blob: 82cc6c0790e58aac7c875fc06365a14fa2a238c2 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
// Required to retain the original register names used by OpenRM, which are all capital snake case
// but are mapped to types.
#![allow(non_camel_case_types)]
#[macro_use]
pub(crate) mod macros;
use kernel::prelude::*;
use crate::{
falcon::{
DmaTrfCmdSize,
FalconCoreRev,
FalconCoreRevSubversion,
FalconFbifMemType,
FalconFbifTarget,
FalconModSelAlgo,
FalconSecurityModel,
PFalcon2Base,
PFalconBase,
PeregrineCoreSelect, //
},
gpu::{
Architecture,
Chipset, //
},
num::FromSafeCast,
};
// PMC
register!(NV_PMC_BOOT_0 @ 0x00000000, "Basic revision information about the GPU" {
3:0 minor_revision as u8, "Minor revision of the chip";
7:4 major_revision as u8, "Major revision of the chip";
8:8 architecture_1 as u8, "MSB of the architecture";
23:20 implementation as u8, "Implementation version of the architecture";
28:24 architecture_0 as u8, "Lower bits of the architecture";
});
impl NV_PMC_BOOT_0 {
pub(crate) fn is_older_than_fermi(self) -> bool {
// From https://github.com/NVIDIA/open-gpu-doc/tree/master/manuals :
const NV_PMC_BOOT_0_ARCHITECTURE_GF100: u8 = 0xc;
// Older chips left arch1 zeroed out. That, combined with an arch0 value that is less than
// GF100, means "older than Fermi".
self.architecture_1() == 0 && self.architecture_0() < NV_PMC_BOOT_0_ARCHITECTURE_GF100
}
}
register!(NV_PMC_BOOT_42 @ 0x00000a00, "Extended architecture information" {
15:12 minor_revision as u8, "Minor revision of the chip";
19:16 major_revision as u8, "Major revision of the chip";
23:20 implementation as u8, "Implementation version of the architecture";
29:24 architecture as u8 ?=> Architecture, "Architecture value";
});
impl NV_PMC_BOOT_42 {
/// Combines `architecture` and `implementation` to obtain a code unique to the chipset.
pub(crate) fn chipset(self) -> Result<Chipset> {
self.architecture()
.map(|arch| {
((arch as u32) << Self::IMPLEMENTATION_RANGE.len())
| u32::from(self.implementation())
})
.and_then(Chipset::try_from)
}
/// Returns the raw architecture value from the register.
fn architecture_raw(self) -> u8 {
((self.0 >> Self::ARCHITECTURE_RANGE.start()) & ((1 << Self::ARCHITECTURE_RANGE.len()) - 1))
as u8
}
}
impl kernel::fmt::Display for NV_PMC_BOOT_42 {
fn fmt(&self, f: &mut kernel::fmt::Formatter<'_>) -> kernel::fmt::Result {
write!(
f,
"boot42 = 0x{:08x} (architecture 0x{:x}, implementation 0x{:x})",
self.0,
self.architecture_raw(),
self.implementation()
)
}
}
// PBUS
register!(NV_PBUS_SW_SCRATCH @ 0x00001400[64] {});
register!(NV_PBUS_SW_SCRATCH_0E_FRTS_ERR => NV_PBUS_SW_SCRATCH[0xe],
"scratch register 0xe used as FRTS firmware error code" {
31:16 frts_err_code as u16;
});
// PFB
// The following two registers together hold the physical system memory address that is used by the
// GPU to perform sysmembar operations (see `fb::SysmemFlush`).
register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR @ 0x00100c10 {
31:0 adr_39_08 as u32;
});
register!(NV_PFB_NISO_FLUSH_SYSMEM_ADDR_HI @ 0x00100c40 {
23:0 adr_63_40 as u32;
});
register!(NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE @ 0x00100ce0 {
3:0 lower_scale as u8;
9:4 lower_mag as u8;
30:30 ecc_mode_enabled as bool;
});
register!(NV_PGSP_QUEUE_HEAD @ 0x00110c00 {
31:0 address as u32;
});
impl NV_PFB_PRI_MMU_LOCAL_MEMORY_RANGE {
/// Returns the usable framebuffer size, in bytes.
pub(crate) fn usable_fb_size(self) -> u64 {
let size = (u64::from(self.lower_mag()) << u64::from(self.lower_scale()))
* u64::from_safe_cast(kernel::sizes::SZ_1M);
if self.ecc_mode_enabled() {
// Remove the amount of memory reserved for ECC (one per 16 units).
size / 16 * 15
} else {
size
}
}
}
register!(NV_PFB_PRI_MMU_WPR2_ADDR_LO@0x001fa824 {
31:4 lo_val as u32, "Bits 12..40 of the lower (inclusive) bound of the WPR2 region";
});
impl NV_PFB_PRI_MMU_WPR2_ADDR_LO {
/// Returns the lower (inclusive) bound of the WPR2 region.
pub(crate) fn lower_bound(self) -> u64 {
u64::from(self.lo_val()) << 12
}
}
register!(NV_PFB_PRI_MMU_WPR2_ADDR_HI@0x001fa828 {
31:4 hi_val as u32, "Bits 12..40 of the higher (exclusive) bound of the WPR2 region";
});
impl NV_PFB_PRI_MMU_WPR2_ADDR_HI {
/// Returns the higher (exclusive) bound of the WPR2 region.
///
/// A value of zero means the WPR2 region is not set.
pub(crate) fn higher_bound(self) -> u64 {
u64::from(self.hi_val()) << 12
}
}
// PGC6 register space.
//
// `GC6` is a GPU low-power state where VRAM is in self-refresh and the GPU is powered down (except
// for power rails needed to keep self-refresh working and important registers and hardware
// blocks).
//
// These scratch registers remain powered on even in a low-power state and have a designated group
// number.
// Boot Sequence Interface (BSI) register used to determine
// if GSP reload/resume has completed during the boot process.
register!(NV_PGC6_BSI_SECURE_SCRATCH_14 @ 0x001180f8 {
26:26 boot_stage_3_handoff as bool;
});
// Privilege level mask register. It dictates whether the host CPU has privilege to access the
// `PGC6_AON_SECURE_SCRATCH_GROUP_05` register (which it needs to read GFW_BOOT).
register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK @ 0x00118128,
"Privilege level mask register" {
0:0 read_protection_level0 as bool, "Set after FWSEC lowers its protection level";
});
// OpenRM defines this as a register array, but doesn't specify its size and only uses its first
// element. Be conservative until we know the actual size or need to use more registers.
register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05 @ 0x00118234[1] {});
register!(
NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT => NV_PGC6_AON_SECURE_SCRATCH_GROUP_05[0],
"Scratch group 05 register 0 used as GFW boot progress indicator" {
7:0 progress as u8, "Progress of GFW boot (0xff means completed)";
}
);
impl NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT {
/// Returns `true` if GFW boot is completed.
pub(crate) fn completed(self) -> bool {
self.progress() == 0xff
}
}
register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_42 @ 0x001183a4 {
31:0 value as u32;
});
register!(
NV_USABLE_FB_SIZE_IN_MB => NV_PGC6_AON_SECURE_SCRATCH_GROUP_42,
"Scratch group 42 register used as framebuffer size" {
31:0 value as u32, "Usable framebuffer size, in megabytes";
}
);
impl NV_USABLE_FB_SIZE_IN_MB {
/// Returns the usable framebuffer size, in bytes.
pub(crate) fn usable_fb_size(self) -> u64 {
u64::from(self.value()) * u64::from_safe_cast(kernel::sizes::SZ_1M)
}
}
// PDISP
register!(NV_PDISP_VGA_WORKSPACE_BASE @ 0x00625f04 {
3:3 status_valid as bool, "Set if the `addr` field is valid";
31:8 addr as u32, "VGA workspace base address divided by 0x10000";
});
impl NV_PDISP_VGA_WORKSPACE_BASE {
/// Returns the base address of the VGA workspace, or `None` if none exists.
pub(crate) fn vga_workspace_addr(self) -> Option<u64> {
if self.status_valid() {
Some(u64::from(self.addr()) << 16)
} else {
None
}
}
}
// FUSE
pub(crate) const NV_FUSE_OPT_FPF_SIZE: usize = 16;
register!(NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION @ 0x00824100[NV_FUSE_OPT_FPF_SIZE] {
15:0 data as u16;
});
register!(NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION @ 0x00824140[NV_FUSE_OPT_FPF_SIZE] {
15:0 data as u16;
});
register!(NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION @ 0x008241c0[NV_FUSE_OPT_FPF_SIZE] {
15:0 data as u16;
});
// PFALCON
register!(NV_PFALCON_FALCON_IRQSCLR @ PFalconBase[0x00000004] {
4:4 halt as bool;
6:6 swgen0 as bool;
});
register!(NV_PFALCON_FALCON_MAILBOX0 @ PFalconBase[0x00000040] {
31:0 value as u32;
});
register!(NV_PFALCON_FALCON_MAILBOX1 @ PFalconBase[0x00000044] {
31:0 value as u32;
});
// Used to store version information about the firmware running
// on the Falcon processor.
register!(NV_PFALCON_FALCON_OS @ PFalconBase[0x00000080] {
31:0 value as u32;
});
register!(NV_PFALCON_FALCON_RM @ PFalconBase[0x00000084] {
31:0 value as u32;
});
register!(NV_PFALCON_FALCON_HWCFG2 @ PFalconBase[0x000000f4] {
10:10 riscv as bool;
12:12 mem_scrubbing as bool, "Set to 0 after memory scrubbing is completed";
31:31 reset_ready as bool, "Signal indicating that reset is completed (GA102+)";
});
impl NV_PFALCON_FALCON_HWCFG2 {
/// Returns `true` if memory scrubbing is completed.
pub(crate) fn mem_scrubbing_done(self) -> bool {
!self.mem_scrubbing()
}
}
register!(NV_PFALCON_FALCON_CPUCTL @ PFalconBase[0x00000100] {
1:1 startcpu as bool;
4:4 halted as bool;
6:6 alias_en as bool;
});
register!(NV_PFALCON_FALCON_BOOTVEC @ PFalconBase[0x00000104] {
31:0 value as u32;
});
register!(NV_PFALCON_FALCON_DMACTL @ PFalconBase[0x0000010c] {
0:0 require_ctx as bool;
1:1 dmem_scrubbing as bool;
2:2 imem_scrubbing as bool;
6:3 dmaq_num as u8;
7:7 secure_stat as bool;
});
register!(NV_PFALCON_FALCON_DMATRFBASE @ PFalconBase[0x00000110] {
31:0 base as u32;
});
register!(NV_PFALCON_FALCON_DMATRFMOFFS @ PFalconBase[0x00000114] {
23:0 offs as u32;
});
register!(NV_PFALCON_FALCON_DMATRFCMD @ PFalconBase[0x00000118] {
0:0 full as bool;
1:1 idle as bool;
3:2 sec as u8;
4:4 imem as bool;
5:5 is_write as bool;
10:8 size as u8 ?=> DmaTrfCmdSize;
14:12 ctxdma as u8;
16:16 set_dmtag as u8;
});
register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ PFalconBase[0x0000011c] {
31:0 offs as u32;
});
register!(NV_PFALCON_FALCON_DMATRFBASE1 @ PFalconBase[0x00000128] {
8:0 base as u16;
});
register!(NV_PFALCON_FALCON_HWCFG1 @ PFalconBase[0x0000012c] {
3:0 core_rev as u8 ?=> FalconCoreRev, "Core revision";
5:4 security_model as u8 ?=> FalconSecurityModel, "Security model";
7:6 core_rev_subversion as u8 ?=> FalconCoreRevSubversion, "Core revision subversion";
});
register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ PFalconBase[0x00000130] {
1:1 startcpu as bool;
});
// Actually known as `NV_PSEC_FALCON_ENGINE` and `NV_PGSP_FALCON_ENGINE` depending on the falcon
// instance.
register!(NV_PFALCON_FALCON_ENGINE @ PFalconBase[0x000003c0] {
0:0 reset as bool;
});
register!(NV_PFALCON_FBIF_TRANSCFG @ PFalconBase[0x00000600[8]] {
1:0 target as u8 ?=> FalconFbifTarget;
2:2 mem_type as bool => FalconFbifMemType;
});
register!(NV_PFALCON_FBIF_CTL @ PFalconBase[0x00000624] {
7:7 allow_phys_no_ctx as bool;
});
/* PFALCON2 */
register!(NV_PFALCON2_FALCON_MOD_SEL @ PFalcon2Base[0x00000180] {
7:0 algo as u8 ?=> FalconModSelAlgo;
});
register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ PFalcon2Base[0x00000198] {
7:0 ucode_id as u8;
});
register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ PFalcon2Base[0x0000019c] {
31:0 value as u32;
});
// OpenRM defines this as a register array, but doesn't specify its size and only uses its first
// element. Be conservative until we know the actual size or need to use more registers.
register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ PFalcon2Base[0x00000210[1]] {
31:0 value as u32;
});
// PRISCV
register!(NV_PRISCV_RISCV_CPUCTL @ PFalcon2Base[0x00000388] {
0:0 halted as bool;
7:7 active_stat as bool;
});
register!(NV_PRISCV_RISCV_BCR_CTRL @ PFalcon2Base[0x00000668] {
0:0 valid as bool;
4:4 core_select as bool => PeregrineCoreSelect;
8:8 br_fetch as bool;
});
// The modules below provide registers that are not identical on all supported chips. They should
// only be used in HAL modules.
pub(crate) mod gm107 {
// FUSE
register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00021c04 {
0:0 display_disabled as bool;
});
}
pub(crate) mod ga100 {
// FUSE
register!(NV_FUSE_STATUS_OPT_DISPLAY @ 0x00820c04 {
0:0 display_disabled as bool;
});
}