| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2021 Benjamin Berg <benjamin@sipsolutions.net> |
| * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) |
| * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) |
| */ |
| |
| #include <stdlib.h> |
| #include <stdbool.h> |
| #include <unistd.h> |
| #include <sched.h> |
| #include <errno.h> |
| #include <string.h> |
| #include <fcntl.h> |
| #include <mem_user.h> |
| #include <sys/mman.h> |
| #include <sys/wait.h> |
| #include <sys/stat.h> |
| #include <sys/socket.h> |
| #include <asm/unistd.h> |
| #include <as-layout.h> |
| #include <init.h> |
| #include <kern_util.h> |
| #include <mem.h> |
| #include <os.h> |
| #include <ptrace_user.h> |
| #include <registers.h> |
| #include <skas.h> |
| #include <sysdep/stub.h> |
| #include <sysdep/mcontext.h> |
| #include <linux/futex.h> |
| #include <linux/threads.h> |
| #include <timetravel.h> |
| #include <asm-generic/rwonce.h> |
| #include "../internal.h" |
| |
| int is_skas_winch(int pid, int fd, void *data) |
| { |
| return pid == getpgrp(); |
| } |
| |
| static const char *ptrace_reg_name(int idx) |
| { |
| #define R(n) case HOST_##n: return #n |
| |
| switch (idx) { |
| #ifdef __x86_64__ |
| R(BX); |
| R(CX); |
| R(DI); |
| R(SI); |
| R(DX); |
| R(BP); |
| R(AX); |
| R(R8); |
| R(R9); |
| R(R10); |
| R(R11); |
| R(R12); |
| R(R13); |
| R(R14); |
| R(R15); |
| R(ORIG_AX); |
| R(CS); |
| R(SS); |
| R(EFLAGS); |
| #elif defined(__i386__) |
| R(IP); |
| R(SP); |
| R(EFLAGS); |
| R(AX); |
| R(BX); |
| R(CX); |
| R(DX); |
| R(SI); |
| R(DI); |
| R(BP); |
| R(CS); |
| R(SS); |
| R(DS); |
| R(FS); |
| R(ES); |
| R(GS); |
| R(ORIG_AX); |
| #endif |
| } |
| return ""; |
| } |
| |
| static int ptrace_dump_regs(int pid) |
| { |
| unsigned long regs[MAX_REG_NR]; |
| int i; |
| |
| if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0) |
| return -errno; |
| |
| printk(UM_KERN_ERR "Stub registers -\n"); |
| for (i = 0; i < ARRAY_SIZE(regs); i++) { |
| const char *regname = ptrace_reg_name(i); |
| |
| printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Signals that are OK to receive in the stub - we'll just continue it. |
| * SIGWINCH will happen when UML is inside a detached screen. |
| */ |
| #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH)) |
| |
| /* Signals that the stub will finish with - anything else is an error */ |
| #define STUB_DONE_MASK (1 << SIGTRAP) |
| |
| void wait_stub_done(int pid) |
| { |
| int n, status, err; |
| |
| while (1) { |
| CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); |
| if ((n < 0) || !WIFSTOPPED(status)) |
| goto bad_wait; |
| |
| if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0) |
| break; |
| |
| err = ptrace(PTRACE_CONT, pid, 0, 0); |
| if (err) { |
| printk(UM_KERN_ERR "%s : continue failed, errno = %d\n", |
| __func__, errno); |
| fatal_sigsegv(); |
| } |
| } |
| |
| if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0) |
| return; |
| |
| bad_wait: |
| err = ptrace_dump_regs(pid); |
| if (err) |
| printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n", |
| -err); |
| printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n", |
| __func__, pid, n, errno, status); |
| fatal_sigsegv(); |
| } |
| |
| void wait_stub_done_seccomp(struct mm_id *mm_idp, int running, int wait_sigsys) |
| { |
| struct stub_data *data = (void *)mm_idp->stack; |
| int ret; |
| |
| do { |
| const char byte = 0; |
| struct iovec iov = { |
| .iov_base = (void *)&byte, |
| .iov_len = sizeof(byte), |
| }; |
| union { |
| char data[CMSG_SPACE(sizeof(mm_idp->syscall_fd_map))]; |
| struct cmsghdr align; |
| } ctrl; |
| struct msghdr msgh = { |
| .msg_iov = &iov, |
| .msg_iovlen = 1, |
| }; |
| |
| if (!running) { |
| if (mm_idp->syscall_fd_num) { |
| unsigned int fds_size = |
| sizeof(int) * mm_idp->syscall_fd_num; |
| struct cmsghdr *cmsg; |
| |
| msgh.msg_control = ctrl.data; |
| msgh.msg_controllen = CMSG_SPACE(fds_size); |
| cmsg = CMSG_FIRSTHDR(&msgh); |
| cmsg->cmsg_level = SOL_SOCKET; |
| cmsg->cmsg_type = SCM_RIGHTS; |
| cmsg->cmsg_len = CMSG_LEN(fds_size); |
| memcpy(CMSG_DATA(cmsg), mm_idp->syscall_fd_map, |
| fds_size); |
| |
| CATCH_EINTR(syscall(__NR_sendmsg, mm_idp->sock, |
| &msgh, 0)); |
| } |
| |
| data->signal = 0; |
| data->futex = FUTEX_IN_CHILD; |
| CATCH_EINTR(syscall(__NR_futex, &data->futex, |
| FUTEX_WAKE, 1, NULL, NULL, 0)); |
| } |
| |
| do { |
| /* |
| * We need to check whether the child is still alive |
| * before and after the FUTEX_WAIT call. Before, in |
| * case it just died but we still updated data->futex |
| * to FUTEX_IN_CHILD. And after, in case it died while |
| * we were waiting (and SIGCHLD woke us up, see the |
| * IRQ handler in mmu.c). |
| * |
| * Either way, if PID is negative, then we have no |
| * choice but to kill the task. |
| */ |
| if (__READ_ONCE(mm_idp->pid) < 0) |
| goto out_kill; |
| |
| ret = syscall(__NR_futex, &data->futex, |
| FUTEX_WAIT, FUTEX_IN_CHILD, |
| NULL, NULL, 0); |
| if (ret < 0 && errno != EINTR && errno != EAGAIN) { |
| printk(UM_KERN_ERR "%s : FUTEX_WAIT failed, errno = %d\n", |
| __func__, errno); |
| goto out_kill; |
| } |
| } while (data->futex == FUTEX_IN_CHILD); |
| |
| if (__READ_ONCE(mm_idp->pid) < 0) |
| goto out_kill; |
| |
| running = 0; |
| |
| /* We may receive a SIGALRM before SIGSYS, iterate again. */ |
| } while (wait_sigsys && data->signal == SIGALRM); |
| |
| if (data->mctx_offset > sizeof(data->sigstack) - sizeof(mcontext_t)) { |
| printk(UM_KERN_ERR "%s : invalid mcontext offset", __func__); |
| goto out_kill; |
| } |
| |
| if (wait_sigsys && data->signal != SIGSYS) { |
| printk(UM_KERN_ERR "%s : expected SIGSYS but got %d", |
| __func__, data->signal); |
| goto out_kill; |
| } |
| |
| return; |
| |
| out_kill: |
| printk(UM_KERN_ERR "%s : failed to wait for stub, pid = %d, errno = %d\n", |
| __func__, mm_idp->pid, errno); |
| /* This is not true inside start_userspace */ |
| if (current_mm_id() == mm_idp) |
| fatal_sigsegv(); |
| } |
| |
| extern unsigned long current_stub_stack(void); |
| |
| static void get_skas_faultinfo(int pid, struct faultinfo *fi) |
| { |
| int err; |
| |
| err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV); |
| if (err) { |
| printk(UM_KERN_ERR "Failed to continue stub, pid = %d, " |
| "errno = %d\n", pid, errno); |
| fatal_sigsegv(); |
| } |
| wait_stub_done(pid); |
| |
| /* |
| * faultinfo is prepared by the stub_segv_handler at start of |
| * the stub stack page. We just have to copy it. |
| */ |
| memcpy(fi, (void *)current_stub_stack(), sizeof(*fi)); |
| } |
| |
| static void handle_trap(int pid, struct uml_pt_regs *regs) |
| { |
| if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END)) |
| fatal_sigsegv(); |
| |
| handle_syscall(regs); |
| } |
| |
| extern char __syscall_stub_start[]; |
| |
| static int stub_exe_fd; |
| |
| struct tramp_data { |
| struct stub_data *stub_data; |
| /* 0 is inherited, 1 is the kernel side */ |
| int sockpair[2]; |
| }; |
| |
| #ifndef CLOSE_RANGE_CLOEXEC |
| #define CLOSE_RANGE_CLOEXEC (1U << 2) |
| #endif |
| |
| static int userspace_tramp(void *data) |
| { |
| struct tramp_data *tramp_data = data; |
| char *const argv[] = { "uml-userspace", NULL }; |
| unsigned long long offset; |
| struct stub_init_data init_data = { |
| .seccomp = using_seccomp, |
| .stub_start = STUB_START, |
| }; |
| struct iomem_region *iomem; |
| int ret; |
| |
| if (using_seccomp) { |
| init_data.signal_handler = STUB_CODE + |
| (unsigned long) stub_signal_interrupt - |
| (unsigned long) __syscall_stub_start; |
| init_data.signal_restorer = STUB_CODE + |
| (unsigned long) stub_signal_restorer - |
| (unsigned long) __syscall_stub_start; |
| } else { |
| init_data.signal_handler = STUB_CODE + |
| (unsigned long) stub_segv_handler - |
| (unsigned long) __syscall_stub_start; |
| init_data.signal_restorer = 0; |
| } |
| |
| init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start), |
| &offset); |
| init_data.stub_code_offset = MMAP_OFFSET(offset); |
| |
| init_data.stub_data_fd = phys_mapping(uml_to_phys(tramp_data->stub_data), |
| &offset); |
| init_data.stub_data_offset = MMAP_OFFSET(offset); |
| |
| /* |
| * Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs |
| * and then unsetting it on all memory related FDs. |
| * This is not strictly necessary from a safety perspective. |
| */ |
| syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC); |
| |
| fcntl(init_data.stub_data_fd, F_SETFD, 0); |
| |
| /* In SECCOMP mode, these FDs are passed when needed */ |
| if (!using_seccomp) { |
| for (iomem = iomem_regions; iomem; iomem = iomem->next) |
| fcntl(iomem->fd, F_SETFD, 0); |
| } |
| |
| /* dup2 signaling FD/socket to STDIN */ |
| if (dup2(tramp_data->sockpair[0], 0) < 0) |
| exit(3); |
| close(tramp_data->sockpair[0]); |
| |
| /* Write init_data and close write side */ |
| ret = write(tramp_data->sockpair[1], &init_data, sizeof(init_data)); |
| close(tramp_data->sockpair[1]); |
| |
| if (ret != sizeof(init_data)) |
| exit(4); |
| |
| /* Raw execveat for compatibility with older libc versions */ |
| syscall(__NR_execveat, stub_exe_fd, (unsigned long)"", |
| (unsigned long)argv, NULL, AT_EMPTY_PATH); |
| |
| exit(5); |
| } |
| |
| extern char stub_exe_start[]; |
| extern char stub_exe_end[]; |
| |
| extern char *tempdir; |
| |
| #define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX" |
| |
| #ifndef MFD_EXEC |
| #define MFD_EXEC 0x0010U |
| #endif |
| |
| static int __init init_stub_exe_fd(void) |
| { |
| size_t written = 0; |
| char *tmpfile = NULL; |
| |
| stub_exe_fd = memfd_create("uml-userspace", |
| MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING); |
| |
| if (stub_exe_fd < 0) { |
| printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!"); |
| |
| tmpfile = malloc(strlen(tempdir) + |
| strlen(STUB_EXE_NAME_TEMPLATE) + 1); |
| if (tmpfile == NULL) |
| panic("Failed to allocate memory for stub binary name"); |
| |
| strcpy(tmpfile, tempdir); |
| strcat(tmpfile, STUB_EXE_NAME_TEMPLATE); |
| |
| stub_exe_fd = mkstemp(tmpfile); |
| if (stub_exe_fd < 0) |
| panic("Could not create temporary file for stub binary: %d", |
| -errno); |
| } |
| |
| while (written < stub_exe_end - stub_exe_start) { |
| ssize_t res = write(stub_exe_fd, stub_exe_start + written, |
| stub_exe_end - stub_exe_start - written); |
| if (res < 0) { |
| if (errno == EINTR) |
| continue; |
| |
| if (tmpfile) |
| unlink(tmpfile); |
| panic("Failed write stub binary: %d", -errno); |
| } |
| |
| written += res; |
| } |
| |
| if (!tmpfile) { |
| fcntl(stub_exe_fd, F_ADD_SEALS, |
| F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL); |
| } else { |
| if (fchmod(stub_exe_fd, 00500) < 0) { |
| unlink(tmpfile); |
| panic("Could not make stub binary executable: %d", |
| -errno); |
| } |
| |
| close(stub_exe_fd); |
| stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW); |
| if (stub_exe_fd < 0) { |
| unlink(tmpfile); |
| panic("Could not reopen stub binary: %d", -errno); |
| } |
| |
| unlink(tmpfile); |
| free(tmpfile); |
| } |
| |
| return 0; |
| } |
| __initcall(init_stub_exe_fd); |
| |
| int using_seccomp; |
| int userspace_pid[NR_CPUS]; |
| |
| /** |
| * start_userspace() - prepare a new userspace process |
| * @mm_id: The corresponding struct mm_id |
| * |
| * Setups a new temporary stack page that is used while userspace_tramp() runs |
| * Clones the kernel process into a new userspace process, with FDs only. |
| * |
| * Return: When positive: the process id of the new userspace process, |
| * when negative: an error number. |
| * FIXME: can PIDs become negative?! |
| */ |
| int start_userspace(struct mm_id *mm_id) |
| { |
| struct stub_data *proc_data = (void *)mm_id->stack; |
| struct tramp_data tramp_data = { |
| .stub_data = proc_data, |
| }; |
| void *stack; |
| unsigned long sp; |
| int status, n, err; |
| |
| /* setup a temporary stack page */ |
| stack = mmap(NULL, UM_KERN_PAGE_SIZE, |
| PROT_READ | PROT_WRITE | PROT_EXEC, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (stack == MAP_FAILED) { |
| err = -errno; |
| printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n", |
| __func__, errno); |
| return err; |
| } |
| |
| /* set stack pointer to the end of the stack page, so it can grow downwards */ |
| sp = (unsigned long)stack + UM_KERN_PAGE_SIZE; |
| |
| /* socket pair for init data and SECCOMP FD passing (no CLOEXEC here) */ |
| if (socketpair(AF_UNIX, SOCK_STREAM, 0, tramp_data.sockpair)) { |
| err = -errno; |
| printk(UM_KERN_ERR "%s : socketpair failed, errno = %d\n", |
| __func__, errno); |
| return err; |
| } |
| |
| if (using_seccomp) |
| proc_data->futex = FUTEX_IN_CHILD; |
| |
| mm_id->pid = clone(userspace_tramp, (void *) sp, |
| CLONE_VFORK | CLONE_VM | SIGCHLD, |
| (void *)&tramp_data); |
| if (mm_id->pid < 0) { |
| err = -errno; |
| printk(UM_KERN_ERR "%s : clone failed, errno = %d\n", |
| __func__, errno); |
| goto out_close; |
| } |
| |
| if (using_seccomp) { |
| wait_stub_done_seccomp(mm_id, 1, 1); |
| } else { |
| do { |
| CATCH_EINTR(n = waitpid(mm_id->pid, &status, |
| WUNTRACED | __WALL)); |
| if (n < 0) { |
| err = -errno; |
| printk(UM_KERN_ERR "%s : wait failed, errno = %d\n", |
| __func__, errno); |
| goto out_kill; |
| } |
| } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM)); |
| |
| if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) { |
| err = -EINVAL; |
| printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n", |
| __func__, status); |
| goto out_kill; |
| } |
| |
| if (ptrace(PTRACE_SETOPTIONS, mm_id->pid, NULL, |
| (void *) PTRACE_O_TRACESYSGOOD) < 0) { |
| err = -errno; |
| printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n", |
| __func__, errno); |
| goto out_kill; |
| } |
| } |
| |
| if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) { |
| err = -errno; |
| printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n", |
| __func__, errno); |
| goto out_kill; |
| } |
| |
| close(tramp_data.sockpair[0]); |
| if (using_seccomp) |
| mm_id->sock = tramp_data.sockpair[1]; |
| else |
| close(tramp_data.sockpair[1]); |
| |
| return 0; |
| |
| out_kill: |
| os_kill_ptraced_process(mm_id->pid, 1); |
| out_close: |
| close(tramp_data.sockpair[0]); |
| close(tramp_data.sockpair[1]); |
| |
| mm_id->pid = -1; |
| |
| return err; |
| } |
| |
| int unscheduled_userspace_iterations; |
| extern unsigned long tt_extra_sched_jiffies; |
| |
| void userspace(struct uml_pt_regs *regs) |
| { |
| int err, status, op, pid = userspace_pid[0]; |
| siginfo_t si_ptrace; |
| siginfo_t *si; |
| int sig; |
| |
| /* Handle any immediate reschedules or signals */ |
| interrupt_end(); |
| |
| while (1) { |
| /* |
| * When we are in time-travel mode, userspace can theoretically |
| * do a *lot* of work without being scheduled. The problem with |
| * this is that it will prevent kernel bookkeeping (primarily |
| * the RCU) from running and this can for example cause OOM |
| * situations. |
| * |
| * This code accounts a jiffie against the scheduling clock |
| * after the defined userspace iterations in the same thread. |
| * By doing so the situation is effectively prevented. |
| */ |
| if (time_travel_mode == TT_MODE_INFCPU || |
| time_travel_mode == TT_MODE_EXTERNAL) { |
| #ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS |
| if (CONFIG_UML_MAX_USERSPACE_ITERATIONS && |
| unscheduled_userspace_iterations++ > |
| CONFIG_UML_MAX_USERSPACE_ITERATIONS) { |
| tt_extra_sched_jiffies += 1; |
| unscheduled_userspace_iterations = 0; |
| } |
| #endif |
| } |
| |
| time_travel_print_bc_msg(); |
| |
| current_mm_sync(); |
| |
| if (using_seccomp) { |
| struct mm_id *mm_id = current_mm_id(); |
| struct stub_data *proc_data = (void *) mm_id->stack; |
| int ret; |
| |
| ret = set_stub_state(regs, proc_data, singlestepping()); |
| if (ret) { |
| printk(UM_KERN_ERR "%s - failed to set regs: %d", |
| __func__, ret); |
| fatal_sigsegv(); |
| } |
| |
| /* Must have been reset by the syscall caller */ |
| if (proc_data->restart_wait != 0) |
| panic("Programming error: Flag to only run syscalls in child was not cleared!"); |
| |
| /* Mark pending syscalls for flushing */ |
| proc_data->syscall_data_len = mm_id->syscall_data_len; |
| |
| wait_stub_done_seccomp(mm_id, 0, 0); |
| |
| sig = proc_data->signal; |
| |
| if (sig == SIGTRAP && proc_data->err != 0) { |
| printk(UM_KERN_ERR "%s - Error flushing stub syscalls", |
| __func__); |
| syscall_stub_dump_error(mm_id); |
| mm_id->syscall_data_len = proc_data->err; |
| fatal_sigsegv(); |
| } |
| |
| mm_id->syscall_data_len = 0; |
| mm_id->syscall_fd_num = 0; |
| |
| ret = get_stub_state(regs, proc_data, NULL); |
| if (ret) { |
| printk(UM_KERN_ERR "%s - failed to get regs: %d", |
| __func__, ret); |
| fatal_sigsegv(); |
| } |
| |
| if (proc_data->si_offset > sizeof(proc_data->sigstack) - sizeof(*si)) |
| panic("%s - Invalid siginfo offset from child", |
| __func__); |
| si = (void *)&proc_data->sigstack[proc_data->si_offset]; |
| |
| regs->is_user = 1; |
| |
| /* Fill in ORIG_RAX and extract fault information */ |
| PT_SYSCALL_NR(regs->gp) = si->si_syscall; |
| if (sig == SIGSEGV) { |
| mcontext_t *mcontext = (void *)&proc_data->sigstack[proc_data->mctx_offset]; |
| |
| GET_FAULTINFO_FROM_MC(regs->faultinfo, mcontext); |
| } |
| } else { |
| /* Flush out any pending syscalls */ |
| err = syscall_stub_flush(current_mm_id()); |
| if (err) { |
| if (err == -ENOMEM) |
| report_enomem(); |
| |
| printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d", |
| __func__, -err); |
| fatal_sigsegv(); |
| } |
| |
| /* |
| * This can legitimately fail if the process loads a |
| * bogus value into a segment register. It will |
| * segfault and PTRACE_GETREGS will read that value |
| * out of the process. However, PTRACE_SETREGS will |
| * fail. In this case, there is nothing to do but |
| * just kill the process. |
| */ |
| if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) { |
| printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n", |
| __func__, errno); |
| fatal_sigsegv(); |
| } |
| |
| if (put_fp_registers(pid, regs->fp)) { |
| printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n", |
| __func__, errno); |
| fatal_sigsegv(); |
| } |
| |
| if (singlestepping()) |
| op = PTRACE_SYSEMU_SINGLESTEP; |
| else |
| op = PTRACE_SYSEMU; |
| |
| if (ptrace(op, pid, 0, 0)) { |
| printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n", |
| __func__, op, errno); |
| fatal_sigsegv(); |
| } |
| |
| CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); |
| if (err < 0) { |
| printk(UM_KERN_ERR "%s - wait failed, errno = %d\n", |
| __func__, errno); |
| fatal_sigsegv(); |
| } |
| |
| regs->is_user = 1; |
| if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) { |
| printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n", |
| __func__, errno); |
| fatal_sigsegv(); |
| } |
| |
| if (get_fp_registers(pid, regs->fp)) { |
| printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n", |
| __func__, errno); |
| fatal_sigsegv(); |
| } |
| |
| if (WIFSTOPPED(status)) { |
| sig = WSTOPSIG(status); |
| |
| /* |
| * These signal handlers need the si argument |
| * and SIGSEGV needs the faultinfo. |
| * The SIGIO and SIGALARM handlers which constitute |
| * the majority of invocations, do not use it. |
| */ |
| switch (sig) { |
| case SIGSEGV: |
| get_skas_faultinfo(pid, |
| ®s->faultinfo); |
| fallthrough; |
| case SIGTRAP: |
| case SIGILL: |
| case SIGBUS: |
| case SIGFPE: |
| case SIGWINCH: |
| ptrace(PTRACE_GETSIGINFO, pid, 0, |
| (struct siginfo *)&si_ptrace); |
| si = &si_ptrace; |
| break; |
| default: |
| si = NULL; |
| break; |
| } |
| } else { |
| sig = 0; |
| } |
| } |
| |
| UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */ |
| |
| if (sig) { |
| switch (sig) { |
| case SIGSEGV: |
| if (using_seccomp || PTRACE_FULL_FAULTINFO) |
| (*sig_info[SIGSEGV])(SIGSEGV, |
| (struct siginfo *)si, |
| regs, NULL); |
| else |
| segv(regs->faultinfo, 0, 1, NULL, NULL); |
| |
| break; |
| case SIGSYS: |
| handle_syscall(regs); |
| break; |
| case SIGTRAP + 0x80: |
| handle_trap(pid, regs); |
| break; |
| case SIGTRAP: |
| relay_signal(SIGTRAP, (struct siginfo *)si, regs, NULL); |
| break; |
| case SIGALRM: |
| break; |
| case SIGIO: |
| case SIGILL: |
| case SIGBUS: |
| case SIGFPE: |
| case SIGWINCH: |
| block_signals_trace(); |
| (*sig_info[sig])(sig, (struct siginfo *)si, regs, NULL); |
| unblock_signals_trace(); |
| break; |
| default: |
| printk(UM_KERN_ERR "%s - child stopped with signal %d\n", |
| __func__, sig); |
| fatal_sigsegv(); |
| } |
| pid = userspace_pid[0]; |
| interrupt_end(); |
| |
| /* Avoid -ERESTARTSYS handling in host */ |
| if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET) |
| PT_SYSCALL_NR(regs->gp) = -1; |
| } |
| } |
| } |
| |
| void new_thread(void *stack, jmp_buf *buf, void (*handler)(void)) |
| { |
| (*buf)[0].JB_IP = (unsigned long) handler; |
| (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - |
| sizeof(void *); |
| } |
| |
| #define INIT_JMP_NEW_THREAD 0 |
| #define INIT_JMP_CALLBACK 1 |
| #define INIT_JMP_HALT 2 |
| #define INIT_JMP_REBOOT 3 |
| |
| void switch_threads(jmp_buf *me, jmp_buf *you) |
| { |
| unscheduled_userspace_iterations = 0; |
| |
| if (UML_SETJMP(me) == 0) |
| UML_LONGJMP(you, 1); |
| } |
| |
| static jmp_buf initial_jmpbuf; |
| |
| /* XXX Make these percpu */ |
| static void (*cb_proc)(void *arg); |
| static void *cb_arg; |
| static jmp_buf *cb_back; |
| |
| int start_idle_thread(void *stack, jmp_buf *switch_buf) |
| { |
| int n; |
| |
| set_handler(SIGWINCH); |
| |
| /* |
| * Can't use UML_SETJMP or UML_LONGJMP here because they save |
| * and restore signals, with the possible side-effect of |
| * trying to handle any signals which came when they were |
| * blocked, which can't be done on this stack. |
| * Signals must be blocked when jumping back here and restored |
| * after returning to the jumper. |
| */ |
| n = setjmp(initial_jmpbuf); |
| switch (n) { |
| case INIT_JMP_NEW_THREAD: |
| (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup; |
| (*switch_buf)[0].JB_SP = (unsigned long) stack + |
| UM_THREAD_SIZE - sizeof(void *); |
| break; |
| case INIT_JMP_CALLBACK: |
| (*cb_proc)(cb_arg); |
| longjmp(*cb_back, 1); |
| break; |
| case INIT_JMP_HALT: |
| kmalloc_ok = 0; |
| return 0; |
| case INIT_JMP_REBOOT: |
| kmalloc_ok = 0; |
| return 1; |
| default: |
| printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n", |
| __func__, n); |
| fatal_sigsegv(); |
| } |
| longjmp(*switch_buf, 1); |
| |
| /* unreachable */ |
| printk(UM_KERN_ERR "impossible long jump!"); |
| fatal_sigsegv(); |
| return 0; |
| } |
| |
| void initial_thread_cb_skas(void (*proc)(void *), void *arg) |
| { |
| jmp_buf here; |
| |
| cb_proc = proc; |
| cb_arg = arg; |
| cb_back = &here; |
| |
| block_signals_trace(); |
| if (UML_SETJMP(&here) == 0) |
| UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK); |
| unblock_signals_trace(); |
| |
| cb_proc = NULL; |
| cb_arg = NULL; |
| cb_back = NULL; |
| } |
| |
| void halt_skas(void) |
| { |
| block_signals_trace(); |
| UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT); |
| } |
| |
| static bool noreboot; |
| |
| static int __init noreboot_cmd_param(char *str, int *add) |
| { |
| *add = 0; |
| noreboot = true; |
| return 0; |
| } |
| |
| __uml_setup("noreboot", noreboot_cmd_param, |
| "noreboot\n" |
| " Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n" |
| " This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n" |
| " crashes in CI\n"); |
| |
| void reboot_skas(void) |
| { |
| block_signals_trace(); |
| UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT); |
| } |
| |
| void __switch_mm(struct mm_id *mm_idp) |
| { |
| userspace_pid[0] = mm_idp->pid; |
| } |