blob: db74744ddb31a927bbabcbb8ed3923de055b7c2f [file] [log] [blame] [edit]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*
*/
#include <drm/drm_print.h>
#include "intel_crtc.h"
#include "intel_de.h"
#include "intel_display_regs.h"
#include "intel_display_types.h"
#include "intel_dmc.h"
#include "intel_dmc_regs.h"
#include "intel_dp.h"
#include "intel_psr.h"
#include "intel_vrr.h"
#include "intel_vrr_regs.h"
#include "skl_prefill.h"
#include "skl_watermark.h"
#define FIXED_POINT_PRECISION 100
#define CMRR_PRECISION_TOLERANCE 10
/*
* Tunable parameters for DC Balance correction.
* These are captured based on experimentations.
*/
#define DCB_CORRECTION_SENSITIVITY 30
#define DCB_CORRECTION_AGGRESSIVENESS 1000 /* ms × 100; 10 ms */
#define DCB_BLANK_TARGET 50
bool intel_vrr_is_capable(struct intel_connector *connector)
{
struct intel_display *display = to_intel_display(connector);
const struct drm_display_info *info = &connector->base.display_info;
struct intel_dp *intel_dp;
if (!HAS_VRR(display))
return false;
/*
* DP Sink is capable of VRR video timings if
* Ignore MSA bit is set in DPCD.
* EDID monitor range also should be atleast 10 for reasonable
* Adaptive Sync or Variable Refresh Rate end user experience.
*/
switch (connector->base.connector_type) {
case DRM_MODE_CONNECTOR_eDP:
if (!connector->panel.vbt.vrr)
return false;
fallthrough;
case DRM_MODE_CONNECTOR_DisplayPort:
if (connector->mst.dp)
return false;
intel_dp = intel_attached_dp(connector);
if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
return false;
break;
default:
return false;
}
return info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
}
bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh)
{
const struct drm_display_info *info = &connector->base.display_info;
return intel_vrr_is_capable(connector) &&
vrefresh >= info->monitor_range.min_vfreq &&
vrefresh <= info->monitor_range.max_vfreq;
}
bool intel_vrr_possible(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.flipline;
}
void
intel_vrr_check_modeset(struct intel_atomic_state *state)
{
int i;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (new_crtc_state->uapi.vrr_enabled !=
old_crtc_state->uapi.vrr_enabled)
new_crtc_state->uapi.mode_changed = true;
}
}
static int intel_vrr_extra_vblank_delay(struct intel_display *display)
{
/*
* On ICL/TGL VRR hardware inserts one extra scanline
* just after vactive, which pushes the vmin decision
* boundary ahead accordingly, and thus reduces the
* max guardband length by one scanline.
*/
return DISPLAY_VER(display) < 13 ? 1 : 0;
}
static int intel_vrr_vmin_flipline_offset(struct intel_display *display)
{
/*
* ICL/TGL hardware imposes flipline>=vmin+1
*
* We reduce the vmin value to compensate when programming the
* hardware. This approach allows flipline to remain set at the
* original value, and thus the frame will have the desired
* minimum vtotal.
*/
return DISPLAY_VER(display) < 13 ? 1 : 0;
}
static int intel_vrr_guardband_to_pipeline_full(const struct intel_crtc_state *crtc_state,
int guardband)
{
/* hardware imposes one extra scanline somewhere */
return guardband - crtc_state->framestart_delay - 1;
}
static int intel_vrr_pipeline_full_to_guardband(const struct intel_crtc_state *crtc_state,
int pipeline_full)
{
/* hardware imposes one extra scanline somewhere */
return pipeline_full + crtc_state->framestart_delay + 1;
}
/*
* Without VRR registers get latched at:
* vblank_start
*
* With VRR the earliest registers can get latched is:
* intel_vrr_vmin_vblank_start(), which if we want to maintain
* the correct min vtotal is >=vblank_start+1
*
* The latest point registers can get latched is the vmax decision boundary:
* intel_vrr_vmax_vblank_start()
*
* Between those two points the vblank exit starts (and hence registers get
* latched) ASAP after a push is sent.
*
* framestart_delay is programmable 1-4.
*/
int intel_vrr_vmin_vtotal(const struct intel_crtc_state *crtc_state)
{
/* Min vblank actually determined by flipline */
return crtc_state->vrr.vmin;
}
int intel_vrr_vmax_vtotal(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.vmax;
}
int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_vmin_vtotal(crtc_state) - crtc_state->vrr.guardband;
}
int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_vmax_vtotal(crtc_state) - crtc_state->vrr.guardband;
}
static bool
is_cmrr_frac_required(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
/* Avoid CMRR for now till we have VRR with fixed timings working */
if (!HAS_CMRR(display) || true)
return false;
actual_refresh_k =
drm_mode_vrefresh(adjusted_mode) * FIXED_POINT_PRECISION;
pixel_clock_per_line =
adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal;
calculated_refresh_k =
pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal;
if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE)
return false;
return true;
}
static unsigned int
cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required)
{
int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate;
u64 adjusted_pixel_rate;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
desired_refresh_rate = drm_mode_vrefresh(adjusted_mode);
if (video_mode_required) {
multiplier_m = 1001;
multiplier_n = 1000;
}
crtc_state->cmrr.cmrr_n = mul_u32_u32(desired_refresh_rate * adjusted_mode->crtc_htotal,
multiplier_n);
vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n),
crtc_state->cmrr.cmrr_n);
adjusted_pixel_rate = mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_m);
crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n);
return vtotal;
}
static
void intel_vrr_compute_cmrr_timings(struct intel_crtc_state *crtc_state)
{
/*
* TODO: Compute precise target refresh rate to determine
* if video_mode_required should be true. Currently set to
* false due to uncertainty about the precise target
* refresh Rate.
*/
crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, false);
crtc_state->vrr.vmin = crtc_state->vrr.vmax;
crtc_state->vrr.flipline = crtc_state->vrr.vmin;
crtc_state->cmrr.enable = true;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
static
void intel_vrr_compute_vrr_timings(struct intel_crtc_state *crtc_state,
int vmin, int vmax)
{
crtc_state->vrr.vmax = vmax;
crtc_state->vrr.vmin = vmin;
crtc_state->vrr.flipline = crtc_state->vrr.vmin;
crtc_state->vrr.enable = true;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
static
void intel_vrr_compute_fixed_rr_timings(struct intel_crtc_state *crtc_state)
{
/* For fixed rr, vmin = vmax = flipline */
crtc_state->vrr.vmax = crtc_state->hw.adjusted_mode.crtc_vtotal;
crtc_state->vrr.vmin = crtc_state->vrr.vmax;
crtc_state->vrr.flipline = crtc_state->vrr.vmin;
}
static int intel_vrr_hw_value(const struct intel_crtc_state *crtc_state,
int value)
{
struct intel_display *display = to_intel_display(crtc_state);
/*
* On TGL vmin/vmax/flipline also need to be
* adjusted by the SCL to maintain correct vtotals.
*/
if (DISPLAY_VER(display) >= 13)
return value;
else
return value - crtc_state->set_context_latency;
}
static int intel_vrr_vblank_start(const struct intel_crtc_state *crtc_state,
int vmin_vmax)
{
return intel_vrr_hw_value(crtc_state, vmin_vmax) - crtc_state->vrr.guardband;
}
/*
* For fixed refresh rate mode Vmin, Vmax and Flipline all are set to
* Vtotal value.
*/
static
int intel_vrr_fixed_rr_hw_vtotal(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_hw_value(crtc_state, crtc_state->hw.adjusted_mode.crtc_vtotal);
}
static
int intel_vrr_fixed_rr_hw_vmax(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_fixed_rr_hw_vtotal(crtc_state);
}
static
int intel_vrr_fixed_rr_hw_vmin(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return intel_vrr_fixed_rr_hw_vtotal(crtc_state) -
intel_vrr_vmin_flipline_offset(display);
}
static
int intel_vrr_fixed_rr_hw_flipline(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_fixed_rr_hw_vtotal(crtc_state);
}
void intel_vrr_set_fixed_rr_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!intel_vrr_possible(crtc_state))
return;
intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder),
intel_vrr_fixed_rr_hw_vmin(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder),
intel_vrr_fixed_rr_hw_vmax(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder),
intel_vrr_fixed_rr_hw_flipline(crtc_state) - 1);
}
static
int intel_vrr_compute_vmin(struct intel_crtc_state *crtc_state)
{
/*
* To make fixed rr and vrr work seamless the guardband/pipeline full
* should be set such that it satisfies both the fixed and variable
* timings.
* For this set the vmin as crtc_vtotal. With this we never need to
* change anything to do with the guardband.
*/
return crtc_state->hw.adjusted_mode.crtc_vtotal;
}
static
int intel_vrr_compute_vmax(struct intel_connector *connector,
const struct drm_display_mode *adjusted_mode)
{
const struct drm_display_info *info = &connector->base.display_info;
int vmax;
vmax = adjusted_mode->crtc_clock * 1000 /
(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
return vmax;
}
static bool intel_vrr_dc_balance_possible(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
/*
* FIXME: Currently Firmware supports DC Balancing on PIPE A
* and PIPE B. Account those limitation while computing DC
* Balance parameters.
*/
return (HAS_VRR_DC_BALANCE(display) &&
((pipe == PIPE_A) || (pipe == PIPE_B)));
}
static void
intel_vrr_dc_balance_compute_config(struct intel_crtc_state *crtc_state)
{
int guardband_usec, adjustment_usec;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
if (!intel_vrr_dc_balance_possible(crtc_state) || !crtc_state->vrr.enable)
return;
crtc_state->vrr.dc_balance.vmax = crtc_state->vrr.vmax;
crtc_state->vrr.dc_balance.vmin = crtc_state->vrr.vmin;
crtc_state->vrr.dc_balance.max_increase =
crtc_state->vrr.vmax - crtc_state->vrr.vmin;
crtc_state->vrr.dc_balance.max_decrease =
crtc_state->vrr.vmax - crtc_state->vrr.vmin;
crtc_state->vrr.dc_balance.guardband =
DIV_ROUND_UP(crtc_state->vrr.dc_balance.vmax *
DCB_CORRECTION_SENSITIVITY, 100);
guardband_usec =
intel_scanlines_to_usecs(adjusted_mode,
crtc_state->vrr.dc_balance.guardband);
/*
* The correction_aggressiveness/100 is the number of milliseconds to
* adjust by when the balance is at twice the guardband.
* guardband_slope = correction_aggressiveness / (guardband * 100)
*/
adjustment_usec = DCB_CORRECTION_AGGRESSIVENESS * 10;
crtc_state->vrr.dc_balance.slope =
DIV_ROUND_UP(adjustment_usec, guardband_usec);
crtc_state->vrr.dc_balance.vblank_target =
DIV_ROUND_UP((crtc_state->vrr.vmax - crtc_state->vrr.vmin) *
DCB_BLANK_TARGET, 100);
crtc_state->vrr.dc_balance.enable = true;
}
void
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct intel_dp *intel_dp = intel_attached_dp(connector);
bool is_edp = intel_dp_is_edp(intel_dp);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
int vmin, vmax;
if (!HAS_VRR(display))
return;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return;
crtc_state->vrr.in_range =
intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode));
/*
* Allow fixed refresh rate with VRR Timing Generator.
* For now set the vrr.in_range to 0, to allow fixed_rr but skip actual
* VRR and LRR.
* #TODO For actual VRR with joiner, we need to figure out how to
* correctly sequence transcoder level stuff vs. pipe level stuff
* in the commit.
*/
if (crtc_state->joiner_pipes)
crtc_state->vrr.in_range = false;
vmin = intel_vrr_compute_vmin(crtc_state);
if (crtc_state->vrr.in_range) {
if (HAS_LRR(display))
crtc_state->update_lrr = true;
vmax = intel_vrr_compute_vmax(connector, adjusted_mode);
} else {
vmax = vmin;
}
if (crtc_state->uapi.vrr_enabled && vmin < vmax)
intel_vrr_compute_vrr_timings(crtc_state, vmin, vmax);
else if (is_cmrr_frac_required(crtc_state) && is_edp)
intel_vrr_compute_cmrr_timings(crtc_state);
else
intel_vrr_compute_fixed_rr_timings(crtc_state);
if (HAS_AS_SDP(display)) {
crtc_state->vrr.vsync_start =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.crtc_vsync_start);
crtc_state->vrr.vsync_end =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.crtc_vsync_end);
}
intel_vrr_dc_balance_compute_config(crtc_state);
}
static int
intel_vrr_max_hw_guardband(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
int max_pipeline_full = REG_FIELD_MAX(VRR_CTL_PIPELINE_FULL_MASK);
if (DISPLAY_VER(display) >= 13)
return REG_FIELD_MAX(XELPD_VRR_CTL_VRR_GUARDBAND_MASK);
else
return intel_vrr_pipeline_full_to_guardband(crtc_state,
max_pipeline_full);
}
static int
intel_vrr_max_vblank_guardband(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
return crtc_state->vrr.vmin -
adjusted_mode->crtc_vdisplay -
crtc_state->set_context_latency -
intel_vrr_extra_vblank_delay(display);
}
static int
intel_vrr_max_guardband(struct intel_crtc_state *crtc_state)
{
return min(intel_vrr_max_hw_guardband(crtc_state),
intel_vrr_max_vblank_guardband(crtc_state));
}
static
int intel_vrr_compute_optimized_guardband(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct skl_prefill_ctx prefill_ctx;
int prefill_latency_us;
int guardband = 0;
skl_prefill_init_worst(&prefill_ctx, crtc_state);
/*
* The SoC power controller runs SAGV mutually exclusive with package C states,
* so the max of package C and SAGV latencies is used to compute the min prefill guardband.
* PM delay = max(sagv_latency, pkgc_max_latency (highest enabled wm level 1 and up))
*/
prefill_latency_us = max(display->sagv.block_time_us,
skl_watermark_max_latency(display, 1));
guardband = skl_prefill_min_guardband(&prefill_ctx,
crtc_state,
prefill_latency_us);
if (intel_crtc_has_dp_encoder(crtc_state)) {
guardband = max(guardband, intel_psr_min_guardband(crtc_state));
guardband = max(guardband, intel_dp_sdp_min_guardband(crtc_state, true));
}
return guardband;
}
static bool intel_vrr_use_optimized_guardband(const struct intel_crtc_state *crtc_state)
{
/*
* #TODO: Enable optimized guardband for HDMI
* For HDMI lot of infoframes are transmitted a line or two after vsync.
* Since with optimized guardband the double bufferring point is at delayed vblank,
* we need to ensure that vsync happens after delayed vblank for the HDMI case.
*/
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
return false;
return true;
}
void intel_vrr_compute_guardband(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int guardband;
if (!intel_vrr_possible(crtc_state))
return;
if (intel_vrr_use_optimized_guardband(crtc_state))
guardband = intel_vrr_compute_optimized_guardband(crtc_state);
else
guardband = crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay;
crtc_state->vrr.guardband = min(guardband, intel_vrr_max_guardband(crtc_state));
if (intel_vrr_always_use_vrr_tg(display)) {
adjusted_mode->crtc_vblank_start =
adjusted_mode->crtc_vtotal - crtc_state->vrr.guardband;
/*
* pipe_mode has already been derived from the
* original adjusted_mode, keep the two in sync.
*/
pipe_mode->crtc_vblank_start =
adjusted_mode->crtc_vblank_start;
}
if (DISPLAY_VER(display) < 13)
crtc_state->vrr.pipeline_full =
intel_vrr_guardband_to_pipeline_full(crtc_state,
crtc_state->vrr.guardband);
}
static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 14)
return VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else if (DISPLAY_VER(display) >= 13)
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
VRR_CTL_PIPELINE_FULL_OVERRIDE;
}
void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!HAS_VRR(display))
return;
/*
* This bit seems to have two meanings depending on the platform:
* TGL: generate VRR "safe window" for DSB vblank waits
* ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR
*/
if (IS_DISPLAY_VER(display, 12, 13))
intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder),
0, PIPE_VBLANK_WITH_DELAY);
if (!intel_vrr_possible(crtc_state)) {
intel_de_write(display,
TRANS_VRR_CTL(display, cpu_transcoder), 0);
return;
}
if (crtc_state->cmrr.enable) {
intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder),
upper_32_bits(crtc_state->cmrr.cmrr_m));
intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
lower_32_bits(crtc_state->cmrr.cmrr_m));
intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder),
upper_32_bits(crtc_state->cmrr.cmrr_n));
intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
lower_32_bits(crtc_state->cmrr.cmrr_n));
}
intel_vrr_set_fixed_rr_timings(crtc_state);
if (!intel_vrr_always_use_vrr_tg(display))
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(crtc_state));
if (HAS_AS_SDP(display))
intel_de_write(display,
TRANS_VRR_VSYNC(display, cpu_transcoder),
VRR_VSYNC_END(crtc_state->vrr.vsync_end) |
VRR_VSYNC_START(crtc_state->vrr.vsync_start));
/*
* For BMG and LNL+ onwards the EMP_AS_SDP_TL is used for programming
* double buffering point and transmission line for VRR packets for
* HDMI2.1/DP/eDP/DP->HDMI2.1 PCON.
* Since currently we support VRR only for DP/eDP, so this is programmed
* to for Adaptive Sync SDP to Vsync start.
*/
if (DISPLAY_VERx100(display) == 1401 || DISPLAY_VER(display) >= 20)
intel_de_write(display,
EMP_AS_SDP_TL(display, cpu_transcoder),
EMP_AS_SDP_DB_TL(crtc_state->vrr.vsync_start));
}
void
intel_vrr_dcb_increment_flip_count(struct intel_crtc_state *crtc_state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc_state);
enum pipe pipe = crtc->pipe;
if (!crtc_state->vrr.dc_balance.enable)
return;
intel_de_write(display, PIPEDMC_DCB_FLIP_COUNT(pipe),
++crtc->dc_balance.flip_count);
}
void
intel_vrr_dcb_reset(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(old_crtc_state);
enum pipe pipe = crtc->pipe;
if (!old_crtc_state->vrr.dc_balance.enable)
return;
intel_de_write(display, PIPEDMC_DCB_FLIP_COUNT(pipe), 0);
intel_de_write(display, PIPEDMC_DCB_BALANCE_RESET(pipe), 0);
}
void intel_vrr_send_push(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
if (dsb)
intel_dsb_nonpost_start(dsb);
intel_de_write_dsb(display, dsb,
TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_EN | TRANS_PUSH_SEND);
if (dsb)
intel_dsb_nonpost_end(dsb);
}
void intel_vrr_check_push_sent(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
/*
* Make sure the push send bit has cleared. This should
* already be the case as long as the caller makes sure
* this is called after the delayed vblank has occurred.
*/
if (dsb) {
int wait_us, count;
wait_us = 2;
count = 1;
/*
* If the bit hasn't cleared the DSB will
* raise the poll error interrupt.
*/
intel_dsb_poll(dsb, TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_SEND, 0, wait_us, count);
} else {
if (intel_vrr_is_push_sent(crtc_state))
drm_err(display->drm, "[CRTC:%d:%s] VRR push send still pending\n",
crtc->base.base.id, crtc->base.name);
}
}
bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return false;
return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND;
}
bool intel_vrr_always_use_vrr_tg(struct intel_display *display)
{
if (!HAS_VRR(display))
return false;
if (DISPLAY_VER(display) >= 30)
return true;
return false;
}
static int intel_vrr_hw_vmin(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return intel_vrr_hw_value(crtc_state, crtc_state->vrr.vmin) -
intel_vrr_vmin_flipline_offset(display);
}
static int intel_vrr_hw_vmax(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_hw_value(crtc_state, crtc_state->vrr.vmax);
}
static int intel_vrr_hw_flipline(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_hw_value(crtc_state, crtc_state->vrr.flipline);
}
static void intel_vrr_set_vrr_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder),
intel_vrr_hw_vmin(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder),
intel_vrr_hw_vmax(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder),
intel_vrr_hw_flipline(crtc_state) - 1);
}
static void
intel_vrr_enable_dc_balancing(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
u32 vrr_ctl = intel_de_read(display, TRANS_VRR_CTL(display, cpu_transcoder));
if (!crtc_state->vrr.dc_balance.enable)
return;
intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG(cpu_transcoder),
VRR_DCB_ADJ_VMAX(crtc_state->vrr.vmax - 1));
intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG_LIVE(cpu_transcoder),
VRR_DCB_ADJ_VMAX(crtc_state->vrr.vmax - 1));
intel_de_write(display, TRANS_VRR_DCB_VMAX(cpu_transcoder),
VRR_DCB_VMAX(crtc_state->vrr.vmax - 1));
intel_de_write(display, TRANS_VRR_DCB_VMAX_LIVE(cpu_transcoder),
VRR_DCB_VMAX(crtc_state->vrr.vmax - 1));
intel_de_write(display, TRANS_VRR_DCB_FLIPLINE(cpu_transcoder),
VRR_DCB_FLIPLINE(crtc_state->vrr.flipline - 1));
intel_de_write(display, TRANS_VRR_DCB_FLIPLINE_LIVE(cpu_transcoder),
VRR_DCB_FLIPLINE(crtc_state->vrr.flipline - 1));
intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG_LIVE(cpu_transcoder),
VRR_DCB_ADJ_FLIPLINE(crtc_state->vrr.flipline - 1));
intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG(cpu_transcoder),
VRR_DCB_ADJ_FLIPLINE(crtc_state->vrr.flipline - 1));
intel_de_write(display, PIPEDMC_DCB_VMIN(pipe),
crtc_state->vrr.dc_balance.vmin - 1);
intel_de_write(display, PIPEDMC_DCB_VMAX(pipe),
crtc_state->vrr.dc_balance.vmax - 1);
intel_de_write(display, PIPEDMC_DCB_MAX_INCREASE(pipe),
crtc_state->vrr.dc_balance.max_increase);
intel_de_write(display, PIPEDMC_DCB_MAX_DECREASE(pipe),
crtc_state->vrr.dc_balance.max_decrease);
intel_de_write(display, PIPEDMC_DCB_GUARDBAND(pipe),
crtc_state->vrr.dc_balance.guardband);
intel_de_write(display, PIPEDMC_DCB_SLOPE(pipe),
crtc_state->vrr.dc_balance.slope);
intel_de_write(display, PIPEDMC_DCB_VBLANK(pipe),
crtc_state->vrr.dc_balance.vblank_target);
intel_dmc_configure_dc_balance_event(display, pipe, true);
intel_de_write(display, TRANS_ADAPTIVE_SYNC_DCB_CTL(cpu_transcoder),
ADAPTIVE_SYNC_COUNTER_EN);
intel_pipedmc_dcb_enable(NULL, crtc);
vrr_ctl |= VRR_CTL_DCB_ADJ_ENABLE;
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), vrr_ctl);
}
static void
intel_vrr_disable_dc_balancing(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
u32 vrr_ctl = intel_de_read(display, TRANS_VRR_CTL(display, cpu_transcoder));
if (!old_crtc_state->vrr.dc_balance.enable)
return;
intel_pipedmc_dcb_disable(NULL, crtc);
intel_dmc_configure_dc_balance_event(display, pipe, false);
intel_de_write(display, TRANS_ADAPTIVE_SYNC_DCB_CTL(cpu_transcoder), 0);
intel_de_write(display, PIPEDMC_DCB_VMIN(pipe), 0);
intel_de_write(display, PIPEDMC_DCB_VMAX(pipe), 0);
intel_de_write(display, PIPEDMC_DCB_MAX_INCREASE(pipe), 0);
intel_de_write(display, PIPEDMC_DCB_MAX_DECREASE(pipe), 0);
intel_de_write(display, PIPEDMC_DCB_GUARDBAND(pipe), 0);
intel_de_write(display, PIPEDMC_DCB_SLOPE(pipe), 0);
intel_de_write(display, PIPEDMC_DCB_VBLANK(pipe), 0);
intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG_LIVE(cpu_transcoder), 0);
intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG_LIVE(cpu_transcoder), 0);
intel_de_write(display, TRANS_VRR_DCB_VMAX_LIVE(cpu_transcoder), 0);
intel_de_write(display, TRANS_VRR_DCB_FLIPLINE_LIVE(cpu_transcoder), 0);
intel_de_write(display, TRANS_VRR_DCB_ADJ_VMAX_CFG(cpu_transcoder), 0);
intel_de_write(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG(cpu_transcoder), 0);
intel_de_write(display, TRANS_VRR_DCB_VMAX(cpu_transcoder), 0);
intel_de_write(display, TRANS_VRR_DCB_FLIPLINE(cpu_transcoder), 0);
vrr_ctl &= ~VRR_CTL_DCB_ADJ_ENABLE;
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), vrr_ctl);
}
static void intel_vrr_tg_enable(const struct intel_crtc_state *crtc_state,
bool cmrr_enable)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 vrr_ctl;
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), TRANS_PUSH_EN);
vrr_ctl = VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state);
/*
* FIXME this might be broken as bspec seems to imply that
* even VRR_CTL_CMRR_ENABLE is armed by TRANS_CMRR_N_HI
* when enabling CMRR (but not when disabling CMRR?).
*/
if (cmrr_enable)
vrr_ctl |= VRR_CTL_CMRR_ENABLE;
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), vrr_ctl);
}
static void intel_vrr_tg_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(old_crtc_state));
if (intel_de_wait_for_clear_ms(display,
TRANS_VRR_STATUS(display, cpu_transcoder),
VRR_STATUS_VRR_EN_LIVE, 1000))
drm_err(display->drm, "Timed out waiting for VRR live status to clear\n");
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0);
}
void intel_vrr_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (!crtc_state->vrr.enable)
return;
intel_vrr_set_vrr_timings(crtc_state);
intel_vrr_enable_dc_balancing(crtc_state);
if (!intel_vrr_always_use_vrr_tg(display))
intel_vrr_tg_enable(crtc_state, crtc_state->cmrr.enable);
}
void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
if (!old_crtc_state->vrr.enable)
return;
if (!intel_vrr_always_use_vrr_tg(display))
intel_vrr_tg_disable(old_crtc_state);
intel_vrr_disable_dc_balancing(old_crtc_state);
intel_vrr_set_fixed_rr_timings(old_crtc_state);
}
void intel_vrr_transcoder_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (!intel_vrr_possible(crtc_state))
return;
if (intel_vrr_always_use_vrr_tg(display))
intel_vrr_tg_enable(crtc_state, false);
}
void intel_vrr_transcoder_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
if (!intel_vrr_possible(old_crtc_state))
return;
if (intel_vrr_always_use_vrr_tg(display))
intel_vrr_tg_disable(old_crtc_state);
}
bool intel_vrr_is_fixed_rr(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.flipline &&
crtc_state->vrr.flipline == crtc_state->vrr.vmax &&
crtc_state->vrr.flipline == crtc_state->vrr.vmin;
}
static
void intel_vrr_get_dc_balance_config(struct intel_crtc_state *crtc_state)
{
u32 reg_val;
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
if (!intel_vrr_dc_balance_possible(crtc_state))
return;
reg_val = intel_de_read(display, PIPEDMC_DCB_VMIN(pipe));
crtc_state->vrr.dc_balance.vmin = reg_val ? reg_val + 1 : 0;
reg_val = intel_de_read(display, PIPEDMC_DCB_VMAX(pipe));
crtc_state->vrr.dc_balance.vmax = reg_val ? reg_val + 1 : 0;
crtc_state->vrr.dc_balance.guardband =
intel_de_read(display, PIPEDMC_DCB_GUARDBAND(pipe));
crtc_state->vrr.dc_balance.max_increase =
intel_de_read(display, PIPEDMC_DCB_MAX_INCREASE(pipe));
crtc_state->vrr.dc_balance.max_decrease =
intel_de_read(display, PIPEDMC_DCB_MAX_DECREASE(pipe));
crtc_state->vrr.dc_balance.slope =
intel_de_read(display, PIPEDMC_DCB_SLOPE(pipe));
crtc_state->vrr.dc_balance.vblank_target =
intel_de_read(display, PIPEDMC_DCB_VBLANK(pipe));
}
void intel_vrr_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 trans_vrr_ctl, trans_vrr_vsync;
bool vrr_enable;
trans_vrr_ctl = intel_de_read(display,
TRANS_VRR_CTL(display, cpu_transcoder));
if (HAS_CMRR(display))
crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE);
if (crtc_state->cmrr.enable) {
crtc_state->cmrr.cmrr_n =
intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
TRANS_CMRR_N_HI(display, cpu_transcoder));
crtc_state->cmrr.cmrr_m =
intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
TRANS_CMRR_M_HI(display, cpu_transcoder));
}
if (DISPLAY_VER(display) >= 13) {
crtc_state->vrr.guardband =
REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
} else {
if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE) {
crtc_state->vrr.pipeline_full =
REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
crtc_state->vrr.guardband =
intel_vrr_pipeline_full_to_guardband(crtc_state,
crtc_state->vrr.pipeline_full);
}
}
if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) {
crtc_state->vrr.flipline = intel_de_read(display,
TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1;
crtc_state->vrr.vmax = intel_de_read(display,
TRANS_VRR_VMAX(display, cpu_transcoder)) + 1;
crtc_state->vrr.vmin = intel_de_read(display,
TRANS_VRR_VMIN(display, cpu_transcoder)) + 1;
if (DISPLAY_VER(display) < 13) {
/* undo what intel_vrr_hw_value() does when writing the values */
crtc_state->vrr.flipline += crtc_state->set_context_latency;
crtc_state->vrr.vmax += crtc_state->set_context_latency;
crtc_state->vrr.vmin += crtc_state->set_context_latency;
crtc_state->vrr.vmin += intel_vrr_vmin_flipline_offset(display);
}
/*
* For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal
* bits are not filled. Since for these platforms TRAN_VMIN is always
* filled with crtc_vtotal, use TRAN_VRR_VMIN to get the vtotal for
* adjusted_mode.
*/
if (intel_vrr_always_use_vrr_tg(display))
crtc_state->hw.adjusted_mode.crtc_vtotal =
intel_vrr_vmin_vtotal(crtc_state);
if (HAS_AS_SDP(display)) {
trans_vrr_vsync =
intel_de_read(display,
TRANS_VRR_VSYNC(display, cpu_transcoder));
crtc_state->vrr.vsync_start =
REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync);
crtc_state->vrr.vsync_end =
REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync);
}
}
vrr_enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
if (intel_vrr_always_use_vrr_tg(display))
crtc_state->vrr.enable = vrr_enable && !intel_vrr_is_fixed_rr(crtc_state);
else
crtc_state->vrr.enable = vrr_enable;
intel_vrr_get_dc_balance_config(crtc_state);
/*
* #TODO: For Both VRR and CMRR the flag I915_MODE_FLAG_VRR is set for mode_flags.
* Since CMRR is currently disabled, set this flag for VRR for now.
* Need to keep this in mind while re-enabling CMRR.
*/
if (crtc_state->vrr.enable)
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
/*
* For platforms that always use the VRR timing generator, we overwrite
* crtc_vblank_start with vtotal - guardband to reflect the delayed
* vblank start. This works for both default and optimized guardband values.
* On other platforms, we keep the original value from
* intel_get_transcoder_timings() and apply adjustments only in VRR-specific
* paths as needed.
*/
if (intel_vrr_always_use_vrr_tg(display))
crtc_state->hw.adjusted_mode.crtc_vblank_start =
crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->vrr.guardband;
}
int intel_vrr_safe_window_start(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 30)
return crtc_state->hw.adjusted_mode.crtc_vdisplay -
crtc_state->set_context_latency;
else
return crtc_state->hw.adjusted_mode.crtc_vdisplay;
}
static int
intel_vrr_dcb_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
return (intel_vrr_dcb_vmin_vblank_start_next(crtc_state) < 0) ?
intel_vrr_dcb_vmin_vblank_start_final(crtc_state) :
intel_vrr_dcb_vmin_vblank_start_next(crtc_state);
}
int intel_vrr_vmin_safe_window_end(const struct intel_crtc_state *crtc_state)
{
int vmin_vblank_start = crtc_state->vrr.dc_balance.enable ?
intel_vrr_dcb_vmin_vblank_start(crtc_state) :
intel_vrr_vmin_vblank_start(crtc_state);
return vmin_vblank_start - crtc_state->set_context_latency;
}
int intel_vrr_dcb_vmin_vblank_start_next(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 tmp = 0;
tmp = intel_de_read(display, TRANS_VRR_DCB_ADJ_FLIPLINE_CFG_LIVE(cpu_transcoder));
if (REG_FIELD_GET(VRR_DCB_ADJ_FLIPLINE_CNT_MASK, tmp) == 0)
return -EINVAL;
return intel_vrr_vblank_start(crtc_state, VRR_DCB_ADJ_FLIPLINE(tmp) + 1);
}
int intel_vrr_dcb_vmax_vblank_start_next(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 tmp = 0;
tmp = intel_de_read(display, TRANS_VRR_DCB_ADJ_VMAX_CFG_LIVE(cpu_transcoder));
if (REG_FIELD_GET(VRR_DCB_ADJ_VMAX_CNT_MASK, tmp) == 0)
return -EINVAL;
return intel_vrr_vblank_start(crtc_state, VRR_DCB_ADJ_VMAX(tmp) + 1);
}
int intel_vrr_dcb_vmin_vblank_start_final(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 tmp = 0;
tmp = intel_de_read(display, TRANS_VRR_DCB_FLIPLINE_LIVE(cpu_transcoder));
return intel_vrr_vblank_start(crtc_state, VRR_DCB_FLIPLINE(tmp) + 1);
}
int intel_vrr_dcb_vmax_vblank_start_final(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 tmp = 0;
tmp = intel_de_read(display, TRANS_VRR_DCB_VMAX_LIVE(cpu_transcoder));
return intel_vrr_vblank_start(crtc_state, VRR_DCB_VMAX(tmp) + 1);
}