| /* SPDX-License-Identifier: GPL-2.0-only */ |
| #ifndef _LINUX_CRC32_H |
| #define _LINUX_CRC32_H |
| |
| #include <linux/types.h> |
| #include <linux/bitrev.h> |
| |
| u32 crc32_le_arch(u32 crc, const u8 *p, size_t len); |
| u32 crc32_le_base(u32 crc, const u8 *p, size_t len); |
| u32 crc32_be_arch(u32 crc, const u8 *p, size_t len); |
| u32 crc32_be_base(u32 crc, const u8 *p, size_t len); |
| u32 crc32c_arch(u32 crc, const u8 *p, size_t len); |
| u32 crc32c_base(u32 crc, const u8 *p, size_t len); |
| |
| static inline u32 crc32_le(u32 crc, const void *p, size_t len) |
| { |
| if (IS_ENABLED(CONFIG_CRC32_ARCH)) |
| return crc32_le_arch(crc, p, len); |
| return crc32_le_base(crc, p, len); |
| } |
| |
| static inline u32 crc32_be(u32 crc, const void *p, size_t len) |
| { |
| if (IS_ENABLED(CONFIG_CRC32_ARCH)) |
| return crc32_be_arch(crc, p, len); |
| return crc32_be_base(crc, p, len); |
| } |
| |
| static inline u32 crc32c(u32 crc, const void *p, size_t len) |
| { |
| if (IS_ENABLED(CONFIG_CRC32_ARCH)) |
| return crc32c_arch(crc, p, len); |
| return crc32c_base(crc, p, len); |
| } |
| |
| /* |
| * crc32_optimizations() returns flags that indicate which CRC32 library |
| * functions are using architecture-specific optimizations. Unlike |
| * IS_ENABLED(CONFIG_CRC32_ARCH) it takes into account the different CRC32 |
| * variants and also whether any needed CPU features are available at runtime. |
| */ |
| #define CRC32_LE_OPTIMIZATION BIT(0) /* crc32_le() is optimized */ |
| #define CRC32_BE_OPTIMIZATION BIT(1) /* crc32_be() is optimized */ |
| #define CRC32C_OPTIMIZATION BIT(2) /* crc32c() is optimized */ |
| #if IS_ENABLED(CONFIG_CRC32_ARCH) |
| u32 crc32_optimizations(void); |
| #else |
| static inline u32 crc32_optimizations(void) { return 0; } |
| #endif |
| |
| /** |
| * crc32_le_combine - Combine two crc32 check values into one. For two |
| * sequences of bytes, seq1 and seq2 with lengths len1 |
| * and len2, crc32_le() check values were calculated |
| * for each, crc1 and crc2. |
| * |
| * @crc1: crc32 of the first block |
| * @crc2: crc32 of the second block |
| * @len2: length of the second block |
| * |
| * Return: The crc32_le() check value of seq1 and seq2 concatenated, |
| * requiring only crc1, crc2, and len2. Note: If seq_full denotes |
| * the concatenated memory area of seq1 with seq2, and crc_full |
| * the crc32_le() value of seq_full, then crc_full == |
| * crc32_le_combine(crc1, crc2, len2) when crc_full was seeded |
| * with the same initializer as crc1, and crc2 seed was 0. See |
| * also crc32_combine_test(). |
| */ |
| u32 crc32_le_shift(u32 crc, size_t len); |
| |
| static inline u32 crc32_le_combine(u32 crc1, u32 crc2, size_t len2) |
| { |
| return crc32_le_shift(crc1, len2) ^ crc2; |
| } |
| |
| #define crc32(seed, data, length) crc32_le(seed, (unsigned char const *)(data), length) |
| |
| /* |
| * Helpers for hash table generation of ethernet nics: |
| * |
| * Ethernet sends the least significant bit of a byte first, thus crc32_le |
| * is used. The output of crc32_le is bit reversed [most significant bit |
| * is in bit nr 0], thus it must be reversed before use. Except for |
| * nics that bit swap the result internally... |
| */ |
| #define ether_crc(length, data) bitrev32(crc32_le(~0, data, length)) |
| #define ether_crc_le(length, data) crc32_le(~0, data, length) |
| |
| #endif /* _LINUX_CRC32_H */ |