|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright (C) 2014 Imagination Technologies | 
|  | * Author: Paul Burton <paul.burton@mips.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/cpuhotplug.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/suspend.h> | 
|  |  | 
|  | #include <asm/asm-offsets.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cacheops.h> | 
|  | #include <asm/idle.h> | 
|  | #include <asm/mips-cps.h> | 
|  | #include <asm/mipsmtregs.h> | 
|  | #include <asm/pm.h> | 
|  | #include <asm/pm-cps.h> | 
|  | #include <asm/regdef.h> | 
|  | #include <asm/smp-cps.h> | 
|  | #include <asm/uasm.h> | 
|  |  | 
|  | /* | 
|  | * cps_nc_entry_fn - type of a generated non-coherent state entry function | 
|  | * @online: the count of online coupled VPEs | 
|  | * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count | 
|  | * | 
|  | * The code entering & exiting non-coherent states is generated at runtime | 
|  | * using uasm, in order to ensure that the compiler cannot insert a stray | 
|  | * memory access at an unfortunate time and to allow the generation of optimal | 
|  | * core-specific code particularly for cache routines. If coupled_coherence | 
|  | * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, | 
|  | * returns the number of VPEs that were in the wait state at the point this | 
|  | * VPE left it. Returns garbage if coupled_coherence is zero or this is not | 
|  | * the entry function for CPS_PM_NC_WAIT. | 
|  | */ | 
|  | typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); | 
|  |  | 
|  | /* | 
|  | * The entry point of the generated non-coherent idle state entry/exit | 
|  | * functions. Actually per-core rather than per-CPU. | 
|  | */ | 
|  | static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], | 
|  | nc_asm_enter); | 
|  |  | 
|  | /* Bitmap indicating which states are supported by the system */ | 
|  | static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); | 
|  |  | 
|  | /* | 
|  | * Indicates the number of coupled VPEs ready to operate in a non-coherent | 
|  | * state. Actually per-core rather than per-CPU. | 
|  | */ | 
|  | static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); | 
|  |  | 
|  | /* Indicates online CPUs coupled with the current CPU */ | 
|  | static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); | 
|  |  | 
|  | /* Used to synchronize entry to deep idle states */ | 
|  | static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); | 
|  |  | 
|  | /* Saved CPU state across the CPS_PM_POWER_GATED state */ | 
|  | DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); | 
|  |  | 
|  | /* A somewhat arbitrary number of labels & relocs for uasm */ | 
|  | static struct uasm_label labels[32]; | 
|  | static struct uasm_reloc relocs[32]; | 
|  |  | 
|  | bool cps_pm_support_state(enum cps_pm_state state) | 
|  | { | 
|  | return test_bit(state, state_support); | 
|  | } | 
|  |  | 
|  | static void coupled_barrier(atomic_t *a, unsigned online) | 
|  | { | 
|  | /* | 
|  | * This function is effectively the same as | 
|  | * cpuidle_coupled_parallel_barrier, which can't be used here since | 
|  | * there's no cpuidle device. | 
|  | */ | 
|  |  | 
|  | if (!coupled_coherence) | 
|  | return; | 
|  |  | 
|  | smp_mb__before_atomic(); | 
|  | atomic_inc(a); | 
|  |  | 
|  | while (atomic_read(a) < online) | 
|  | cpu_relax(); | 
|  |  | 
|  | if (atomic_inc_return(a) == online * 2) { | 
|  | atomic_set(a, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (atomic_read(a) > online) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | int cps_pm_enter_state(enum cps_pm_state state) | 
|  | { | 
|  | unsigned cpu = smp_processor_id(); | 
|  | unsigned int cluster = cpu_cluster(¤t_cpu_data); | 
|  | unsigned core = cpu_core(¤t_cpu_data); | 
|  | unsigned online, left; | 
|  | cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); | 
|  | u32 *core_ready_count, *nc_core_ready_count; | 
|  | void *nc_addr; | 
|  | cps_nc_entry_fn entry; | 
|  | struct cluster_boot_config *cluster_cfg; | 
|  | struct core_boot_config *core_cfg; | 
|  | struct vpe_boot_config *vpe_cfg; | 
|  | atomic_t *barrier; | 
|  |  | 
|  | /* Check that there is an entry function for this state */ | 
|  | entry = per_cpu(nc_asm_enter, cpu)[state]; | 
|  | if (!entry) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Calculate which coupled CPUs (VPEs) are online */ | 
|  | #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6) | 
|  | if (cpu_online(cpu)) { | 
|  | cpumask_and(coupled_mask, cpu_online_mask, | 
|  | &cpu_sibling_map[cpu]); | 
|  | online = cpumask_weight(coupled_mask); | 
|  | cpumask_clear_cpu(cpu, coupled_mask); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | cpumask_clear(coupled_mask); | 
|  | online = 1; | 
|  | } | 
|  |  | 
|  | /* Setup the VPE to run mips_cps_pm_restore when started again */ | 
|  | if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { | 
|  | /* Power gating relies upon CPS SMP */ | 
|  | if (!mips_cps_smp_in_use()) | 
|  | return -EINVAL; | 
|  |  | 
|  | cluster_cfg = &mips_cps_cluster_bootcfg[cluster]; | 
|  | core_cfg = &cluster_cfg->core_config[core]; | 
|  | vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; | 
|  | vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; | 
|  | vpe_cfg->gp = (unsigned long)current_thread_info(); | 
|  | vpe_cfg->sp = 0; | 
|  | } | 
|  |  | 
|  | /* Indicate that this CPU might not be coherent */ | 
|  | cpumask_clear_cpu(cpu, &cpu_coherent_mask); | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | /* Create a non-coherent mapping of the core ready_count */ | 
|  | core_ready_count = per_cpu(ready_count, cpu); | 
|  | nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), | 
|  | (unsigned long)core_ready_count); | 
|  | nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); | 
|  | nc_core_ready_count = nc_addr; | 
|  |  | 
|  | /* Ensure ready_count is zero-initialised before the assembly runs */ | 
|  | WRITE_ONCE(*nc_core_ready_count, 0); | 
|  | barrier = &per_cpu(pm_barrier, cpumask_first(&cpu_sibling_map[cpu])); | 
|  | coupled_barrier(barrier, online); | 
|  |  | 
|  | /* Run the generated entry code */ | 
|  | left = entry(online, nc_core_ready_count); | 
|  |  | 
|  | /* Remove the non-coherent mapping of ready_count */ | 
|  | kunmap_noncoherent(); | 
|  |  | 
|  | /* Indicate that this CPU is definitely coherent */ | 
|  | cpumask_set_cpu(cpu, &cpu_coherent_mask); | 
|  |  | 
|  | /* | 
|  | * If this VPE is the first to leave the non-coherent wait state then | 
|  | * it needs to wake up any coupled VPEs still running their wait | 
|  | * instruction so that they return to cpuidle, which can then complete | 
|  | * coordination between the coupled VPEs & provide the governor with | 
|  | * a chance to reflect on the length of time the VPEs were in the | 
|  | * idle state. | 
|  | */ | 
|  | if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) | 
|  | arch_send_call_function_ipi_mask(coupled_mask); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, | 
|  | struct uasm_reloc **pr, | 
|  | const struct cache_desc *cache, | 
|  | unsigned op, int lbl) | 
|  | { | 
|  | unsigned cache_size = cache->ways << cache->waybit; | 
|  | unsigned i; | 
|  | const unsigned unroll_lines = 32; | 
|  |  | 
|  | /* If the cache isn't present this function has it easy */ | 
|  | if (cache->flags & MIPS_CACHE_NOT_PRESENT) | 
|  | return; | 
|  |  | 
|  | /* Load base address */ | 
|  | UASM_i_LA(pp, GPR_T0, (long)CKSEG0); | 
|  |  | 
|  | /* Calculate end address */ | 
|  | if (cache_size < 0x8000) | 
|  | uasm_i_addiu(pp, GPR_T1, GPR_T0, cache_size); | 
|  | else | 
|  | UASM_i_LA(pp, GPR_T1, (long)(CKSEG0 + cache_size)); | 
|  |  | 
|  | /* Start of cache op loop */ | 
|  | uasm_build_label(pl, *pp, lbl); | 
|  |  | 
|  | /* Generate the cache ops */ | 
|  | for (i = 0; i < unroll_lines; i++) { | 
|  | if (cpu_has_mips_r6) { | 
|  | uasm_i_cache(pp, op, 0, GPR_T0); | 
|  | uasm_i_addiu(pp, GPR_T0, GPR_T0, cache->linesz); | 
|  | } else { | 
|  | uasm_i_cache(pp, op, i * cache->linesz, GPR_T0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!cpu_has_mips_r6) | 
|  | /* Update the base address */ | 
|  | uasm_i_addiu(pp, GPR_T0, GPR_T0, unroll_lines * cache->linesz); | 
|  |  | 
|  | /* Loop if we haven't reached the end address yet */ | 
|  | uasm_il_bne(pp, pr, GPR_T0, GPR_T1, lbl); | 
|  | uasm_i_nop(pp); | 
|  | } | 
|  |  | 
|  | static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, | 
|  | struct uasm_reloc **pr, | 
|  | const struct cpuinfo_mips *cpu_info, | 
|  | int lbl) | 
|  | { | 
|  | unsigned i, fsb_size = 8; | 
|  | unsigned num_loads = (fsb_size * 3) / 2; | 
|  | unsigned line_stride = 2; | 
|  | unsigned line_size = cpu_info->dcache.linesz; | 
|  | unsigned perf_counter, perf_event; | 
|  | unsigned revision = cpu_info->processor_id & PRID_REV_MASK; | 
|  |  | 
|  | /* | 
|  | * Determine whether this CPU requires an FSB flush, and if so which | 
|  | * performance counter/event reflect stalls due to a full FSB. | 
|  | */ | 
|  | switch (__get_cpu_type(cpu_info->cputype)) { | 
|  | case CPU_INTERAPTIV: | 
|  | perf_counter = 1; | 
|  | perf_event = 51; | 
|  | break; | 
|  |  | 
|  | case CPU_PROAPTIV: | 
|  | /* Newer proAptiv cores don't require this workaround */ | 
|  | if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) | 
|  | return 0; | 
|  |  | 
|  | /* On older ones it's unavailable */ | 
|  | return -1; | 
|  |  | 
|  | default: | 
|  | /* Assume that the CPU does not need this workaround */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that the fill/store buffer (FSB) is not holding the results | 
|  | * of a prefetch, since if it is then the CPC sequencer may become | 
|  | * stuck in the D3 (ClrBus) state whilst entering a low power state. | 
|  | */ | 
|  |  | 
|  | /* Preserve perf counter setup */ | 
|  | uasm_i_mfc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ | 
|  | uasm_i_mfc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */ | 
|  |  | 
|  | /* Setup perf counter to count FSB full pipeline stalls */ | 
|  | uasm_i_addiu(pp, GPR_T0, GPR_ZERO, (perf_event << 5) | 0xf); | 
|  | uasm_i_mtc0(pp, GPR_T0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ | 
|  | uasm_i_ehb(pp); | 
|  | uasm_i_mtc0(pp, GPR_ZERO, 25, (perf_counter * 2) + 1); /* PerfCntN */ | 
|  | uasm_i_ehb(pp); | 
|  |  | 
|  | /* Base address for loads */ | 
|  | UASM_i_LA(pp, GPR_T0, (long)CKSEG0); | 
|  |  | 
|  | /* Start of clear loop */ | 
|  | uasm_build_label(pl, *pp, lbl); | 
|  |  | 
|  | /* Perform some loads to fill the FSB */ | 
|  | for (i = 0; i < num_loads; i++) | 
|  | uasm_i_lw(pp, GPR_ZERO, i * line_size * line_stride, GPR_T0); | 
|  |  | 
|  | /* | 
|  | * Invalidate the new D-cache entries so that the cache will need | 
|  | * refilling (via the FSB) if the loop is executed again. | 
|  | */ | 
|  | for (i = 0; i < num_loads; i++) { | 
|  | uasm_i_cache(pp, Hit_Invalidate_D, | 
|  | i * line_size * line_stride, GPR_T0); | 
|  | uasm_i_cache(pp, Hit_Writeback_Inv_SD, | 
|  | i * line_size * line_stride, GPR_T0); | 
|  | } | 
|  |  | 
|  | /* Barrier ensuring previous cache invalidates are complete */ | 
|  | uasm_i_sync(pp, __SYNC_full); | 
|  | uasm_i_ehb(pp); | 
|  |  | 
|  | /* Check whether the pipeline stalled due to the FSB being full */ | 
|  | uasm_i_mfc0(pp, GPR_T1, 25, (perf_counter * 2) + 1); /* PerfCntN */ | 
|  |  | 
|  | /* Loop if it didn't */ | 
|  | uasm_il_beqz(pp, pr, GPR_T1, lbl); | 
|  | uasm_i_nop(pp); | 
|  |  | 
|  | /* Restore perf counter 1. The count may well now be wrong... */ | 
|  | uasm_i_mtc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ | 
|  | uasm_i_ehb(pp); | 
|  | uasm_i_mtc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */ | 
|  | uasm_i_ehb(pp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, | 
|  | struct uasm_reloc **pr, | 
|  | unsigned r_addr, int lbl) | 
|  | { | 
|  | uasm_i_lui(pp, GPR_T0, uasm_rel_hi(0x80000000)); | 
|  | uasm_build_label(pl, *pp, lbl); | 
|  | uasm_i_ll(pp, GPR_T1, 0, r_addr); | 
|  | uasm_i_or(pp, GPR_T1, GPR_T1, GPR_T0); | 
|  | uasm_i_sc(pp, GPR_T1, 0, r_addr); | 
|  | uasm_il_beqz(pp, pr, GPR_T1, lbl); | 
|  | uasm_i_nop(pp); | 
|  | } | 
|  |  | 
|  | static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) | 
|  | { | 
|  | struct uasm_label *l = labels; | 
|  | struct uasm_reloc *r = relocs; | 
|  | u32 *buf, *p; | 
|  | const unsigned r_online = GPR_A0; | 
|  | const unsigned r_nc_count = GPR_A1; | 
|  | const unsigned r_pcohctl = GPR_T8; | 
|  | const unsigned max_instrs = 256; | 
|  | unsigned cpc_cmd; | 
|  | int err; | 
|  | enum { | 
|  | lbl_incready = 1, | 
|  | lbl_poll_cont, | 
|  | lbl_secondary_hang, | 
|  | lbl_disable_coherence, | 
|  | lbl_flush_fsb, | 
|  | lbl_invicache, | 
|  | lbl_flushdcache, | 
|  | lbl_hang, | 
|  | lbl_set_cont, | 
|  | lbl_secondary_cont, | 
|  | lbl_decready, | 
|  | }; | 
|  |  | 
|  | /* Allocate a buffer to hold the generated code */ | 
|  | p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); | 
|  | if (!buf) | 
|  | return NULL; | 
|  |  | 
|  | /* Clear labels & relocs ready for (re)use */ | 
|  | memset(labels, 0, sizeof(labels)); | 
|  | memset(relocs, 0, sizeof(relocs)); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { | 
|  | /* Power gating relies upon CPS SMP */ | 
|  | if (!mips_cps_smp_in_use()) | 
|  | goto out_err; | 
|  |  | 
|  | /* | 
|  | * Save CPU state. Note the non-standard calling convention | 
|  | * with the return address placed in v0 to avoid clobbering | 
|  | * the ra register before it is saved. | 
|  | */ | 
|  | UASM_i_LA(&p, GPR_T0, (long)mips_cps_pm_save); | 
|  | uasm_i_jalr(&p, GPR_V0, GPR_T0); | 
|  | uasm_i_nop(&p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load addresses of required CM & CPC registers. This is done early | 
|  | * because they're needed in both the enable & disable coherence steps | 
|  | * but in the coupled case the enable step will only run on one VPE. | 
|  | */ | 
|  | UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); | 
|  |  | 
|  | if (coupled_coherence) { | 
|  | /* Increment ready_count */ | 
|  | uasm_i_sync(&p, __SYNC_mb); | 
|  | uasm_build_label(&l, p, lbl_incready); | 
|  | uasm_i_ll(&p, GPR_T1, 0, r_nc_count); | 
|  | uasm_i_addiu(&p, GPR_T2, GPR_T1, 1); | 
|  | uasm_i_sc(&p, GPR_T2, 0, r_nc_count); | 
|  | uasm_il_beqz(&p, &r, GPR_T2, lbl_incready); | 
|  | uasm_i_addiu(&p, GPR_T1, GPR_T1, 1); | 
|  |  | 
|  | /* Barrier ensuring all CPUs see the updated r_nc_count value */ | 
|  | uasm_i_sync(&p, __SYNC_mb); | 
|  |  | 
|  | /* | 
|  | * If this is the last VPE to become ready for non-coherence | 
|  | * then it should branch below. | 
|  | */ | 
|  | uasm_il_beq(&p, &r, GPR_T1, r_online, lbl_disable_coherence); | 
|  | uasm_i_nop(&p); | 
|  |  | 
|  | if (state < CPS_PM_POWER_GATED) { | 
|  | /* | 
|  | * Otherwise this is not the last VPE to become ready | 
|  | * for non-coherence. It needs to wait until coherence | 
|  | * has been disabled before proceeding, which it will do | 
|  | * by polling for the top bit of ready_count being set. | 
|  | */ | 
|  | uasm_i_addiu(&p, GPR_T1, GPR_ZERO, -1); | 
|  | uasm_build_label(&l, p, lbl_poll_cont); | 
|  | uasm_i_lw(&p, GPR_T0, 0, r_nc_count); | 
|  | uasm_il_bltz(&p, &r, GPR_T0, lbl_secondary_cont); | 
|  | uasm_i_ehb(&p); | 
|  | if (cpu_has_mipsmt) | 
|  | uasm_i_yield(&p, GPR_ZERO, GPR_T1); | 
|  | uasm_il_b(&p, &r, lbl_poll_cont); | 
|  | uasm_i_nop(&p); | 
|  | } else { | 
|  | /* | 
|  | * The core will lose power & this VPE will not continue | 
|  | * so it can simply halt here. | 
|  | */ | 
|  | if (cpu_has_mipsmt) { | 
|  | /* Halt the VPE via C0 tchalt register */ | 
|  | uasm_i_addiu(&p, GPR_T0, GPR_ZERO, TCHALT_H); | 
|  | uasm_i_mtc0(&p, GPR_T0, 2, 4); | 
|  | } else if (cpu_has_vp) { | 
|  | /* Halt the VP via the CPC VP_STOP register */ | 
|  | unsigned int vpe_id; | 
|  |  | 
|  | vpe_id = cpu_vpe_id(&cpu_data[cpu]); | 
|  | uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << vpe_id); | 
|  | UASM_i_LA(&p, GPR_T1, (long)addr_cpc_cl_vp_stop()); | 
|  | uasm_i_sw(&p, GPR_T0, 0, GPR_T1); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | uasm_build_label(&l, p, lbl_secondary_hang); | 
|  | uasm_il_b(&p, &r, lbl_secondary_hang); | 
|  | uasm_i_nop(&p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the point of no return - this VPE will now proceed to | 
|  | * disable coherence. At this point we *must* be sure that no other | 
|  | * VPE within the core will interfere with the L1 dcache. | 
|  | */ | 
|  | uasm_build_label(&l, p, lbl_disable_coherence); | 
|  |  | 
|  | /* Invalidate the L1 icache */ | 
|  | cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, | 
|  | Index_Invalidate_I, lbl_invicache); | 
|  |  | 
|  | /* Writeback & invalidate the L1 dcache */ | 
|  | cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, | 
|  | Index_Writeback_Inv_D, lbl_flushdcache); | 
|  |  | 
|  | /* Barrier ensuring previous cache invalidates are complete */ | 
|  | uasm_i_sync(&p, __SYNC_full); | 
|  | uasm_i_ehb(&p); | 
|  |  | 
|  | if (mips_cm_revision() < CM_REV_CM3) { | 
|  | /* | 
|  | * Disable all but self interventions. The load from COHCTL is | 
|  | * defined by the interAptiv & proAptiv SUMs as ensuring that the | 
|  | *  operation resulting from the preceding store is complete. | 
|  | */ | 
|  | uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << cpu_core(&cpu_data[cpu])); | 
|  | uasm_i_sw(&p, GPR_T0, 0, r_pcohctl); | 
|  | uasm_i_lw(&p, GPR_T0, 0, r_pcohctl); | 
|  |  | 
|  | /* Barrier to ensure write to coherence control is complete */ | 
|  | uasm_i_sync(&p, __SYNC_full); | 
|  | uasm_i_ehb(&p); | 
|  | } | 
|  |  | 
|  | /* Disable coherence */ | 
|  | uasm_i_sw(&p, GPR_ZERO, 0, r_pcohctl); | 
|  | uasm_i_lw(&p, GPR_T0, 0, r_pcohctl); | 
|  |  | 
|  | if (state >= CPS_PM_CLOCK_GATED) { | 
|  | err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], | 
|  | lbl_flush_fsb); | 
|  | if (err) | 
|  | goto out_err; | 
|  |  | 
|  | /* Determine the CPC command to issue */ | 
|  | switch (state) { | 
|  | case CPS_PM_CLOCK_GATED: | 
|  | cpc_cmd = CPC_Cx_CMD_CLOCKOFF; | 
|  | break; | 
|  | case CPS_PM_POWER_GATED: | 
|  | cpc_cmd = CPC_Cx_CMD_PWRDOWN; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* Issue the CPC command */ | 
|  | UASM_i_LA(&p, GPR_T0, (long)addr_cpc_cl_cmd()); | 
|  | uasm_i_addiu(&p, GPR_T1, GPR_ZERO, cpc_cmd); | 
|  | uasm_i_sw(&p, GPR_T1, 0, GPR_T0); | 
|  |  | 
|  | if (state == CPS_PM_POWER_GATED) { | 
|  | /* If anything goes wrong just hang */ | 
|  | uasm_build_label(&l, p, lbl_hang); | 
|  | uasm_il_b(&p, &r, lbl_hang); | 
|  | uasm_i_nop(&p); | 
|  |  | 
|  | /* | 
|  | * There's no point generating more code, the core is | 
|  | * powered down & if powered back up will run from the | 
|  | * reset vector not from here. | 
|  | */ | 
|  | goto gen_done; | 
|  | } | 
|  |  | 
|  | /* Barrier to ensure write to CPC command is complete */ | 
|  | uasm_i_sync(&p, __SYNC_full); | 
|  | uasm_i_ehb(&p); | 
|  | } | 
|  |  | 
|  | if (state == CPS_PM_NC_WAIT) { | 
|  | /* | 
|  | * At this point it is safe for all VPEs to proceed with | 
|  | * execution. This VPE will set the top bit of ready_count | 
|  | * to indicate to the other VPEs that they may continue. | 
|  | */ | 
|  | if (coupled_coherence) | 
|  | cps_gen_set_top_bit(&p, &l, &r, r_nc_count, | 
|  | lbl_set_cont); | 
|  |  | 
|  | /* | 
|  | * VPEs which did not disable coherence will continue | 
|  | * executing, after coherence has been disabled, from this | 
|  | * point. | 
|  | */ | 
|  | uasm_build_label(&l, p, lbl_secondary_cont); | 
|  |  | 
|  | /* Now perform our wait */ | 
|  | uasm_i_wait(&p, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs | 
|  | * will run this. The first will actually re-enable coherence & the | 
|  | * rest will just be performing a rather unusual nop. | 
|  | */ | 
|  | uasm_i_addiu(&p, GPR_T0, GPR_ZERO, mips_cm_revision() < CM_REV_CM3 | 
|  | ? CM_GCR_Cx_COHERENCE_COHDOMAINEN | 
|  | : CM3_GCR_Cx_COHERENCE_COHEN); | 
|  |  | 
|  | uasm_i_sw(&p, GPR_T0, 0, r_pcohctl); | 
|  | uasm_i_lw(&p, GPR_T0, 0, r_pcohctl); | 
|  |  | 
|  | /* Barrier to ensure write to coherence control is complete */ | 
|  | uasm_i_sync(&p, __SYNC_full); | 
|  | uasm_i_ehb(&p); | 
|  |  | 
|  | if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { | 
|  | /* Decrement ready_count */ | 
|  | uasm_build_label(&l, p, lbl_decready); | 
|  | uasm_i_sync(&p, __SYNC_mb); | 
|  | uasm_i_ll(&p, GPR_T1, 0, r_nc_count); | 
|  | uasm_i_addiu(&p, GPR_T2, GPR_T1, -1); | 
|  | uasm_i_sc(&p, GPR_T2, 0, r_nc_count); | 
|  | uasm_il_beqz(&p, &r, GPR_T2, lbl_decready); | 
|  | uasm_i_andi(&p, GPR_V0, GPR_T1, (1 << fls(smp_num_siblings)) - 1); | 
|  |  | 
|  | /* Barrier ensuring all CPUs see the updated r_nc_count value */ | 
|  | uasm_i_sync(&p, __SYNC_mb); | 
|  | } | 
|  |  | 
|  | if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { | 
|  | /* | 
|  | * At this point it is safe for all VPEs to proceed with | 
|  | * execution. This VPE will set the top bit of ready_count | 
|  | * to indicate to the other VPEs that they may continue. | 
|  | */ | 
|  | cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); | 
|  |  | 
|  | /* | 
|  | * This core will be reliant upon another core sending a | 
|  | * power-up command to the CPC in order to resume operation. | 
|  | * Thus an arbitrary VPE can't trigger the core leaving the | 
|  | * idle state and the one that disables coherence might as well | 
|  | * be the one to re-enable it. The rest will continue from here | 
|  | * after that has been done. | 
|  | */ | 
|  | uasm_build_label(&l, p, lbl_secondary_cont); | 
|  |  | 
|  | /* Barrier ensuring all CPUs see the updated r_nc_count value */ | 
|  | uasm_i_sync(&p, __SYNC_mb); | 
|  | } | 
|  |  | 
|  | /* The core is coherent, time to return to C code */ | 
|  | uasm_i_jr(&p, GPR_RA); | 
|  | uasm_i_nop(&p); | 
|  |  | 
|  | gen_done: | 
|  | /* Ensure the code didn't exceed the resources allocated for it */ | 
|  | BUG_ON((p - buf) > max_instrs); | 
|  | BUG_ON((l - labels) > ARRAY_SIZE(labels)); | 
|  | BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); | 
|  |  | 
|  | /* Patch branch offsets */ | 
|  | uasm_resolve_relocs(relocs, labels); | 
|  |  | 
|  | /* Flush the icache */ | 
|  | local_flush_icache_range((unsigned long)buf, (unsigned long)p); | 
|  |  | 
|  | return buf; | 
|  | out_err: | 
|  | kfree(buf); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int cps_pm_online_cpu(unsigned int cpu) | 
|  | { | 
|  | unsigned int sibling, core; | 
|  | void *entry_fn, *core_rc; | 
|  | enum cps_pm_state state; | 
|  |  | 
|  | core = cpu_core(&cpu_data[cpu]); | 
|  |  | 
|  | for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { | 
|  | if (per_cpu(nc_asm_enter, cpu)[state]) | 
|  | continue; | 
|  | if (!test_bit(state, state_support)) | 
|  | continue; | 
|  |  | 
|  | entry_fn = cps_gen_entry_code(cpu, state); | 
|  | if (!entry_fn) { | 
|  | pr_err("Failed to generate core %u state %u entry\n", | 
|  | core, state); | 
|  | clear_bit(state, state_support); | 
|  | } | 
|  |  | 
|  | for_each_cpu(sibling, &cpu_sibling_map[cpu]) | 
|  | per_cpu(nc_asm_enter, sibling)[state] = entry_fn; | 
|  | } | 
|  |  | 
|  | if (!per_cpu(ready_count, cpu)) { | 
|  | core_rc = kmalloc(sizeof(u32), GFP_KERNEL); | 
|  | if (!core_rc) { | 
|  | pr_err("Failed allocate core %u ready_count\n", core); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for_each_cpu(sibling, &cpu_sibling_map[cpu]) | 
|  | per_cpu(ready_count, sibling) = core_rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cps_pm_power_notifier(struct notifier_block *this, | 
|  | unsigned long event, void *ptr) | 
|  | { | 
|  | unsigned int stat; | 
|  |  | 
|  | switch (event) { | 
|  | case PM_SUSPEND_PREPARE: | 
|  | stat = read_cpc_cl_stat_conf(); | 
|  | /* | 
|  | * If we're attempting to suspend the system and power down all | 
|  | * of the cores, the JTAG detect bit indicates that the CPC will | 
|  | * instead put the cores into clock-off state. In this state | 
|  | * a connected debugger can cause the CPU to attempt | 
|  | * interactions with the powered down system. At best this will | 
|  | * fail. At worst, it can hang the NoC, requiring a hard reset. | 
|  | * To avoid this, just block system suspend if a JTAG probe | 
|  | * is detected. | 
|  | */ | 
|  | if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) { | 
|  | pr_warn("JTAG probe is connected - abort suspend\n"); | 
|  | return NOTIFY_BAD; | 
|  | } | 
|  | return NOTIFY_DONE; | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init cps_pm_init(void) | 
|  | { | 
|  | /* A CM is required for all non-coherent states */ | 
|  | if (!mips_cm_present()) { | 
|  | pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If interrupts were enabled whilst running a wait instruction on a | 
|  | * non-coherent core then the VPE may end up processing interrupts | 
|  | * whilst non-coherent. That would be bad. | 
|  | */ | 
|  | if (cpu_wait == r4k_wait_irqoff) | 
|  | set_bit(CPS_PM_NC_WAIT, state_support); | 
|  | else | 
|  | pr_warn("pm-cps: non-coherent wait unavailable\n"); | 
|  |  | 
|  | /* Detect whether a CPC is present */ | 
|  | if (mips_cpc_present()) { | 
|  | /* Detect whether clock gating is implemented */ | 
|  | if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL) | 
|  | set_bit(CPS_PM_CLOCK_GATED, state_support); | 
|  | else | 
|  | pr_warn("pm-cps: CPC does not support clock gating\n"); | 
|  |  | 
|  | /* Power gating is available with CPS SMP & any CPC */ | 
|  | if (mips_cps_smp_in_use()) | 
|  | set_bit(CPS_PM_POWER_GATED, state_support); | 
|  | else | 
|  | pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); | 
|  | } else { | 
|  | pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); | 
|  | } | 
|  |  | 
|  | pm_notifier(cps_pm_power_notifier, 0); | 
|  |  | 
|  | return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online", | 
|  | cps_pm_online_cpu, NULL); | 
|  | } | 
|  | arch_initcall(cps_pm_init); |