| #!/usr/bin/env python3 |
| |
| """Tool to visualize PLDM PDR's""" |
| |
| import argparse |
| import hashlib |
| import json |
| import os |
| import shlex |
| import shutil |
| import sys |
| from datetime import datetime |
| from graphviz import Digraph |
| from tabulate import tabulate |
| |
| def prepare_summary_report(state_sensor_pdr, state_effecter_pdr): |
| """This function is responsible to parse the state sensor pdr |
| and the state effecter pdr dictionaries and creating the |
| summary table. |
| |
| Parameters: |
| state_sensor_pdr: list of state sensor pdrs |
| state_effecter_pdr: list of state effecter pdrs |
| |
| """ |
| |
| summary_table = [] |
| headers = ["sensor_id", "entity_type", "state_set", "states"] |
| summary_table.append(headers) |
| for value in state_sensor_pdr.values(): |
| summary_record = [] |
| sensor_possible_states = "" |
| for sensor_state in value["possibleStates[0]"]: |
| sensor_possible_states += sensor_state + "\n" |
| summary_record.extend( |
| [ |
| value["sensorID"], |
| value["entityType"], |
| value["stateSetID[0]"], |
| sensor_possible_states, |
| ] |
| ) |
| summary_table.append(summary_record) |
| print("Created at : ", datetime.now().strftime("%Y-%m-%d %H:%M:%S")) |
| print(tabulate(summary_table, tablefmt="fancy_grid", headers="firstrow")) |
| |
| summary_table = [] |
| headers = ["effecter_id", "entity_type", "state_set", "states"] |
| summary_table.append(headers) |
| for value in state_effecter_pdr.values(): |
| summary_record = [] |
| effecter_possible_states = "" |
| for state in value["possibleStates[0]"]: |
| effecter_possible_states += state + "\n" |
| summary_record.extend( |
| [ |
| value["effecterID"], |
| value["entityType"], |
| value["stateSetID[0]"], |
| effecter_possible_states, |
| ] |
| ) |
| summary_table.append(summary_record) |
| print(tabulate(summary_table, tablefmt="fancy_grid", headers="firstrow")) |
| |
| |
| def draw_entity_associations(pdr, counter): |
| """This function is responsible to create a picture that captures |
| the entity association hierarchy based on the entity association |
| PDR's received from the BMC. |
| |
| Parameters: |
| pdr: list of entity association PDR's |
| counter: variable to capture the count of PDR's to unflatten |
| the tree |
| |
| """ |
| |
| dot = Digraph( |
| "entity_hierarchy", |
| node_attr={"color": "lightblue1", "style": "filled"}, |
| ) |
| dot.attr( |
| label=r"\n\nEntity Relation Diagram < " |
| + str(datetime.now().strftime("%Y-%m-%d %H:%M:%S")) |
| + ">\n" |
| ) |
| dot.attr(fontsize="20") |
| edge_list = [] |
| for value in pdr.values(): |
| parentnode = "{}, {}, {}".format(str(value["containerEntityContainerID"]), |
| str(value["containerEntityType"]), |
| str(value["containerEntityInstanceNumber"])) |
| dot.node( |
| hashlib.md5( |
| ( |
| parentnode + str(value["containerEntityContainerID"]) |
| ).encode() |
| ).hexdigest(), |
| parentnode, |
| ) |
| |
| for i in range(1, value["containedEntityCount"] + 1): |
| childnode = "{}, {}, {}".format(str(value[f"containedEntityContainerID[{i}]"]), |
| str(value[f"containedEntityType[{i}]"]), |
| str(value[f"containedEntityInstanceNumber[{i}]"])) |
| cid = str(value[f"containedEntityContainerID[{i}]"]) |
| dot.node( |
| hashlib.md5((childnode + cid).encode()).hexdigest(), childnode |
| ) |
| |
| if [ |
| hashlib.md5( |
| ( |
| parentnode + str(value["containerEntityContainerID"]) |
| ).encode() |
| ).hexdigest(), |
| hashlib.md5((childnode + cid).encode()).hexdigest(), |
| ] not in edge_list: |
| edge_list.append( |
| [ |
| hashlib.md5( |
| ( |
| parentnode |
| + str(value["containerEntityContainerID"]) |
| ).encode() |
| ).hexdigest(), |
| hashlib.md5((childnode + cid).encode()).hexdigest(), |
| ] |
| ) |
| dot.edge( |
| hashlib.md5( |
| ( |
| parentnode |
| + str(value["containerEntityContainerID"]) |
| ).encode() |
| ).hexdigest(), |
| hashlib.md5((childnode + cid).encode()).hexdigest(), |
| ) |
| unflattentree = dot.unflatten(stagger=(round(counter / 3))) |
| unflattentree.render( |
| filename="entity_association_" |
| + str(datetime.now().strftime("%Y-%m-%d_%H-%M-%S")), |
| view=False, |
| cleanup=True, |
| format="pdf", |
| ) |
| |
| |
| def fetch_pdrs_from_file(filename): |
| entity_association_pdr = {} |
| state_sensor_pdr = {} |
| state_effecter_pdr = {} |
| state_effecter_pdr = {} |
| numeric_pdr = {} |
| fru_record_set_pdr = {} |
| tl_pdr = {} |
| for pdr in json.load(open(filename)): |
| handle_number = pdr["recordHandle"] |
| if pdr["PDRType"] == "Entity Association PDR": |
| entity_association_pdr[handle_number] = pdr |
| if pdr["PDRType"] == "State Sensor PDR": |
| state_sensor_pdr[handle_number] = pdr |
| if pdr["PDRType"] == "State Effecter PDR": |
| state_effecter_pdr[handle_number] = pdr |
| if pdr["PDRType"] == "FRU Record Set PDR": |
| fru_record_set_pdr[handle_number] = pdr |
| if pdr["PDRType"] == "Terminus Locator PDR": |
| tl_pdr[handle_number] = pdr |
| if pdr["PDRType"] == "Numeric Effecter PDR": |
| numeric_pdr[handle_number] = pdr |
| |
| total_pdrs = ( |
| len(entity_association_pdr.keys()) |
| + len(tl_pdr.keys()) |
| + len(state_effecter_pdr.keys()) |
| + len(numeric_pdr.keys()) |
| + len(state_sensor_pdr.keys()) |
| + len(fru_record_set_pdr.keys()) |
| ) |
| print("\nSuccessfully fetched " + str(total_pdrs) + " PDR's") |
| print("Number of FRU Record PDR's : ", len(fru_record_set_pdr.keys())) |
| print("Number of TerminusLocator PDR's : ", len(tl_pdr.keys())) |
| print("Number of State Sensor PDR's : ", len(state_sensor_pdr.keys())) |
| print("Number of State Effecter PDR's : ", len(state_effecter_pdr.keys())) |
| print("Number of Numeric Effecter PDR's : ", len(numeric_pdr.keys())) |
| print( |
| "Number of Entity Association PDR's : ", |
| len(entity_association_pdr.keys()), |
| ) |
| return ( |
| entity_association_pdr, |
| state_sensor_pdr, |
| state_effecter_pdr, |
| len(fru_record_set_pdr.keys()), |
| ) |
| |
| |
| def main(): |
| """Create a summary table capturing the information of all the PDR's |
| from the BMC & also create a diagram that captures the entity |
| association hierarchy.""" |
| |
| parser = argparse.ArgumentParser(prog="pldm_visualise_pdrs_fromfile.py") |
| parser.add_argument("--file", type=str, help="filename which contains 'getpdr -a' data") |
| args = parser.parse_args() |
| if args.file: |
| ( |
| association_pdr, |
| state_sensor_pdr, |
| state_effecter_pdr, |
| counter, |
| ) = fetch_pdrs_from_file(args.file) |
| draw_entity_associations(association_pdr, counter) |
| prepare_summary_report(state_sensor_pdr, state_effecter_pdr) |
| |
| |
| if __name__ == "__main__": |
| main() |