| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| * |
| */ |
| |
| #include <drm/drm_print.h> |
| |
| #include "intel_crtc.h" |
| #include "intel_de.h" |
| #include "intel_display_regs.h" |
| #include "intel_display_types.h" |
| #include "intel_dmc.h" |
| #include "intel_dmc_regs.h" |
| #include "intel_dp.h" |
| #include "intel_psr.h" |
| #include "intel_vrr.h" |
| #include "intel_vrr_regs.h" |
| #include "skl_prefill.h" |
| #include "skl_watermark.h" |
| |
| #define FIXED_POINT_PRECISION 100 |
| #define CMRR_PRECISION_TOLERANCE 10 |
| |
| /* |
| * Tunable parameters for DC Balance correction. |
| * These are captured based on experimentations. |
| */ |
| #define DCB_CORRECTION_SENSITIVITY 30 |
| #define DCB_CORRECTION_AGGRESSIVENESS 1000 /* ms × 100; 10 ms */ |
| #define DCB_BLANK_TARGET 50 |
| |
| bool intel_vrr_is_capable(struct intel_connector *connector) |
| { |
| struct intel_display *display = to_intel_display(connector); |
| const struct drm_display_info *info = &connector->base.display_info; |
| struct intel_dp *intel_dp; |
| |
| if (!HAS_VRR(display)) |
| return false; |
| |
| /* |
| * DP Sink is capable of VRR video timings if |
| * Ignore MSA bit is set in DPCD. |
| * EDID monitor range also should be atleast 10 for reasonable |
| * Adaptive Sync or Variable Refresh Rate end user experience. |
| */ |
| switch (connector->base.connector_type) { |
| case DRM_MODE_CONNECTOR_eDP: |
| if (!connector->panel.vbt.vrr) |
| return false; |
| fallthrough; |
| case DRM_MODE_CONNECTOR_DisplayPort: |
| if (connector->mst.dp) |
| return false; |
| intel_dp = intel_attached_dp(connector); |
| |
| if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd)) |
| return false; |
| |
| break; |
| default: |
| return false; |
| } |
| |
| return info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10; |
| } |
| |
| bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh) |
| { |
| const struct drm_display_info *info = &connector->base.display_info; |
| |
| return intel_vrr_is_capable(connector) && |
| vrefresh >= info->monitor_range.min_vfreq && |
| vrefresh <= info->monitor_range.max_vfreq; |
| } |
| |
| bool intel_vrr_possible(const struct intel_crtc_state *crtc_state) |
| { |
| return crtc_state->vrr.flipline; |
| } |
| |
| void |
| intel_vrr_check_modeset(struct intel_atomic_state *state) |
| { |
| int i; |
| struct intel_crtc_state *old_crtc_state, *new_crtc_state; |
| struct intel_crtc *crtc; |
| |
| for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, |
| new_crtc_state, i) { |
| if (new_crtc_state->uapi.vrr_enabled != |
| old_crtc_state->uapi.vrr_enabled) |
| new_crtc_state->uapi.mode_changed = true; |
| } |
| } |
| |
| static int intel_vrr_extra_vblank_delay(struct intel_display *display) |
| { |
| /* |
| * On ICL/TGL VRR hardware inserts one extra scanline |
| * just after vactive, which pushes the vmin decision |
| * boundary ahead accordingly, and thus reduces the |
| * max guardband length by one scanline. |
| */ |
| return DISPLAY_VER(display) < 13 ? 1 : 0; |
| } |
| |
| static int intel_vrr_vmin_flipline_offset(struct intel_display *display) |
| { |
| /* |
| * ICL/TGL hardware imposes flipline>=vmin+1 |
| * |
| * We reduce the vmin value to compensate when programming the |
| * hardware. This approach allows flipline to remain set at the |
| * original value, and thus the frame will have the desired |
| * minimum vtotal. |
| */ |
| return DISPLAY_VER(display) < 13 ? 1 : 0; |
| } |
| |
| static int intel_vrr_guardband_to_pipeline_full(const struct intel_crtc_state *crtc_state, |
| int guardband) |
| { |
| /* hardware imposes one extra scanline somewhere */ |
| return guardband - crtc_state->framestart_delay - 1; |
| } |
| |
| static int intel_vrr_pipeline_full_to_guardband(const struct intel_crtc_state *crtc_state, |
| int pipeline_full) |
| { |
| /* hardware imposes one extra scanline somewhere */ |
| return pipeline_full + crtc_state->framestart_delay + 1; |
| } |
| |
| /* |
| * Without VRR registers get latched at: |
| * vblank_start |
| * |
| * With VRR the earliest registers can get latched is: |
| * intel_vrr_vmin_vblank_start(), which if we want to maintain |
| * the correct min vtotal is >=vblank_start+1 |
| * |
| * The latest point registers can get latched is the vmax decision boundary: |
| * intel_vrr_vmax_vblank_start() |
| * |
| * Between those two points the vblank exit starts (and hence registers get |
| * latched) ASAP after a push is sent. |
| * |
| * framestart_delay is programmable 1-4. |
| */ |
| |
| int intel_vrr_vmin_vtotal(const struct intel_crtc_state *crtc_state) |
| { |
| /* Min vblank actually determined by flipline */ |
| return crtc_state->vrr.vmin; |
| } |
| |
| int intel_vrr_vmax_vtotal(const struct intel_crtc_state *crtc_state) |
| { |
| return crtc_state->vrr.vmax; |
| } |
| |
| int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state) |
| { |
| return intel_vrr_vmin_vtotal(crtc_state) - crtc_state->vrr.guardband; |
| } |
| |
| int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state) |
| { |
| return intel_vrr_vmax_vtotal(crtc_state) - crtc_state->vrr.guardband; |
| } |
| |
| static bool |
| is_cmrr_frac_required(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line; |
| struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| |
| /* Avoid CMRR for now till we have VRR with fixed timings working */ |
| if (!HAS_CMRR(display) || true) |
| return false; |
| |
| actual_refresh_k = |
| drm_mode_vrefresh(adjusted_mode) * FIXED_POINT_PRECISION; |
| pixel_clock_per_line = |
| adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal; |
| calculated_refresh_k = |
| pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal; |
| |
| if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE) |
| return false; |
| |
| return true; |
| } |
| |
| static unsigned int |
| cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required) |
| { |
| int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate; |
| u64 adjusted_pixel_rate; |
| struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| |
| desired_refresh_rate = drm_mode_vrefresh(adjusted_mode); |
| |
| if (video_mode_required) { |
| multiplier_m = 1001; |
| multiplier_n = 1000; |
| } |
| |
| crtc_state->cmrr.cmrr_n = mul_u32_u32(desired_refresh_rate * adjusted_mode->crtc_htotal, |
| multiplier_n); |
| vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n), |
| crtc_state->cmrr.cmrr_n); |
| adjusted_pixel_rate = mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_m); |
| crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n); |
| |
| return vtotal; |
| } |
| |
| static |
| void intel_vrr_compute_cmrr_timings(struct intel_crtc_state *crtc_state) |
| { |
| /* |
| * TODO: Compute precise target refresh rate to determine |
| * if video_mode_required should be true. Currently set to |
| * false due to uncertainty about the precise target |
| * refresh Rate. |
| */ |
| crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, false); |
| crtc_state->vrr.vmin = crtc_state->vrr.vmax; |
| crtc_state->vrr.flipline = crtc_state->vrr.vmin; |
| |
| crtc_state->cmrr.enable = true; |
| crtc_state->mode_flags |= I915_MODE_FLAG_VRR; |
| } |
| |
| static |
| void intel_vrr_compute_vrr_timings(struct intel_crtc_state *crtc_state, |
| int vmin, int vmax) |
| { |
| crtc_state->vrr.vmax = vmax; |
| crtc_state->vrr.vmin = vmin; |
| crtc_state->vrr.flipline = crtc_state->vrr.vmin; |
| |
| crtc_state->vrr.enable = true; |
| crtc_state->mode_flags |= I915_MODE_FLAG_VRR; |
| } |
| |
| static |
| void intel_vrr_compute_fixed_rr_timings(struct intel_crtc_state *crtc_state) |
| { |
| /* For fixed rr, vmin = vmax = flipline */ |
| crtc_state->vrr.vmax = crtc_state->hw.adjusted_mode.crtc_vtotal; |
| crtc_state->vrr.vmin = crtc_state->vrr.vmax; |
| crtc_state->vrr.flipline = crtc_state->vrr.vmin; |
| } |
| |
| static int intel_vrr_hw_value(const struct intel_crtc_state *crtc_state, |
| int value) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| |
| /* |
| * On TGL vmin/vmax/flipline also need to be |
| * adjusted by the SCL to maintain correct vtotals. |
| */ |
| if (DISPLAY_VER(display) >= 13) |
| return value; |
| else |
| return value - crtc_state->set_context_latency; |
| } |
| |
| static int intel_vrr_vblank_start(const struct intel_crtc_state *crtc_state, |
| int vmin_vmax) |
| { |
| return intel_vrr_hw_value(crtc_state, vmin_vmax) - crtc_state->vrr.guardband; |
| } |
| |
| /* |
| * For fixed refresh rate mode Vmin, Vmax and Flipline all are set to |
| * Vtotal value. |
| */ |
| static |
| int intel_vrr_fixed_rr_hw_vtotal(const struct intel_crtc_state *crtc_state) |
| { |
| return intel_vrr_hw_value(crtc_state, crtc_state->hw.adjusted_mode.crtc_vtotal); |
| } |
| |
| static |
| int intel_vrr_fixed_rr_hw_vmax(const struct intel_crtc_state *crtc_state) |
| { |
| return intel_vrr_fixed_rr_hw_vtotal(crtc_state); |
| } |
| |
| static |
| int intel_vrr_fixed_rr_hw_vmin(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| |
| return intel_vrr_fixed_rr_hw_vtotal(crtc_state) - |
| intel_vrr_vmin_flipline_offset(display); |
| } |
| |
| static |
| int intel_vrr_fixed_rr_hw_flipline(const struct intel_crtc_state *crtc_state) |
| { |
| return intel_vrr_fixed_rr_hw_vtotal(crtc_state); |
| } |
| |
| void intel_vrr_set_fixed_rr_timings(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!intel_vrr_possible(crtc_state)) |
| return; |
| |
| intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder), |
| intel_vrr_fixed_rr_hw_vmin(crtc_state) - 1); |
| intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder), |
| intel_vrr_fixed_rr_hw_vmax(crtc_state) - 1); |
| intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder), |
| intel_vrr_fixed_rr_hw_flipline(crtc_state) - 1); |
| } |
| |
| static |
| int intel_vrr_compute_vmin(struct intel_crtc_state *crtc_state) |
| { |
| /* |
| * To make fixed rr and vrr work seamless the guardband/pipeline full |
| * should be set such that it satisfies both the fixed and variable |
| * timings. |
| * For this set the vmin as crtc_vtotal. With this we never need to |
| * change anything to do with the guardband. |
| */ |
| return crtc_state->hw.adjusted_mode.crtc_vtotal; |
| } |
| |
| static |
| int intel_vrr_compute_vmax(struct intel_connector *connector, |
| const struct drm_display_mode *adjusted_mode) |
| { |
| const struct drm_display_info *info = &connector->base.display_info; |
| int vmax; |
| |
| vmax = adjusted_mode->crtc_clock * 1000 / |
| (adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq); |
| vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal); |
| |
| return vmax; |
| } |
| |
| static bool intel_vrr_dc_balance_possible(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| enum pipe pipe = crtc->pipe; |
| |
| /* |
| * FIXME: Currently Firmware supports DC Balancing on PIPE A |
| * and PIPE B. Account those limitation while computing DC |
| * Balance parameters. |
| */ |
| return (HAS_VRR_DC_BALANCE(display) && |
| ((pipe == PIPE_A) || (pipe == PIPE_B))); |
| } |
| |
| static void |
| intel_vrr_dc_balance_compute_config(struct intel_crtc_state *crtc_state) |
| { |
| int guardband_usec, adjustment_usec; |
| struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| |
| if (!intel_vrr_dc_balance_possible(crtc_state) || !crtc_state->vrr.enable) |
| return; |
| |
| crtc_state->vrr.dc_balance.vmax = crtc_state->vrr.vmax; |
| crtc_state->vrr.dc_balance.vmin = crtc_state->vrr.vmin; |
| crtc_state->vrr.dc_balance.max_increase = |
| crtc_state->vrr.vmax - crtc_state->vrr.vmin; |
| crtc_state->vrr.dc_balance.max_decrease = |
| crtc_state->vrr.vmax - crtc_state->vrr.vmin; |
| crtc_state->vrr.dc_balance.guardband = |
| DIV_ROUND_UP(crtc_state->vrr.dc_balance.vmax * |
| DCB_CORRECTION_SENSITIVITY, 100); |
| guardband_usec = |
| intel_scanlines_to_usecs(adjusted_mode, |
| crtc_state->vrr.dc_balance.guardband); |
| /* |
| * The correction_aggressiveness/100 is the number of milliseconds to |
| * adjust by when the balance is at twice the guardband. |
| * guardband_slope = correction_aggressiveness / (guardband * 100) |
| */ |
| adjustment_usec = DCB_CORRECTION_AGGRESSIVENESS * 10; |
| crtc_state->vrr.dc_balance.slope = |
| DIV_ROUND_UP(adjustment_usec, guardband_usec); |
| crtc_state->vrr.dc_balance.vblank_target = |
| DIV_ROUND_UP((crtc_state->vrr.vmax - crtc_state->vrr.vmin) * |
| DCB_BLANK_TARGET, 100); |
| crtc_state->vrr.dc_balance.enable = true; |
| } |
| |
| void |
| intel_vrr_compute_config(struct intel_crtc_state *crtc_state, |
| struct drm_connector_state *conn_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct intel_connector *connector = |
| to_intel_connector(conn_state->connector); |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| bool is_edp = intel_dp_is_edp(intel_dp); |
| struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| int vmin, vmax; |
| |
| if (!HAS_VRR(display)) |
| return; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) |
| return; |
| |
| crtc_state->vrr.in_range = |
| intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode)); |
| |
| /* |
| * Allow fixed refresh rate with VRR Timing Generator. |
| * For now set the vrr.in_range to 0, to allow fixed_rr but skip actual |
| * VRR and LRR. |
| * #TODO For actual VRR with joiner, we need to figure out how to |
| * correctly sequence transcoder level stuff vs. pipe level stuff |
| * in the commit. |
| */ |
| if (crtc_state->joiner_pipes) |
| crtc_state->vrr.in_range = false; |
| |
| vmin = intel_vrr_compute_vmin(crtc_state); |
| |
| if (crtc_state->vrr.in_range) { |
| if (HAS_LRR(display)) |
| crtc_state->update_lrr = true; |
| vmax = intel_vrr_compute_vmax(connector, adjusted_mode); |
| } else { |
| vmax = vmin; |
| } |
| |
| if (crtc_state->uapi.vrr_enabled && vmin < vmax) |
| intel_vrr_compute_vrr_timings(crtc_state, vmin, vmax); |
| else if (is_cmrr_frac_required(crtc_state) && is_edp) |
| intel_vrr_compute_cmrr_timings(crtc_state); |
| else |
| intel_vrr_compute_fixed_rr_timings(crtc_state); |
| |
| if (HAS_AS_SDP(display)) { |
| crtc_state->vrr.vsync_start = |
| (crtc_state->hw.adjusted_mode.crtc_vtotal - |
| crtc_state->hw.adjusted_mode.crtc_vsync_start); |
| crtc_state->vrr.vsync_end = |
| (crtc_state->hw.adjusted_mode.crtc_vtotal - |
| crtc_state->hw.adjusted_mode.crtc_vsync_end); |
| } |
| |
| intel_vrr_dc_balance_compute_config(crtc_state); |
| } |
| |
| static int |
| intel_vrr_max_hw_guardband(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| int max_pipeline_full = REG_FIELD_MAX(VRR_CTL_PIPELINE_FULL_MASK); |
| |
| if (DISPLAY_VER(display) >= 13) |
| return REG_FIELD_MAX(XELPD_VRR_CTL_VRR_GUARDBAND_MASK); |
| else |
| return intel_vrr_pipeline_full_to_guardband(crtc_state, |
| max_pipeline_full); |
| } |
| |
| static int |
| intel_vrr_max_vblank_guardband(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| |
| return crtc_state->vrr.vmin - |
| adjusted_mode->crtc_vdisplay - |
| crtc_state->set_context_latency - |
| intel_vrr_extra_vblank_delay(display); |
| } |
| |
| static int |
| intel_vrr_max_guardband(struct intel_crtc_state *crtc_state) |
| { |
| return min(intel_vrr_max_hw_guardband(crtc_state), |
| intel_vrr_max_vblank_guardband(crtc_state)); |
| } |
| |
| static |
| int intel_vrr_compute_optimized_guardband(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct skl_prefill_ctx prefill_ctx; |
| int prefill_latency_us; |
| int guardband = 0; |
| |
| skl_prefill_init_worst(&prefill_ctx, crtc_state); |
| |
| /* |
| * The SoC power controller runs SAGV mutually exclusive with package C states, |
| * so the max of package C and SAGV latencies is used to compute the min prefill guardband. |
| * PM delay = max(sagv_latency, pkgc_max_latency (highest enabled wm level 1 and up)) |
| */ |
| prefill_latency_us = max(display->sagv.block_time_us, |
| skl_watermark_max_latency(display, 1)); |
| |
| guardband = skl_prefill_min_guardband(&prefill_ctx, |
| crtc_state, |
| prefill_latency_us); |
| |
| if (intel_crtc_has_dp_encoder(crtc_state)) { |
| guardband = max(guardband, intel_psr_min_guardband(crtc_state)); |
| guardband = max(guardband, intel_dp_sdp_min_guardband(crtc_state, true)); |
| } |
| |
| return guardband; |
| } |
| |
| static bool intel_vrr_use_optimized_guardband(const struct intel_crtc_state *crtc_state) |
| { |
| /* |
| * #TODO: Enable optimized guardband for HDMI |
| * For HDMI lot of infoframes are transmitted a line or two after vsync. |
| * Since with optimized guardband the double bufferring point is at delayed vblank, |
| * we need to ensure that vsync happens after delayed vblank for the HDMI case. |
| */ |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) |
| return false; |
| |
| return true; |
| } |
| |
| void intel_vrr_compute_guardband(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; |
| struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; |
| int guardband; |
| |
| if (!intel_vrr_possible(crtc_state)) |
| return; |
| |
| if (intel_vrr_use_optimized_guardband(crtc_state)) |
| guardband = intel_vrr_compute_optimized_guardband(crtc_state); |
| else |
| guardband = crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay; |
| |
| crtc_state->vrr.guardband = min(guardband, intel_vrr_max_guardband(crtc_state)); |
| |
| if (intel_vrr_always_use_vrr_tg(display)) { |
| adjusted_mode->crtc_vblank_start = |
| adjusted_mode->crtc_vtotal - crtc_state->vrr.guardband; |
| /* |
| * pipe_mode has already been derived from the |
| * original adjusted_mode, keep the two in sync. |
| */ |
| pipe_mode->crtc_vblank_start = |
| adjusted_mode->crtc_vblank_start; |
| } |
| |
| if (DISPLAY_VER(display) < 13) |
| crtc_state->vrr.pipeline_full = |
| intel_vrr_guardband_to_pipeline_full(crtc_state, |
| crtc_state->vrr.guardband); |
| } |
| |
| static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| |
| if (DISPLAY_VER(display) >= 14) |
| return VRR_CTL_FLIP_LINE_EN | |
| XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); |
| else if (DISPLAY_VER(display) >= 13) |
| return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | |
| XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); |
| else |
| return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | |
| VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) | |
| VRR_CTL_PIPELINE_FULL_OVERRIDE; |
| } |
| |
| void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!HAS_VRR(display)) |
| return; |
| |
| /* |
| * This bit seems to have two meanings depending on the platform: |
| * TGL: generate VRR "safe window" for DSB vblank waits |
| * ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR |
| */ |
| if (IS_DISPLAY_VER(display, 12, 13)) |
| intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder), |
| 0, PIPE_VBLANK_WITH_DELAY); |
| |
| if (!intel_vrr_possible(crtc_state)) { |
| intel_de_write(display, |
| TRANS_VRR_CTL(display, cpu_transcoder), 0); |
| return; |
| } |
| |
| if (crtc_state->cmrr.enable) { |
| intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder), |
| upper_32_bits(crtc_state->cmrr.cmrr_m)); |
| intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder), |
| lower_32_bits(crtc_state->cmrr.cmrr_m)); |
| intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder), |
| upper_32_bits(crtc_state->cmrr.cmrr_n)); |
| intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder), |
| lower_32_bits(crtc_state->cmrr.cmrr_n)); |
| } |
| |
| intel_vrr_set_fixed_rr_timings(crtc_state); |
| |
| if (!intel_vrr_always_use_vrr_tg(display)) |
| intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), |
| trans_vrr_ctl(crtc_state)); |
| |
| if (HAS_AS_SDP(display)) |
| intel_de_write(display, |
| TRANS_VRR_VSYNC(display, cpu_transcoder), |
| VRR_VSYNC_END(crtc_state->vrr.vsync_end) | |
| VRR_VSYNC_START(crtc_state->vrr.vsync_start)); |
| |
| /* |
| * For BMG and LNL+ onwards the EMP_AS_SDP_TL is used for programming |
| * double buffering point and transmission line for VRR packets for |
| * HDMI2.1/DP/eDP/DP->HDMI2.1 PCON. |
| * Since currently we support VRR only for DP/eDP, so this is programmed |
| * to for Adaptive Sync SDP to Vsync start. |
| */ |
| if (DISPLAY_VERx100(display) == 1401 || DISPLAY_VER(display) >= 20) |
| intel_de_write(display, |
| EMP_AS_SDP_TL(display, cpu_transcoder), |
| EMP_AS_SDP_DB_TL(crtc_state->vrr.vsync_start)); |
| } |
| |
| void |
| intel_vrr_dcb_increment_flip_count(struct intel_crtc_state *crtc_state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum pipe pipe = crtc->pipe; |
| |
| if (!crtc_state->vrr.dc_balance.enable) |
| return; |
| |
| intel_de_write(display, PIPEDMC_DCB_FLIP_COUNT(pipe), |
| ++crtc->dc_balance.flip_count); |
| } |
| |
| void |
| intel_vrr_dcb_reset(const struct intel_crtc_state *old_crtc_state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_display *display = to_intel_display(old_crtc_state); |
| enum pipe pipe = crtc->pipe; |
| |
| if (!old_crtc_state->vrr.dc_balance.enable) |
| return; |
| |
| intel_de_write(display, PIPEDMC_DCB_FLIP_COUNT(pipe), 0); |
| intel_de_write(display, PIPEDMC_DCB_BALANCE_RESET(pipe), 0); |
| } |
| |
| void intel_vrr_send_push(struct intel_dsb *dsb, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!crtc_state->vrr.enable) |
| return; |
| |
| if (dsb) |
| intel_dsb_nonpost_start(dsb); |
| |
| intel_de_write_dsb(display, dsb, |
| TRANS_PUSH(display, cpu_transcoder), |
| TRANS_PUSH_EN | TRANS_PUSH_SEND); |
| |
| if (dsb) |
| intel_dsb_nonpost_end(dsb); |
| } |
| |
| void intel_vrr_check_push_sent(struct intel_dsb *dsb, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!crtc_state->vrr.enable) |
| return; |
| |
| /* |
| * Make sure the push send bit has cleared. This should |
| * already be the case as long as the caller makes sure |
| * this is called after the delayed vblank has occurred. |
| */ |
| if (dsb) { |
| int wait_us, count; |
| |
| wait_us = 2; |
| count = 1; |
| |
| /* |
| * If the bit hasn't cleared the DSB will |
| * raise the poll error interrupt. |
| */ |
| intel_dsb_poll(dsb, TRANS_PUSH(display, cpu_transcoder), |
| TRANS_PUSH_SEND, 0, wait_us, count); |
| } else { |
| if (intel_vrr_is_push_sent(crtc_state)) |
| drm_err(display->drm, "[CRTC:%d:%s] VRR push send still pending\n", |
| crtc->base.base.id, crtc->base.name); |
| } |
| } |
| |
| bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| if (!crtc_state->vrr.enable) |
| return false; |
| |
| return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND; |
| } |
| |
| bool intel_vrr_always_use_vrr_tg(struct intel_display *display) |
| { |
| if (!HAS_VRR(display)) |
| return false; |
| |
| if (DISPLAY_VER(display) >= 30) |
| return true; |
| |
| return false; |
| } |
| |
| static int intel_vrr_hw_vmin(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| |
| return intel_vrr_hw_value(crtc_state, crtc_state->vrr.vmin) - |
| intel_vrr_vmin_flipline_offset(display); |
| } |
| |
| static int intel_vrr_hw_vmax(const struct intel_crtc_state *crtc_state) |
| { |
| return intel_vrr_hw_value(crtc_state, crtc_state->vrr.vmax); |
| } |
| |
| static int intel_vrr_hw_flipline(const struct intel_crtc_state *crtc_state) |
| { |
| return intel_vrr_hw_value(crtc_state, crtc_state->vrr.flipline); |
| } |
| |
| static void intel_vrr_set_vrr_timings(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| |
| intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder), |
| intel_vrr_hw_vmin(crtc_state) - 1); |
| intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder), |
| intel_vrr_hw_vmax(crtc_state) - 1); |
| intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder), |
| intel_vrr_hw_flipline(crtc_state) - 1); |
| } |
| |
| static void |
| intel_vrr_enable_dc_balancing(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| enum pipe pipe = crtc->pipe; |
| u32 vrr_ctl = intel_de_read(display, TRANS_VRR_CTL(display, cpu_transcoder)); |
| |
| if (!crtc_state->vrr.dc_balance.enable) |
| return; |
| |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG(cpu_transcoder), |
| VRR_DCB_ADJ_VMAX(crtc_state->vrr.vmax - 1)); |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG_LIVE(cpu_transcoder), |
| VRR_DCB_ADJ_VMAX(crtc_state->vrr.vmax - 1)); |
| intel_de_write(display, TRANS_VRR_DCB_VMAX(cpu_transcoder), |
| VRR_DCB_VMAX(crtc_state->vrr.vmax - 1)); |
| intel_de_write(display, TRANS_VRR_DCB_VMAX_LIVE(cpu_transcoder), |
| VRR_DCB_VMAX(crtc_state->vrr.vmax - 1)); |
| intel_de_write(display, TRANS_VRR_DCB_FLIPLINE(cpu_transcoder), |
| VRR_DCB_FLIPLINE(crtc_state->vrr.flipline - 1)); |
| intel_de_write(display, TRANS_VRR_DCB_FLIPLINE_LIVE(cpu_transcoder), |
| VRR_DCB_FLIPLINE(crtc_state->vrr.flipline - 1)); |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG_LIVE(cpu_transcoder), |
| VRR_DCB_ADJ_FLIPLINE(crtc_state->vrr.flipline - 1)); |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG(cpu_transcoder), |
| VRR_DCB_ADJ_FLIPLINE(crtc_state->vrr.flipline - 1)); |
| intel_de_write(display, PIPEDMC_DCB_VMIN(pipe), |
| crtc_state->vrr.dc_balance.vmin - 1); |
| intel_de_write(display, PIPEDMC_DCB_VMAX(pipe), |
| crtc_state->vrr.dc_balance.vmax - 1); |
| intel_de_write(display, PIPEDMC_DCB_MAX_INCREASE(pipe), |
| crtc_state->vrr.dc_balance.max_increase); |
| intel_de_write(display, PIPEDMC_DCB_MAX_DECREASE(pipe), |
| crtc_state->vrr.dc_balance.max_decrease); |
| intel_de_write(display, PIPEDMC_DCB_GUARDBAND(pipe), |
| crtc_state->vrr.dc_balance.guardband); |
| intel_de_write(display, PIPEDMC_DCB_SLOPE(pipe), |
| crtc_state->vrr.dc_balance.slope); |
| intel_de_write(display, PIPEDMC_DCB_VBLANK(pipe), |
| crtc_state->vrr.dc_balance.vblank_target); |
| intel_dmc_configure_dc_balance_event(display, pipe, true); |
| intel_de_write(display, TRANS_ADAPTIVE_SYNC_DCB_CTL(cpu_transcoder), |
| ADAPTIVE_SYNC_COUNTER_EN); |
| intel_pipedmc_dcb_enable(NULL, crtc); |
| |
| vrr_ctl |= VRR_CTL_DCB_ADJ_ENABLE; |
| intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), vrr_ctl); |
| } |
| |
| static void |
| intel_vrr_disable_dc_balancing(const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_display *display = to_intel_display(old_crtc_state); |
| enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; |
| struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); |
| enum pipe pipe = crtc->pipe; |
| u32 vrr_ctl = intel_de_read(display, TRANS_VRR_CTL(display, cpu_transcoder)); |
| |
| if (!old_crtc_state->vrr.dc_balance.enable) |
| return; |
| |
| intel_pipedmc_dcb_disable(NULL, crtc); |
| intel_dmc_configure_dc_balance_event(display, pipe, false); |
| intel_de_write(display, TRANS_ADAPTIVE_SYNC_DCB_CTL(cpu_transcoder), 0); |
| intel_de_write(display, PIPEDMC_DCB_VMIN(pipe), 0); |
| intel_de_write(display, PIPEDMC_DCB_VMAX(pipe), 0); |
| intel_de_write(display, PIPEDMC_DCB_MAX_INCREASE(pipe), 0); |
| intel_de_write(display, PIPEDMC_DCB_MAX_DECREASE(pipe), 0); |
| intel_de_write(display, PIPEDMC_DCB_GUARDBAND(pipe), 0); |
| intel_de_write(display, PIPEDMC_DCB_SLOPE(pipe), 0); |
| intel_de_write(display, PIPEDMC_DCB_VBLANK(pipe), 0); |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG_LIVE(cpu_transcoder), 0); |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG_LIVE(cpu_transcoder), 0); |
| intel_de_write(display, TRANS_VRR_DCB_VMAX_LIVE(cpu_transcoder), 0); |
| intel_de_write(display, TRANS_VRR_DCB_FLIPLINE_LIVE(cpu_transcoder), 0); |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG(cpu_transcoder), 0); |
| intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG(cpu_transcoder), 0); |
| intel_de_write(display, TRANS_VRR_DCB_VMAX(cpu_transcoder), 0); |
| intel_de_write(display, TRANS_VRR_DCB_FLIPLINE(cpu_transcoder), 0); |
| |
| vrr_ctl &= ~VRR_CTL_DCB_ADJ_ENABLE; |
| intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), vrr_ctl); |
| } |
| |
| static void intel_vrr_tg_enable(const struct intel_crtc_state *crtc_state, |
| bool cmrr_enable) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 vrr_ctl; |
| |
| intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), TRANS_PUSH_EN); |
| |
| vrr_ctl = VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state); |
| |
| /* |
| * FIXME this might be broken as bspec seems to imply that |
| * even VRR_CTL_CMRR_ENABLE is armed by TRANS_CMRR_N_HI |
| * when enabling CMRR (but not when disabling CMRR?). |
| */ |
| if (cmrr_enable) |
| vrr_ctl |= VRR_CTL_CMRR_ENABLE; |
| |
| intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), vrr_ctl); |
| } |
| |
| static void intel_vrr_tg_disable(const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_display *display = to_intel_display(old_crtc_state); |
| enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; |
| |
| intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), |
| trans_vrr_ctl(old_crtc_state)); |
| |
| if (intel_de_wait_for_clear_ms(display, |
| TRANS_VRR_STATUS(display, cpu_transcoder), |
| VRR_STATUS_VRR_EN_LIVE, 1000)) |
| drm_err(display->drm, "Timed out waiting for VRR live status to clear\n"); |
| |
| intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0); |
| } |
| |
| void intel_vrr_enable(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| |
| if (!crtc_state->vrr.enable) |
| return; |
| |
| intel_vrr_set_vrr_timings(crtc_state); |
| intel_vrr_enable_dc_balancing(crtc_state); |
| |
| if (!intel_vrr_always_use_vrr_tg(display)) |
| intel_vrr_tg_enable(crtc_state, crtc_state->cmrr.enable); |
| } |
| |
| void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_display *display = to_intel_display(old_crtc_state); |
| |
| if (!old_crtc_state->vrr.enable) |
| return; |
| |
| if (!intel_vrr_always_use_vrr_tg(display)) |
| intel_vrr_tg_disable(old_crtc_state); |
| |
| intel_vrr_disable_dc_balancing(old_crtc_state); |
| intel_vrr_set_fixed_rr_timings(old_crtc_state); |
| } |
| |
| void intel_vrr_transcoder_enable(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| |
| if (!intel_vrr_possible(crtc_state)) |
| return; |
| |
| if (intel_vrr_always_use_vrr_tg(display)) |
| intel_vrr_tg_enable(crtc_state, false); |
| } |
| |
| void intel_vrr_transcoder_disable(const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_display *display = to_intel_display(old_crtc_state); |
| |
| if (!intel_vrr_possible(old_crtc_state)) |
| return; |
| |
| if (intel_vrr_always_use_vrr_tg(display)) |
| intel_vrr_tg_disable(old_crtc_state); |
| } |
| |
| bool intel_vrr_is_fixed_rr(const struct intel_crtc_state *crtc_state) |
| { |
| return crtc_state->vrr.flipline && |
| crtc_state->vrr.flipline == crtc_state->vrr.vmax && |
| crtc_state->vrr.flipline == crtc_state->vrr.vmin; |
| } |
| |
| static |
| void intel_vrr_get_dc_balance_config(struct intel_crtc_state *crtc_state) |
| { |
| u32 reg_val; |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| enum pipe pipe = crtc->pipe; |
| |
| if (!intel_vrr_dc_balance_possible(crtc_state)) |
| return; |
| |
| reg_val = intel_de_read(display, PIPEDMC_DCB_VMIN(pipe)); |
| crtc_state->vrr.dc_balance.vmin = reg_val ? reg_val + 1 : 0; |
| |
| reg_val = intel_de_read(display, PIPEDMC_DCB_VMAX(pipe)); |
| crtc_state->vrr.dc_balance.vmax = reg_val ? reg_val + 1 : 0; |
| |
| crtc_state->vrr.dc_balance.guardband = |
| intel_de_read(display, PIPEDMC_DCB_GUARDBAND(pipe)); |
| crtc_state->vrr.dc_balance.max_increase = |
| intel_de_read(display, PIPEDMC_DCB_MAX_INCREASE(pipe)); |
| crtc_state->vrr.dc_balance.max_decrease = |
| intel_de_read(display, PIPEDMC_DCB_MAX_DECREASE(pipe)); |
| crtc_state->vrr.dc_balance.slope = |
| intel_de_read(display, PIPEDMC_DCB_SLOPE(pipe)); |
| crtc_state->vrr.dc_balance.vblank_target = |
| intel_de_read(display, PIPEDMC_DCB_VBLANK(pipe)); |
| } |
| |
| void intel_vrr_get_config(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 trans_vrr_ctl, trans_vrr_vsync; |
| bool vrr_enable; |
| |
| trans_vrr_ctl = intel_de_read(display, |
| TRANS_VRR_CTL(display, cpu_transcoder)); |
| |
| if (HAS_CMRR(display)) |
| crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE); |
| |
| if (crtc_state->cmrr.enable) { |
| crtc_state->cmrr.cmrr_n = |
| intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder), |
| TRANS_CMRR_N_HI(display, cpu_transcoder)); |
| crtc_state->cmrr.cmrr_m = |
| intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder), |
| TRANS_CMRR_M_HI(display, cpu_transcoder)); |
| } |
| |
| if (DISPLAY_VER(display) >= 13) { |
| crtc_state->vrr.guardband = |
| REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl); |
| } else { |
| if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE) { |
| crtc_state->vrr.pipeline_full = |
| REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl); |
| |
| crtc_state->vrr.guardband = |
| intel_vrr_pipeline_full_to_guardband(crtc_state, |
| crtc_state->vrr.pipeline_full); |
| } |
| } |
| |
| if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) { |
| crtc_state->vrr.flipline = intel_de_read(display, |
| TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1; |
| crtc_state->vrr.vmax = intel_de_read(display, |
| TRANS_VRR_VMAX(display, cpu_transcoder)) + 1; |
| crtc_state->vrr.vmin = intel_de_read(display, |
| TRANS_VRR_VMIN(display, cpu_transcoder)) + 1; |
| |
| if (DISPLAY_VER(display) < 13) { |
| /* undo what intel_vrr_hw_value() does when writing the values */ |
| crtc_state->vrr.flipline += crtc_state->set_context_latency; |
| crtc_state->vrr.vmax += crtc_state->set_context_latency; |
| crtc_state->vrr.vmin += crtc_state->set_context_latency; |
| |
| crtc_state->vrr.vmin += intel_vrr_vmin_flipline_offset(display); |
| } |
| |
| /* |
| * For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal |
| * bits are not filled. Since for these platforms TRAN_VMIN is always |
| * filled with crtc_vtotal, use TRAN_VRR_VMIN to get the vtotal for |
| * adjusted_mode. |
| */ |
| if (intel_vrr_always_use_vrr_tg(display)) |
| crtc_state->hw.adjusted_mode.crtc_vtotal = |
| intel_vrr_vmin_vtotal(crtc_state); |
| |
| if (HAS_AS_SDP(display)) { |
| trans_vrr_vsync = |
| intel_de_read(display, |
| TRANS_VRR_VSYNC(display, cpu_transcoder)); |
| crtc_state->vrr.vsync_start = |
| REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync); |
| crtc_state->vrr.vsync_end = |
| REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync); |
| } |
| } |
| |
| vrr_enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE; |
| |
| if (intel_vrr_always_use_vrr_tg(display)) |
| crtc_state->vrr.enable = vrr_enable && !intel_vrr_is_fixed_rr(crtc_state); |
| else |
| crtc_state->vrr.enable = vrr_enable; |
| |
| intel_vrr_get_dc_balance_config(crtc_state); |
| |
| /* |
| * #TODO: For Both VRR and CMRR the flag I915_MODE_FLAG_VRR is set for mode_flags. |
| * Since CMRR is currently disabled, set this flag for VRR for now. |
| * Need to keep this in mind while re-enabling CMRR. |
| */ |
| if (crtc_state->vrr.enable) |
| crtc_state->mode_flags |= I915_MODE_FLAG_VRR; |
| |
| /* |
| * For platforms that always use the VRR timing generator, we overwrite |
| * crtc_vblank_start with vtotal - guardband to reflect the delayed |
| * vblank start. This works for both default and optimized guardband values. |
| * On other platforms, we keep the original value from |
| * intel_get_transcoder_timings() and apply adjustments only in VRR-specific |
| * paths as needed. |
| */ |
| if (intel_vrr_always_use_vrr_tg(display)) |
| crtc_state->hw.adjusted_mode.crtc_vblank_start = |
| crtc_state->hw.adjusted_mode.crtc_vtotal - |
| crtc_state->vrr.guardband; |
| } |
| |
| int intel_vrr_safe_window_start(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| |
| if (DISPLAY_VER(display) >= 30) |
| return crtc_state->hw.adjusted_mode.crtc_vdisplay - |
| crtc_state->set_context_latency; |
| else |
| return crtc_state->hw.adjusted_mode.crtc_vdisplay; |
| } |
| |
| static int |
| intel_vrr_dcb_vmin_vblank_start(const struct intel_crtc_state *crtc_state) |
| { |
| return (intel_vrr_dcb_vmin_vblank_start_next(crtc_state) < 0) ? |
| intel_vrr_dcb_vmin_vblank_start_final(crtc_state) : |
| intel_vrr_dcb_vmin_vblank_start_next(crtc_state); |
| } |
| |
| int intel_vrr_vmin_safe_window_end(const struct intel_crtc_state *crtc_state) |
| { |
| int vmin_vblank_start = crtc_state->vrr.dc_balance.enable ? |
| intel_vrr_dcb_vmin_vblank_start(crtc_state) : |
| intel_vrr_vmin_vblank_start(crtc_state); |
| |
| return vmin_vblank_start - crtc_state->set_context_latency; |
| } |
| |
| int intel_vrr_dcb_vmin_vblank_start_next(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 tmp = 0; |
| |
| tmp = intel_de_read(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG_LIVE(cpu_transcoder)); |
| |
| if (REG_FIELD_GET(VRR_DCB_ADJ_FLIPLINE_CNT_MASK, tmp) == 0) |
| return -EINVAL; |
| |
| return intel_vrr_vblank_start(crtc_state, VRR_DCB_ADJ_FLIPLINE(tmp) + 1); |
| } |
| |
| int intel_vrr_dcb_vmax_vblank_start_next(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 tmp = 0; |
| |
| tmp = intel_de_read(display, TRANS_VRR_DCB_ADJ_VMAX_CFG_LIVE(cpu_transcoder)); |
| |
| if (REG_FIELD_GET(VRR_DCB_ADJ_VMAX_CNT_MASK, tmp) == 0) |
| return -EINVAL; |
| |
| return intel_vrr_vblank_start(crtc_state, VRR_DCB_ADJ_VMAX(tmp) + 1); |
| } |
| |
| int intel_vrr_dcb_vmin_vblank_start_final(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 tmp = 0; |
| |
| tmp = intel_de_read(display, TRANS_VRR_DCB_FLIPLINE_LIVE(cpu_transcoder)); |
| |
| return intel_vrr_vblank_start(crtc_state, VRR_DCB_FLIPLINE(tmp) + 1); |
| } |
| |
| int intel_vrr_dcb_vmax_vblank_start_final(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 tmp = 0; |
| |
| tmp = intel_de_read(display, TRANS_VRR_DCB_VMAX_LIVE(cpu_transcoder)); |
| |
| return intel_vrr_vblank_start(crtc_state, VRR_DCB_VMAX(tmp) + 1); |
| } |