| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix |
| * Copyright (C) 2006 Andrey Volkov, Varma Electronics |
| * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> |
| * Copyright (C) 2021-2025 Vincent Mailhol <mailhol@kernel.org> |
| */ |
| |
| #include <linux/units.h> |
| #include <linux/can/dev.h> |
| |
| #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ |
| |
| /* CiA recommended sample points for Non Return to Zero encoding. */ |
| static int can_calc_sample_point_nrz(const struct can_bittiming *bt) |
| { |
| if (bt->bitrate > 800 * KILO /* BPS */) |
| return 750; |
| |
| if (bt->bitrate > 500 * KILO /* BPS */) |
| return 800; |
| |
| return 875; |
| } |
| |
| /* Sample points for Pulse-Width Modulation encoding. */ |
| static int can_calc_sample_point_pwm(const struct can_bittiming *bt) |
| { |
| if (bt->bitrate > 15 * MEGA /* BPS */) |
| return 625; |
| |
| if (bt->bitrate > 9 * MEGA /* BPS */) |
| return 600; |
| |
| if (bt->bitrate > 4 * MEGA /* BPS */) |
| return 560; |
| |
| return 520; |
| } |
| |
| /* Bit-timing calculation derived from: |
| * |
| * Code based on LinCAN sources and H8S2638 project |
| * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz |
| * Copyright 2005 Stanislav Marek |
| * email: pisa@cmp.felk.cvut.cz |
| * |
| * Calculates proper bit-timing parameters for a specified bit-rate |
| * and sample-point, which can then be used to set the bit-timing |
| * registers of the CAN controller. You can find more information |
| * in the header file linux/can/netlink.h. |
| */ |
| static int |
| can_update_sample_point(const struct can_bittiming_const *btc, |
| const unsigned int sample_point_reference, const unsigned int tseg, |
| unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, |
| unsigned int *sample_point_error_ptr) |
| { |
| unsigned int sample_point_error, best_sample_point_error = UINT_MAX; |
| unsigned int sample_point, best_sample_point = 0; |
| unsigned int tseg1, tseg2; |
| int i; |
| |
| for (i = 0; i <= 1; i++) { |
| tseg2 = tseg + CAN_SYNC_SEG - |
| (sample_point_reference * (tseg + CAN_SYNC_SEG)) / |
| 1000 - i; |
| tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); |
| tseg1 = tseg - tseg2; |
| if (tseg1 > btc->tseg1_max) { |
| tseg1 = btc->tseg1_max; |
| tseg2 = tseg - tseg1; |
| } |
| |
| sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) / |
| (tseg + CAN_SYNC_SEG); |
| sample_point_error = abs(sample_point_reference - sample_point); |
| |
| if (sample_point <= sample_point_reference && |
| sample_point_error < best_sample_point_error) { |
| best_sample_point = sample_point; |
| best_sample_point_error = sample_point_error; |
| *tseg1_ptr = tseg1; |
| *tseg2_ptr = tseg2; |
| } |
| } |
| |
| if (sample_point_error_ptr) |
| *sample_point_error_ptr = best_sample_point_error; |
| |
| return best_sample_point; |
| } |
| |
| int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt, |
| const struct can_bittiming_const *btc, struct netlink_ext_ack *extack) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| unsigned int bitrate; /* current bitrate */ |
| unsigned int bitrate_error; /* diff between calculated and reference value */ |
| unsigned int best_bitrate_error = UINT_MAX; |
| unsigned int sample_point_error; /* diff between calculated and reference value */ |
| unsigned int best_sample_point_error = UINT_MAX; |
| unsigned int sample_point_reference; /* reference sample point */ |
| unsigned int best_tseg = 0; /* current best value for tseg */ |
| unsigned int best_brp = 0; /* current best value for brp */ |
| unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; |
| u64 v64; |
| int err; |
| |
| if (bt->sample_point) |
| sample_point_reference = bt->sample_point; |
| else if (btc == priv->xl.data_bittiming_const && |
| (priv->ctrlmode & CAN_CTRLMODE_XL_TMS)) |
| sample_point_reference = can_calc_sample_point_pwm(bt); |
| else |
| sample_point_reference = can_calc_sample_point_nrz(bt); |
| |
| /* tseg even = round down, odd = round up */ |
| for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; |
| tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { |
| tsegall = CAN_SYNC_SEG + tseg / 2; |
| |
| /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ |
| brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; |
| |
| /* choose brp step which is possible in system */ |
| brp = (brp / btc->brp_inc) * btc->brp_inc; |
| if (brp < btc->brp_min || brp > btc->brp_max) |
| continue; |
| |
| bitrate = priv->clock.freq / (brp * tsegall); |
| bitrate_error = abs(bt->bitrate - bitrate); |
| |
| /* tseg brp biterror */ |
| if (bitrate_error > best_bitrate_error) |
| continue; |
| |
| /* reset sample point error if we have a better bitrate */ |
| if (bitrate_error < best_bitrate_error) |
| best_sample_point_error = UINT_MAX; |
| |
| can_update_sample_point(btc, sample_point_reference, tseg / 2, |
| &tseg1, &tseg2, &sample_point_error); |
| if (sample_point_error >= best_sample_point_error) |
| continue; |
| |
| best_sample_point_error = sample_point_error; |
| best_bitrate_error = bitrate_error; |
| best_tseg = tseg / 2; |
| best_brp = brp; |
| |
| if (bitrate_error == 0 && sample_point_error == 0) |
| break; |
| } |
| |
| if (best_bitrate_error) { |
| /* Error in one-hundredth of a percent */ |
| v64 = (u64)best_bitrate_error * 10000; |
| do_div(v64, bt->bitrate); |
| bitrate_error = (u32)v64; |
| /* print at least 0.01% if the error is smaller */ |
| bitrate_error = max(bitrate_error, 1U); |
| if (bitrate_error > CAN_CALC_MAX_ERROR) { |
| NL_SET_ERR_MSG_FMT(extack, |
| "bitrate error: %u.%02u%% too high", |
| bitrate_error / 100, |
| bitrate_error % 100); |
| return -EINVAL; |
| } |
| NL_SET_ERR_MSG_FMT(extack, |
| "bitrate error: %u.%02u%%", |
| bitrate_error / 100, bitrate_error % 100); |
| } |
| |
| /* real sample point */ |
| bt->sample_point = can_update_sample_point(btc, sample_point_reference, |
| best_tseg, &tseg1, &tseg2, |
| NULL); |
| |
| v64 = (u64)best_brp * 1000 * 1000 * 1000; |
| do_div(v64, priv->clock.freq); |
| bt->tq = (u32)v64; |
| bt->prop_seg = tseg1 / 2; |
| bt->phase_seg1 = tseg1 - bt->prop_seg; |
| bt->phase_seg2 = tseg2; |
| |
| can_sjw_set_default(bt); |
| |
| err = can_sjw_check(dev, bt, btc, extack); |
| if (err) |
| return err; |
| |
| bt->brp = best_brp; |
| |
| /* real bitrate */ |
| bt->bitrate = priv->clock.freq / |
| (bt->brp * can_bit_time(bt)); |
| |
| return 0; |
| } |
| |
| void can_calc_tdco(struct can_tdc *tdc, const struct can_tdc_const *tdc_const, |
| const struct can_bittiming *dbt, |
| u32 tdc_mask, u32 *ctrlmode, u32 ctrlmode_supported) |
| |
| { |
| u32 tdc_auto = tdc_mask & CAN_CTRLMODE_TDC_AUTO_MASK; |
| |
| if (!tdc_const || !(ctrlmode_supported & tdc_auto)) |
| return; |
| |
| *ctrlmode &= ~tdc_mask; |
| |
| /* As specified in ISO 11898-1 section 11.3.3 "Transmitter |
| * delay compensation" (TDC) is only applicable if data BRP is |
| * one or two. |
| */ |
| if (dbt->brp == 1 || dbt->brp == 2) { |
| /* Sample point in clock periods */ |
| u32 sample_point_in_tc = (CAN_SYNC_SEG + dbt->prop_seg + |
| dbt->phase_seg1) * dbt->brp; |
| |
| if (sample_point_in_tc < tdc_const->tdco_min) |
| return; |
| tdc->tdco = min(sample_point_in_tc, tdc_const->tdco_max); |
| *ctrlmode |= tdc_auto; |
| } |
| } |
| |
| int can_calc_pwm(struct net_device *dev, struct netlink_ext_ack *extack) |
| { |
| struct can_priv *priv = netdev_priv(dev); |
| const struct can_pwm_const *pwm_const = priv->xl.pwm_const; |
| struct can_pwm *pwm = &priv->xl.pwm; |
| u32 xl_tqmin = can_bit_time_tqmin(&priv->xl.data_bittiming); |
| u32 xl_ns = can_tqmin_to_ns(xl_tqmin, priv->clock.freq); |
| u32 nom_tqmin = can_bit_time_tqmin(&priv->bittiming); |
| int pwm_per_bit_max = xl_tqmin / (pwm_const->pwms_min + pwm_const->pwml_min); |
| int pwm_per_bit; |
| u32 pwm_tqmin; |
| |
| /* For 5 MB/s databitrate or greater, xl_ns < CAN_PWM_NS_MAX |
| * giving us a pwm_per_bit of 1 and the loop immediately breaks |
| */ |
| for (pwm_per_bit = DIV_ROUND_UP(xl_ns, CAN_PWM_NS_MAX); |
| pwm_per_bit <= pwm_per_bit_max; pwm_per_bit++) |
| if (xl_tqmin % pwm_per_bit == 0) |
| break; |
| |
| if (pwm_per_bit > pwm_per_bit_max) { |
| NL_SET_ERR_MSG_FMT(extack, |
| "Can not divide the XL data phase's bit time: %u tqmin into multiple PWM symbols", |
| xl_tqmin); |
| return -EINVAL; |
| } |
| |
| pwm_tqmin = xl_tqmin / pwm_per_bit; |
| pwm->pwms = DIV_ROUND_UP_POW2(pwm_tqmin, 4); |
| pwm->pwml = pwm_tqmin - pwm->pwms; |
| pwm->pwmo = nom_tqmin % pwm_tqmin; |
| |
| return 0; |
| } |