|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * This file contains the base functions to manage periodic tick | 
|  | * related events. | 
|  | * | 
|  | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
|  | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
|  | * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner | 
|  | */ | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/module.h> | 
|  | #include <trace/events/power.h> | 
|  |  | 
|  | #include <asm/irq_regs.h> | 
|  |  | 
|  | #include "tick-internal.h" | 
|  |  | 
|  | /* | 
|  | * Tick devices | 
|  | */ | 
|  | DEFINE_PER_CPU(struct tick_device, tick_cpu_device); | 
|  | /* | 
|  | * Tick next event: keeps track of the tick time. It's updated by the | 
|  | * CPU which handles the tick and protected by jiffies_lock. There is | 
|  | * no requirement to write hold the jiffies seqcount for it. | 
|  | */ | 
|  | ktime_t tick_next_period; | 
|  |  | 
|  | /* | 
|  | * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR | 
|  | * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This | 
|  | * variable has two functions: | 
|  | * | 
|  | * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the | 
|  | *    timekeeping lock all at once. Only the CPU which is assigned to do the | 
|  | *    update is handling it. | 
|  | * | 
|  | * 2) Hand off the duty in the NOHZ idle case by setting the value to | 
|  | *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks | 
|  | *    at it will take over and keep the time keeping alive.  The handover | 
|  | *    procedure also covers cpu hotplug. | 
|  | */ | 
|  | int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | /* | 
|  | * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns | 
|  | * tick_do_timer_cpu and it should be taken over by an eligible secondary | 
|  | * when one comes online. | 
|  | */ | 
|  | static int tick_do_timer_boot_cpu __read_mostly = -1; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Debugging: see timer_list.c | 
|  | */ | 
|  | struct tick_device *tick_get_device(int cpu) | 
|  | { | 
|  | return &per_cpu(tick_cpu_device, cpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_is_oneshot_available - check for a oneshot capable event device | 
|  | */ | 
|  | int tick_is_oneshot_available(void) | 
|  | { | 
|  | struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); | 
|  |  | 
|  | if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) | 
|  | return 0; | 
|  | if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) | 
|  | return 1; | 
|  | return tick_broadcast_oneshot_available(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Periodic tick | 
|  | */ | 
|  | static void tick_periodic(int cpu) | 
|  | { | 
|  | if (READ_ONCE(tick_do_timer_cpu) == cpu) { | 
|  | raw_spin_lock(&jiffies_lock); | 
|  | write_seqcount_begin(&jiffies_seq); | 
|  |  | 
|  | /* Keep track of the next tick event */ | 
|  | tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); | 
|  |  | 
|  | do_timer(1); | 
|  | write_seqcount_end(&jiffies_seq); | 
|  | raw_spin_unlock(&jiffies_lock); | 
|  | update_wall_time(); | 
|  | } | 
|  |  | 
|  | update_process_times(user_mode(get_irq_regs())); | 
|  | profile_tick(CPU_PROFILING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Event handler for periodic ticks | 
|  | */ | 
|  | void tick_handle_periodic(struct clock_event_device *dev) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | ktime_t next = dev->next_event; | 
|  |  | 
|  | tick_periodic(cpu); | 
|  |  | 
|  | /* | 
|  | * The cpu might have transitioned to HIGHRES or NOHZ mode via | 
|  | * update_process_times() -> run_local_timers() -> | 
|  | * hrtimer_run_queues(). | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic) | 
|  | return; | 
|  |  | 
|  | if (!clockevent_state_oneshot(dev)) | 
|  | return; | 
|  | for (;;) { | 
|  | /* | 
|  | * Setup the next period for devices, which do not have | 
|  | * periodic mode: | 
|  | */ | 
|  | next = ktime_add_ns(next, TICK_NSEC); | 
|  |  | 
|  | if (!clockevents_program_event(dev, next, false)) | 
|  | return; | 
|  | /* | 
|  | * Have to be careful here. If we're in oneshot mode, | 
|  | * before we call tick_periodic() in a loop, we need | 
|  | * to be sure we're using a real hardware clocksource. | 
|  | * Otherwise we could get trapped in an infinite | 
|  | * loop, as the tick_periodic() increments jiffies, | 
|  | * which then will increment time, possibly causing | 
|  | * the loop to trigger again and again. | 
|  | */ | 
|  | if (timekeeping_valid_for_hres()) | 
|  | tick_periodic(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the device for a periodic tick | 
|  | */ | 
|  | void tick_setup_periodic(struct clock_event_device *dev, int broadcast) | 
|  | { | 
|  | tick_set_periodic_handler(dev, broadcast); | 
|  |  | 
|  | /* Broadcast setup ? */ | 
|  | if (!tick_device_is_functional(dev)) | 
|  | return; | 
|  |  | 
|  | if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && | 
|  | !tick_broadcast_oneshot_active()) { | 
|  | clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); | 
|  | } else { | 
|  | unsigned int seq; | 
|  | ktime_t next; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&jiffies_seq); | 
|  | next = tick_next_period; | 
|  | } while (read_seqcount_retry(&jiffies_seq, seq)); | 
|  |  | 
|  | clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); | 
|  |  | 
|  | for (;;) { | 
|  | if (!clockevents_program_event(dev, next, false)) | 
|  | return; | 
|  | next = ktime_add_ns(next, TICK_NSEC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the tick device | 
|  | */ | 
|  | static void tick_setup_device(struct tick_device *td, | 
|  | struct clock_event_device *newdev, int cpu, | 
|  | const struct cpumask *cpumask) | 
|  | { | 
|  | void (*handler)(struct clock_event_device *) = NULL; | 
|  | ktime_t next_event = 0; | 
|  |  | 
|  | /* | 
|  | * First device setup ? | 
|  | */ | 
|  | if (!td->evtdev) { | 
|  | /* | 
|  | * If no cpu took the do_timer update, assign it to | 
|  | * this cpu: | 
|  | */ | 
|  | if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) { | 
|  | WRITE_ONCE(tick_do_timer_cpu, cpu); | 
|  | tick_next_period = ktime_get(); | 
|  | #ifdef CONFIG_NO_HZ_FULL | 
|  | /* | 
|  | * The boot CPU may be nohz_full, in which case the | 
|  | * first housekeeping secondary will take do_timer() | 
|  | * from it. | 
|  | */ | 
|  | if (tick_nohz_full_cpu(cpu)) | 
|  | tick_do_timer_boot_cpu = cpu; | 
|  |  | 
|  | } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) { | 
|  | tick_do_timer_boot_cpu = -1; | 
|  | /* | 
|  | * The boot CPU will stay in periodic (NOHZ disabled) | 
|  | * mode until clocksource_done_booting() called after | 
|  | * smp_init() selects a high resolution clocksource and | 
|  | * timekeeping_notify() kicks the NOHZ stuff alive. | 
|  | * | 
|  | * So this WRITE_ONCE can only race with the READ_ONCE | 
|  | * check in tick_periodic() but this race is harmless. | 
|  | */ | 
|  | WRITE_ONCE(tick_do_timer_cpu, cpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Startup in periodic mode first. | 
|  | */ | 
|  | td->mode = TICKDEV_MODE_PERIODIC; | 
|  | } else { | 
|  | handler = td->evtdev->event_handler; | 
|  | next_event = td->evtdev->next_event; | 
|  | td->evtdev->event_handler = clockevents_handle_noop; | 
|  | } | 
|  |  | 
|  | td->evtdev = newdev; | 
|  |  | 
|  | /* | 
|  | * When the device is not per cpu, pin the interrupt to the | 
|  | * current cpu: | 
|  | */ | 
|  | if (!cpumask_equal(newdev->cpumask, cpumask)) | 
|  | irq_set_affinity(newdev->irq, cpumask); | 
|  |  | 
|  | /* | 
|  | * When global broadcasting is active, check if the current | 
|  | * device is registered as a placeholder for broadcast mode. | 
|  | * This allows us to handle this x86 misfeature in a generic | 
|  | * way. This function also returns !=0 when we keep the | 
|  | * current active broadcast state for this CPU. | 
|  | */ | 
|  | if (tick_device_uses_broadcast(newdev, cpu)) | 
|  | return; | 
|  |  | 
|  | if (td->mode == TICKDEV_MODE_PERIODIC) | 
|  | tick_setup_periodic(newdev, 0); | 
|  | else | 
|  | tick_setup_oneshot(newdev, handler, next_event); | 
|  | } | 
|  |  | 
|  | void tick_install_replacement(struct clock_event_device *newdev) | 
|  | { | 
|  | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | clockevents_exchange_device(td->evtdev, newdev); | 
|  | tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); | 
|  | if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) | 
|  | tick_oneshot_notify(); | 
|  | } | 
|  |  | 
|  | static bool tick_check_percpu(struct clock_event_device *curdev, | 
|  | struct clock_event_device *newdev, int cpu) | 
|  | { | 
|  | if (!cpumask_test_cpu(cpu, newdev->cpumask)) | 
|  | return false; | 
|  | if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) | 
|  | return true; | 
|  | /* Check if irq affinity can be set */ | 
|  | if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) | 
|  | return false; | 
|  | /* Prefer an existing cpu local device */ | 
|  | if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool tick_check_preferred(struct clock_event_device *curdev, | 
|  | struct clock_event_device *newdev) | 
|  | { | 
|  | /* Prefer oneshot capable device */ | 
|  | if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { | 
|  | if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) | 
|  | return false; | 
|  | if (tick_oneshot_mode_active()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the higher rated one, but prefer a CPU local device with a lower | 
|  | * rating than a non-CPU local device | 
|  | */ | 
|  | return !curdev || | 
|  | newdev->rating > curdev->rating || | 
|  | !cpumask_equal(curdev->cpumask, newdev->cpumask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the new device is a better fit than curdev. curdev | 
|  | * can be NULL ! | 
|  | */ | 
|  | bool tick_check_replacement(struct clock_event_device *curdev, | 
|  | struct clock_event_device *newdev) | 
|  | { | 
|  | if (!tick_check_percpu(curdev, newdev, smp_processor_id())) | 
|  | return false; | 
|  |  | 
|  | return tick_check_preferred(curdev, newdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, if the new registered device should be used. Called with | 
|  | * clockevents_lock held and interrupts disabled. | 
|  | */ | 
|  | void tick_check_new_device(struct clock_event_device *newdev) | 
|  | { | 
|  | struct clock_event_device *curdev; | 
|  | struct tick_device *td; | 
|  | int cpu; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | td = &per_cpu(tick_cpu_device, cpu); | 
|  | curdev = td->evtdev; | 
|  |  | 
|  | if (!tick_check_replacement(curdev, newdev)) | 
|  | goto out_bc; | 
|  |  | 
|  | if (!try_module_get(newdev->owner)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Replace the eventually existing device by the new | 
|  | * device. If the current device is the broadcast device, do | 
|  | * not give it back to the clockevents layer ! | 
|  | */ | 
|  | if (tick_is_broadcast_device(curdev)) { | 
|  | clockevents_shutdown(curdev); | 
|  | curdev = NULL; | 
|  | } | 
|  | clockevents_exchange_device(curdev, newdev); | 
|  | tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); | 
|  | if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) | 
|  | tick_oneshot_notify(); | 
|  | return; | 
|  |  | 
|  | out_bc: | 
|  | /* | 
|  | * Can the new device be used as a broadcast device ? | 
|  | */ | 
|  | tick_install_broadcast_device(newdev, cpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode | 
|  | * @state:	The target state (enter/exit) | 
|  | * | 
|  | * The system enters/leaves a state, where affected devices might stop | 
|  | * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. | 
|  | * | 
|  | * Called with interrupts disabled, so clockevents_lock is not | 
|  | * required here because the local clock event device cannot go away | 
|  | * under us. | 
|  | */ | 
|  | int tick_broadcast_oneshot_control(enum tick_broadcast_state state) | 
|  | { | 
|  | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); | 
|  |  | 
|  | if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) | 
|  | return 0; | 
|  |  | 
|  | return __tick_broadcast_oneshot_control(state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | void tick_assert_timekeeping_handover(void) | 
|  | { | 
|  | WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id()); | 
|  | } | 
|  | /* | 
|  | * Stop the tick and transfer the timekeeping job away from a dying cpu. | 
|  | */ | 
|  | int tick_cpu_dying(unsigned int dying_cpu) | 
|  | { | 
|  | /* | 
|  | * If the current CPU is the timekeeper, it's the only one that can | 
|  | * safely hand over its duty. Also all online CPUs are in stop | 
|  | * machine, guaranteed not to be idle, therefore there is no | 
|  | * concurrency and it's safe to pick any online successor. | 
|  | */ | 
|  | if (tick_do_timer_cpu == dying_cpu) | 
|  | tick_do_timer_cpu = cpumask_first(cpu_online_mask); | 
|  |  | 
|  | /* Make sure the CPU won't try to retake the timekeeping duty */ | 
|  | tick_sched_timer_dying(dying_cpu); | 
|  |  | 
|  | /* Remove CPU from timer broadcasting */ | 
|  | tick_offline_cpu(dying_cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shutdown an event device on the outgoing CPU: | 
|  | * | 
|  | * Called by the dying CPU during teardown, with clockevents_lock held | 
|  | * and interrupts disabled. | 
|  | */ | 
|  | void tick_shutdown(void) | 
|  | { | 
|  | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); | 
|  | struct clock_event_device *dev = td->evtdev; | 
|  |  | 
|  | td->mode = TICKDEV_MODE_PERIODIC; | 
|  | if (dev) { | 
|  | clockevents_exchange_device(dev, NULL); | 
|  | dev->event_handler = clockevents_handle_noop; | 
|  | td->evtdev = NULL; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * tick_suspend_local - Suspend the local tick device | 
|  | * | 
|  | * Called from the local cpu for freeze with interrupts disabled. | 
|  | * | 
|  | * No locks required. Nothing can change the per cpu device. | 
|  | */ | 
|  | void tick_suspend_local(void) | 
|  | { | 
|  | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); | 
|  |  | 
|  | clockevents_shutdown(td->evtdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_resume_local - Resume the local tick device | 
|  | * | 
|  | * Called from the local CPU for unfreeze or XEN resume magic. | 
|  | * | 
|  | * No locks required. Nothing can change the per cpu device. | 
|  | */ | 
|  | void tick_resume_local(void) | 
|  | { | 
|  | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); | 
|  | bool broadcast = tick_resume_check_broadcast(); | 
|  |  | 
|  | clockevents_tick_resume(td->evtdev); | 
|  | if (!broadcast) { | 
|  | if (td->mode == TICKDEV_MODE_PERIODIC) | 
|  | tick_setup_periodic(td->evtdev, 0); | 
|  | else | 
|  | tick_resume_oneshot(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that hrtimers are up to date and the clockevents device | 
|  | * is reprogrammed correctly when high resolution timers are | 
|  | * enabled. | 
|  | */ | 
|  | hrtimers_resume_local(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_suspend - Suspend the tick and the broadcast device | 
|  | * | 
|  | * Called from syscore_suspend() via timekeeping_suspend with only one | 
|  | * CPU online and interrupts disabled or from tick_unfreeze() under | 
|  | * tick_freeze_lock. | 
|  | * | 
|  | * No locks required. Nothing can change the per cpu device. | 
|  | */ | 
|  | void tick_suspend(void) | 
|  | { | 
|  | tick_suspend_local(); | 
|  | tick_suspend_broadcast(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_resume - Resume the tick and the broadcast device | 
|  | * | 
|  | * Called from syscore_resume() via timekeeping_resume with only one | 
|  | * CPU online and interrupts disabled. | 
|  | * | 
|  | * No locks required. Nothing can change the per cpu device. | 
|  | */ | 
|  | void tick_resume(void) | 
|  | { | 
|  | tick_resume_broadcast(); | 
|  | tick_resume_local(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SUSPEND | 
|  | static DEFINE_RAW_SPINLOCK(tick_freeze_lock); | 
|  | static DEFINE_WAIT_OVERRIDE_MAP(tick_freeze_map, LD_WAIT_SLEEP); | 
|  | static unsigned int tick_freeze_depth; | 
|  |  | 
|  | /** | 
|  | * tick_freeze - Suspend the local tick and (possibly) timekeeping. | 
|  | * | 
|  | * Check if this is the last online CPU executing the function and if so, | 
|  | * suspend timekeeping.  Otherwise suspend the local tick. | 
|  | * | 
|  | * Call with interrupts disabled.  Must be balanced with %tick_unfreeze(). | 
|  | * Interrupts must not be enabled before the subsequent %tick_unfreeze(). | 
|  | */ | 
|  | void tick_freeze(void) | 
|  | { | 
|  | raw_spin_lock(&tick_freeze_lock); | 
|  |  | 
|  | tick_freeze_depth++; | 
|  | if (tick_freeze_depth == num_online_cpus()) { | 
|  | trace_suspend_resume(TPS("timekeeping_freeze"), | 
|  | smp_processor_id(), true); | 
|  | /* | 
|  | * All other CPUs have their interrupts disabled and are | 
|  | * suspended to idle. Other tasks have been frozen so there | 
|  | * is no scheduling happening. This means that there is no | 
|  | * concurrency in the system at this point. Therefore it is | 
|  | * okay to acquire a sleeping lock on PREEMPT_RT, such as a | 
|  | * spinlock, because the lock cannot be held by other CPUs | 
|  | * or threads and acquiring it cannot block. | 
|  | * | 
|  | * Inform lockdep about the situation. | 
|  | */ | 
|  | lock_map_acquire_try(&tick_freeze_map); | 
|  | system_state = SYSTEM_SUSPEND; | 
|  | sched_clock_suspend(); | 
|  | timekeeping_suspend(); | 
|  | lock_map_release(&tick_freeze_map); | 
|  | } else { | 
|  | tick_suspend_local(); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&tick_freeze_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_unfreeze - Resume the local tick and (possibly) timekeeping. | 
|  | * | 
|  | * Check if this is the first CPU executing the function and if so, resume | 
|  | * timekeeping.  Otherwise resume the local tick. | 
|  | * | 
|  | * Call with interrupts disabled.  Must be balanced with %tick_freeze(). | 
|  | * Interrupts must not be enabled after the preceding %tick_freeze(). | 
|  | */ | 
|  | void tick_unfreeze(void) | 
|  | { | 
|  | raw_spin_lock(&tick_freeze_lock); | 
|  |  | 
|  | if (tick_freeze_depth == num_online_cpus()) { | 
|  | /* | 
|  | * Similar to tick_freeze(). On resumption the first CPU may | 
|  | * acquire uncontended sleeping locks while other CPUs block on | 
|  | * tick_freeze_lock. | 
|  | */ | 
|  | lock_map_acquire_try(&tick_freeze_map); | 
|  | timekeeping_resume(); | 
|  | sched_clock_resume(); | 
|  | lock_map_release(&tick_freeze_map); | 
|  |  | 
|  | system_state = SYSTEM_RUNNING; | 
|  | trace_suspend_resume(TPS("timekeeping_freeze"), | 
|  | smp_processor_id(), false); | 
|  | } else { | 
|  | touch_softlockup_watchdog(); | 
|  | tick_resume_local(); | 
|  | } | 
|  |  | 
|  | tick_freeze_depth--; | 
|  |  | 
|  | raw_spin_unlock(&tick_freeze_lock); | 
|  | } | 
|  | #endif /* CONFIG_SUSPEND */ | 
|  |  | 
|  | /** | 
|  | * tick_init - initialize the tick control | 
|  | */ | 
|  | void __init tick_init(void) | 
|  | { | 
|  | tick_broadcast_init(); | 
|  | tick_nohz_init(); | 
|  | } |