("SFP cage support"); |